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We consider a system of particles which perform branching Brownian
motion with negative drift and are killed upon reaching zero, in the near-
critical regime where the total population stays roughly constant with ap-
proximately N particles. We show that the characteristic time scale for the
evolution of this population is of order (logN)3, in the sense that when time
is measured in these units, the scaled number of particles converges to a vari-
ant of Neveu’s continuous-state branching process. Furthermore, the geneal-
ogy of the particles is then governed by a coalescent process known as the
Bolthausen–Sznitman coalescent. This validates the nonrigorous predictions
by Brunet, Derrida, Muller and Munier for a closely related model.
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1. Introduction. Branching Brownian motion is a stochastic process in
which, at time zero, there is a single particle at the origin. Each particle moves
according to a standard Brownian motion for an exponentially distributed time
with mean one, at which point it splits into two particles. Early work on branching
Brownian motion, going back to McKean [54], focused on the position M(t) of the
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right-most particle. Bramson [16, 17] obtained asymptotics for the median of the
distribution of M(t), and Lalley and Sellke [47] found the asymptotic distribution
of M(t).

In 1978, Kesten [43] introduced branching Brownian motion with absorption.
This process follows the same dynamics as branching Brownian motion except that
the initial particle is located at x > 0, the Brownian particles have a drift of −μ,
where μ > 0, and particles are killed when they reach the origin. Kesten showed
that there exists a critical value μc = √

2 such that if μ ≥ μc, then the process dies
out almost surely, while if μ < μc, the process survives with positive probability.
More recent work on this process can be found in [38] and [39].

Our interest in branching Brownian motion with absorption comes from its pos-
sible interpretation as a model of a population undergoing selection. To see this
connection, imagine that each individual in a population is represented by a po-
sition on the real line, which measures her fitness. The fitness of an individual
evolves according to Brownian motion due to mutations, and initially the fitness of
a child is identical to the fitness of the parent. Selection progressively eliminates
all individuals whose fitness becomes too low; we effectively imagine selection as
a moving wall with constant speed μ. Every individual whose fitness falls beyond
the current threshold is instantly removed from the population.

To obtain asymptotic results as the population size tends to infinity, we consider
a sequence of branching Brownian motions with absorption. For each positive in-
teger N , we have a branching Brownian motion with absorption (XN(t), t ≥ 0).
We consider the near-critical case, where the drift μ depends on N and for N ≥ 2,

μ =
√

2 − 2π2

(logN + 3 log logN)2 .(1)

We also start the process with many particles, rather than just one, at time zero,
and we make some rather technical assumptions on the initial conditions, which
are given later in Proposition 1. While (1) and the initial conditions may seem
unnatural, they are necessary to ensure that the number of particles in the system
stays of order N on the time scale of interest, so that the process can be viewed as
a model of a population of size approximately N .

We focus on understanding the genealogy of a sample from the population af-
ter a large time. We show that the time to the most recent common ancestor of a
sample behaves like (logN)3. Moreover we identify the limiting geometry of the
coalescence tree of a sample, which we show is governed by a coalescent process
(�(t), t ≥ 0) known as the Bolthausen–Sznitman coalescent. The Bolthausen–
Sznitman coalescent, which is defined precisely in Section 1.3, is a coalescent
process that allows many ancestral lines to merge at once. This result is in sharp
contrast with the standard case of the Moran model or the Wright–Fisher model,
where random genetic drift leads to a characteristic genealogical time of N gener-
ations and a genealogical tree given by Kingman’s coalescent, which permits only
pairwise mergers of ancestral lines.
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The main result of this paper can thus be stated as follows. Fix t > 0. Choose
n particles uniformly at random from the population at time (logN)3t , and label
these particles at random by the integers 1, . . . , n. For 0 ≤ s ≤ 2πt , define �N(s)

to be the partition of {1, . . . , n} such that i and j are in the same block of �N(s)

if and only if the particles labeled i and j are descended from the same ancestor at
time (t − s/2π)(logN)3. This is the standard “ancestral partition” of the sample.
Then, with our initial conditions, we have the following result, which is stated
precisely later as Theorem 3.

MAIN RESULT. The sequence of processes (�N(s),0 ≤ s ≤ 2πt) converges
in the sