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Temporal division of labor and foraging specialization are key characteristics of honeybee social organization. Worker
honeybees (Apis mellifera) initiate foraging for food around their third week of life and often specialize in collecting
pollen or nectar before they die. Variation in these fundamental social traits correlates with variation in worker
reproductive physiology. However, the genetic and hormonal mechanisms that mediate the control of social
organization are not understood and remain a central question in social insect biology. Here we demonstrate that a
yolk precursor gene, vitellogenin, affects a complex suite of social traits. Vitellogenin is a major reproductive protein in
insects in general and a proposed endocrine factor in honeybees. We show by use of RNA interference (RNAi) that
vitellogenin gene activity paces onset of foraging behavior, primes bees for specialized foraging tasks, and influences
worker longevity. These findings support the view that the worker specializations that characterize hymenopteran
sociality evolved through co-option of reproductive regulatory pathways. Further, they demonstrate for the first time
how coordinated control of multiple social life-history traits can originate via the pleiotropic effects of a single gene
that affects multiple physiological processes.
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Introduction

Vitellogenin has versatile regulatory functions in honey-
bees, suggesting that this glycolipoprotein may be involved in
the control of social life-history traits [1–5]. Vitellogenin is
the common yolk precursor protein of oviparous taxa [6].
However, it appears to have evolved pleiotropic functions in
the advanced eusocial honeybee that have not as yet been
given attention in other species that rely on vitellogenin for
oocyte development [1,4].

Honeybee vitellogenin has been hypothesized to work
together with juvenile hormone in a double repressor
network to coordinate behavior [7]. In this network,
vitellogenine suppresses juvenile hormone and inhibits the
worker honeybees’ age-associated shift from nest tasks to
foraging duties [3]. This shift is a complex behavioral
transition characterized by decreasing vitellogenin and
increasing juvenile hormone titer [8]. It has been proposed
also that variation in vitellogenin gene expression early in life
is associated with subsequent behavioral specialization that
gives rise to a division of labor between nectar and pollen
foraging workers [9]. Finally, honeybee vitellogenin can
reduce oxidative stress by scavenging free radicals, thereby
prolonging lifespan in the facultatively sterile worker castes
and the reproductive queen castes [4]. Similar antioxidant
function has been suggested for vitellogenin molecules in
the nematode Caenorhabditis elegans [10] and in eggs of the eel
Anguilla japonica [11], but positive effects of vitellogenin on
adult longevity have not been demonstrated in these species.

In summary, the proposed pleiotropic effects of honeybee
vitellogenin suggest that the vitellogenin gene is a central
element in the life-history regulation of this social insect.
Here we test these proposed functions by using RNA
interference (RNAi) to knock down expression of the honey-
bee vitellogenin gene.

Results

The vitellogenin RNAi tool [12] was used in combination
with observations of the behavior and lifespan of worker
honeybees living in otherwise unmanipulated colonies. RNAi-
mediated knockdown of the vitellogenin protein has been
confirmed repeatedly in 5–7-d-old worker bees [3,5,12]. In
this first RNAi study of honeybee social life history, however,
we aimed to monitor workers over several weeks. Therefore,
RNAi was validated in cohorts of 10-d-old (n¼31), 15-d-old (n
¼ 27) and 20-d-old (n ¼ 27) bees (Figure 1).

This initial test demonstrated that workers with a vitelloge-
nin RNAi phenotype (n¼ 30) were characterized by persistent
suppression of vitellogenin protein levels compared to
controls (n ¼ 24), which received injections of double-
stranded RNA (dsRNA) derived from green fluorescent
protein (GFP) encoding sequence (p , 0.005; see the legend
to Figure 1 for details on statistics). The GFP dsRNA control
represents a handling disturbance control [5], which is
necessary because honeybees respond to many kinds of
handling stress with changes in endocrines, neuromodulators,
and behavior [13–15]. This control was monitored relative to
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a non-injected reference group (n ¼ 31; see Figure 1 for
details). The vitellogenin levels of the GFP dsRNA control and
the non-injected reference group were not significantly
different (p ¼ 0.27).

Next, we found that vitellogenin knockdowns (n ¼ 122)
initiated foraging flights earlier in life than GFP dsRNA
controls (n ¼ 179, p , 0.003; see Figure 2 for details). These
results confirm the hypothesis that honeybee vitellogenin gene
activity influences worker division of labor via an inhibitory
effect on the shift from nest tasks to foraging [3,7].

In addition, down-regulation of vitellogenin gene activity (n
¼ 160) resulted in foragers collecting larger loads of nectar
relative to GFP dsRNA controls (n¼159, p , 0.010; see Figure
3 for details). Overall, loads were within the range normally
collected by honeybees (up to 60-mg nectar and 30-mg pollen
[16,17]), and thus interfering with vitellogenin expression did
not change the maximum load size collected by workers. The
observed bias towards nectar collection in vitellogenin knock-
downs is consistent with earlier studies showing low hemo-
lymph (blood) levels of vitellogenin in young worker bees
from genetic stocks that preferentially collect nectar [9].
Genetic stocks with bias for collecting pollen are charac-
terized by high levels of vitellogenin prior to foraging onset
[9]. Our data, however, go beyond these correlations and
demonstrate that the vitellogenin gene influences social
foraging specialization.

Survival data showed that vitellogenin also is involved in
the regulation of honeybee lifespan. Lifespan was reduced in
vitellogenin knockdowns (n¼ 122) compared with GFP dsRNA
controls (n ¼ 179, p , 0.036, see Figure 4 for details). The
effect was not due simply to bees initiating foraging behavior
earlier in life, because these traits were not correlated in the
knockdown phenotype (r ¼ 0.121 [Colony 1]; r ¼ �0.003
[Colony 2], p . 0.05). Our finding is supported by the
previous results showing that worker bees with reduced
vitellogenin activity levels are more susceptible to oxidative
stress [4], a physiological state that is an established indicator
of aging [18,19].

Discussion

Our results suggest that honeybee vitellogenin has an
integrative function in regulating social organization through
its pleiotropic effects on division of labor and foraging
specialization. Vitellogenin inhibits the onset of foraging (our
study) but declines with age in workers [8,20], thereby serving
as a pacemaker for age polyethism and lifespan, as first
hypothesized by Omholt and Amdam [7,21]. Higher titers
early in life [9] prime bees for pollen collection, whereas low
titers prime bees for collecting nectar (our study). vitellogenin
RNAi established at adult emergence triggers persistent
suppression of vitellogenin activity [3,5,12] (Figure 1), and

Figure 1. The Effect of vitellogenin RNAi on Hemolymph Vitellogenin

Concentrations

Levels are in micrograms per microliter relative to a b-galactosidase
standard. Significant suppression of vitellogenin is apparent in RNAi
knockdowns (vgRNAi) compared to injected controls (injGFP; Mann-
Whitney U test: Z ¼ 2.84, n ¼ 54, p , 0.005). Control injections (GFP-
derived dsRNA) did not significantly affect the vitellogenin level of the
bees compared to the non-injected reference group (noREF; Mann-
Whitney U test: Z¼�1.10, n¼ 55, p¼ 0.27). Bars show results as means
and standard errors with corresponding medians at the bottom of each
bar. Because the dataset did not conform to assumptions of parametric
tests (see Materials and Methods), medians can be considered the more
accurate statistic. The dataset is split by age (10, 15 and 20 d olds) to
visualize the persistence of RNAi. However, age did not affect the
vitellogenin level of the workers (p ¼ 0.68, see data analysis section for
details), and thus conclusions cannot be drawn about treatment effects
by age. The means and standard errors of the dataset overall are shown
in the embedded box of the upper panel (medians for the dataset: noREF
¼ 3.94, injGFP ¼ 3.45, and vgRNAi¼ 2.46).
doi:10.1371/journal.pbio.0050062.g001

Author Summary

Animals that live in groups often specialize in different tasks,
creating a division of labor. One extreme example can be seen in
honeybees, in which most tasks are performed by thousands of
worker females that are essentially sterile helpers. Workers start out
as nurse bees that care for larvae in the nest. Later they embark on
foraging trips, specializing in either pollen or nectar collection, and
continue to forage until they die. The age when workers initiate
foraging and the tendency to collect pollen or nectar have been
linked to a rudimentary reproductive physiology in which the
protein vitellogenin appears to play a central role. Vitellogenin is
normally used to produce egg yolk, but it may affect behavior and
lifespan in workers. We tested this hypothesis by knocking down the
vitellogenin gene of worker bees. Workers with suppressed
vitellogenin levels foraged earlier, preferred nectar, and lived shorter
lives. Thus, vitellogenin has multiple effects on honeybee social
organization. By using gene knockdown to understand insect social
behavior, our study supports the view that social life in bees evolved
by co-opting genes involved in reproduction.
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therefore, the knockdown phenotype was expected to initiate
foraging early, collect nectar, and live a short life (Figure 5).

Life-history pleiotropy demonstrated by the effects of
vitellogenin is similar in principle to trait associations that
are controlled by the systemic endocrine factors juvenile
hormone and ecdysone in the solitary insect Drosophila
(reviewed by Flatt et al. [22]). In Drosophila, yolk precursor
peptides [23] are downstream components of these hormonal
signaling cascades [24], whereas in honeybees, vitellogenin is
part of a regulatory feedback loop that enables vitellogenin
and juvenile hormone to mutually suppress each other [3,4,7].
As a consequence, vitellogenin and juvenile hormone should
be considered joint effectors of division of labor and foraging
specialization, at least until methods can be developed to
separate their individual effects. This feedback relationship is
uncommon in insects [3], suggesting in combination with our
findings that evolutionary co-option and remodeling of
vitellogenin and juvenile hormone action [1,4–6] have been
important steps in honeybee social evolution [3].

Previous studies have identified genes that affect honeybee
foraging onset (Amfor [25] and malvolio [26]), and multiple
genes with mRNA levels that correlate with foraging behavior
[27] or lifespan [28]. Yet our work represents the first
successful RNAi approach to decipher gene and protein
function in honeybee social behavior. Our data demonstrate
for the first time that several key characteristics of a social

Figure 2. Effect of vitellogenin Gene Activity on Age at Foraging Onset

Cumulative hazard increases until all bees have foraged. Knockdowns
(vgRNAi) initiated foraging behavior earlier in life than injected controls
(injGFP; LRT ¼ 8.81, df ¼ 1, p , 0.003, hazard ratio [comparative risk of
initiating foraging calculated over the entire time of the study]¼ 1.43 d
earlier, confidence interval ¼ 1.13–1.81 d). A documented effect of
laboratory handling [13,14] is shown by the injected controls foraging
earlier than the non-injected reference (noREF) workers (LRT¼ 44.0, df¼
1, p , 0.0001, hazard ratio ¼ 1.97 d earlier, confidence interval ¼ 1.62–
2.39 d).
doi:10.1371/journal.pbio.0050062.g002

Figure 3. Effect of vitellogenin Gene Activity on Size of Nectar Loads

Collected

Knockdowns (vgRNAi) collected more nectar than injected controls
(injGFP; ANOVA, F1,315 ¼ 6.79, p , 0.010). The difference between
injected controls and non-injected reference (noREF) bees was also
significant (ANOVA, F1,313 ¼ 6.00, p, 0.015). Bars are means with
standard errors.
doi:10.1371/journal.pbio.0050062.g003

Figure 4. Effect of vitellogenin Gene Activity on Lifespan

Cumulative hazard increases until all bees have died. Injected controls
(injGFP) lived longer than knockdowns (vgRNAi; LRT¼ 4.38, df¼ 1, p ,
0.036, hazard ratio [comparative survival experience calculated over the
entire time of the study]¼ 1.29 d longer, confidence interval¼ 1.02–1.63
d). Longevity was affected by laboratory handling (LRT¼43.4, df¼1, p ,
0.0001, hazard ratio ¼ 1.96 d longer for non-injected reference (noREF)
bees compared with injGFP bees, confidence interval¼ 1.61–2.38 d).
doi:10.1371/journal.pbio.0050062.g004
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phenotype can be coordinated by a single reproductive gene.
This pleiotropy lends support to studies showing that
complex social behavior in insects can evolve from ancestral
reproductive traits [9,29–31].

Materials and Methods

Validation of vitellogenin knockdown. The non-injected reference
(noREF), GFP dsRNA control (injGFP), and vitellogenin knockdown
(vgRNAi) phenotypes were obtained as previously described by
Amdam et al. [5,12]. In short, primers were designed from the
sequence of the A. mellifera vitellogenin cDNA clone AP4a5, and the
GFP encoding sequence of the pGFP vector (Clontech, Palo Alto,
California, United States). GFP dsRNA does not affect vitellogenin [5],
but was used in planned comparisons with vitellogenin dsRNA to
control for laboratory handling that affects sensory and physiological
correlates of worker foraging behavior [5,13,14].

Primers were fused with T7 promoter sequence (underlined): for
clone AP4a5: 59-TAATACGACTCACTATAGGGCGAACGACTCGAC-
CAACGACTT-39 and 59-TAATACGACTCACTATAGGGCGAAAC-
GAAAGGAACGGTCAATTCC - 3 9; a n d f o r pGFP : 5 9-
TAATACGACTCACTATAGGGCGATTCCATGGCCAA -
CACTTGTCC-39 and 59-TAATACGACTCACTATAGGGCGATCAA-
GAAGGACCATGTGGTC-39. PCR reactions were performed
according to standard procedures using AP4a5 and the pGFP vector
as templates. Resulting products excluding the fused T7 promoters
were 504 base pairs (bp) (vitellogenin) and 503 bp (GFP derived).
Products were purified using the QIAquick PCR purification kit
(Qiagen, Valencia, California, United States), and RNA was prepared
using the Promega RiboMax T7 system (Promega, Madison, Wisconsin,
United States). RNA was extracted by TRIzol LS reagent (GIBCO-BRL,
San Diego, California, United States), resuspended in nuclease-free
water, heated at 96 8C for 2 min in an Eppendorf Thermomixer
(Brinkmann Instruments, Westbury, New York, United States), and left
to cool at room temperature for 20 min. The integrity of the dsRNA
was tested using 1.5% agarose gels, and the products were diluted with
nuclease-free water (Qiagen) to the final concentration of 5 lg/ll.

Newly emerged workers were randomly assigned to one of three
treatments and marked with paint (Testors Enamel; Testor Corpo-
ration, Rockford, Illinois, United States) to indicate treatment
identity. The noREF group was set aside. The two remaining groups
were injected with vitellogenin-derived or GFP-derived dsRNA (to
make up the vgRNAi or injGFP treatment, respectively) between the
fifth and sixth tergite using Hamilton syringes with G30 disposable
needles (BD, Palo Alto, California, United States). Injection volume

was 2 ll. Injections were performed by trained personnel that were
blind to treatment identities. Workers were introduced into two
colonies kept in commercial hive boxes (n ¼ 50 for each treatment
group and in each colony, respectively) and collected after 10, 15, and
20 d during non-foraging hours.

Bees were anesthetized on ice, and hemolymph was extracted with
Drummond Scientific Company (Broomall, Pennsylvania, United
States) micropipettes after puncturing the abdomen between the
third and fourth tergite with a sterile G30 needle (BD). Care was taken
to avoid contaminating the samples with tissue fragments and foregut
content. Hemolymph (1 ll) was dissolved in 10-ll Tris buffer: 20 mM
Tris, 150 mM NaCl, 5 mM EDTA (pH 7.5), 1 mM phenylmethylsulfonyl
fluoride, 5mMbenzamidin, 0.7 lMpepstatin, 8 lMchymostatin, 10 lM
leupeptin, 0.8 lMaprotinin (Sigma-Aldrich, St. Louis,Missouri, United
States), before samples were separated by 8% SDS-polyacrylamide gel
electrophoresis using standard methods [32]. A b-galactosidase stand-
ard (Sigma-Aldrich) was included to allow densitometrically quantifi-
cation by themethod of Lin et al. [33], in which vitellogenin is detected
as a single band of 180 kDa [5,33,34]. The densitometrical analysis was
performed by the Quantity One imaging software (Bio-Rad, Hercules,
California, United States) after staining the gels with Commassie
Brilliant Blue (Sigma-Aldrich). Gel-to-gel variation in staining inten-
sity was controlled by background correction and the b-galactosidase
standards as we have described previously [5].

Age of foraging onset and lifespan. Newly emerged workers were
randomly assigned to one of three treatments. noREF bees were
uniquely tagged and set aside. Groups of vgRNAi and injGFP workers
were obtained as described above. About equal numbers of bees from
each treatment group were introduced into two host colonies (n¼288
noREF, 338 injGFP, and 293 vgRNAi into Colony 1; and n ¼ 288
noREF, 338 injGFP, and 299 vgRNAi into Colony 2). Each colony was
set up in an observation hive with about 5,000 unmarked adult bees
of diverse ages. Observers were blind to treatment identity. Colonies
were surveyed daily for tagged bees during non-foraging hours to
establish survivorship (the combs of each colony were scanned twice
daily), and for two 40-min periods daily during peak foraging hours
to establish foraging activity. Ramps from the outside port leading to
the bottom comb were observed for incoming tagged forager bees
during these 40-min sessions. A bee’s age of foraging onset was the
number of days since adult emergence that she was first seen
returning from a foraging trip. A bee’s day of death was established as
the day after the last day she was observed.

Substance collected. Set-ups were separate, but identical, to the
one described for age of foraging onset and lifespan, except that host
colonies were kept in commercial hive boxes. During peak foraging
hours, incoming foragers were collected at the hive entrances,
brought to the laboratory, and sampled once for type of substance
collected. Bees were not returned to the colonies after sampling. At
the time of collection, the workers were 10–16 d old (Colony 1) or 7–
13 d old (Colony 2). Pollen and/or nectar loads were removed and
quantified for each individual worker as described before [35]. In all,
n ¼ 80 noREF, 84 injGFP, and 65 vgRNAi bees were taken from
Colony 1, and n ¼ 78 noREF, 75 injGFP, and 95 vgRNAi bees were
taken from Colony 2. Workers that returned empty (with no
measurable nectar or pollen) were not used in our analyses.

Data analysis. The dataset on hemolymph vitellogenin levels was
not normally distributed, as determined by Bartlett’s test of sphericity.
Therefore, the non-parametric Kruskal-Wallis test was used (n¼85) to
examine the data for effects of treatment (H¼14.32, p¼0.001) and age
(H¼0.79, p¼0.68). A Mann-Whitney U test was used to test for colony
effects (Z¼�3.54, p , 0.001). Vitellogenin titers were higher overall in
Colony 2, but the relative expression pattern between treatments was
the same in the two colonies (unpublished data). Therefore, the
dataset was not split by colony, but used in full to increase the
statistical power of the post hoc analysis. A Mann-Whitney U test was
used as a post hoc test of the planned comparisons of vitellogenin
levels between noREF and injGFP, and between injGFP and vgRNAi.
Treatment differences in age of foraging onset and lifespan were
analyzed using the Cox proportional hazards regression model with
the likelihood ratio chi-square tests (LRT) for bees that foraged at least
twice (n¼149 noREF, 69 injGFP, and 48 vgRNAi for Colony 1; and n¼
137 noREF, 110 injGFP, and 74 vgRNAi for Colony 2). The propor-
tional hazards assumption was verified by Schoenfeld residuals [36].
Colony effects were controlled for by using the colony as a stratifying
variable in the analyses. Effect of treatment was detected in the dataset
overall (foraging onset LRT¼ 95.1, df¼ 2, p , 0.0001; lifespan LRT¼
82.2, df ¼ 2, p , 0.0001). Thus, planned pair-wise comparisons were
made between noREF and injGFP, and between injGFP and vgRNAi.
The data on foraging loads passed Bartlett’s test of sphericity. Two-
way analysis of variance (ANOVA) was therefore used to test for effects

Figure 5. Vitellogenin Has a Dual Role in Regulation of Social Behavior

After the maturation phase, when bees are unable to forage (grey) [37],
vitellogenin suppresses the transition from nest tasks to foraging activity
when its titer remains above the foraging threshold level [3,7]. Below this
threshold, the probability of initiating foraging is increased [5]. Pre-
foraging vitellogenin titers above the pollen threshold prime workers for
pollen foraging (green), while workers with lower pre-foraging titers
(yellow) are primed for nectar foraging [9]. vitellogenin RNAi causes
workers to mature with vitellogenin titers that are below both thresholds
[3,7,9,12], resulting in the vitellogenin knockdown phenotype docu-
mented here: bees that forage precociously and preferentially collect
nectar.
doi:10.1371/journal.pbio.0050062.g005
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of treatment on foraging loads while controlling for the colony factor.
A significant effect of treatment was detected (ANOVA, F2,471 p ,
0.0001) and planned pair-wise comparisons were made using a two-
way ANOVA. Pearson analysis was used to correlate age at foraging
onset and lifespan. Statistical software was SPLUS version 6.1 (http://
www.insightful.com), Systat 6.0 (http://www.systat.com), and Statistica
6.0 (http://www.statsoft.com).

Supporting Information
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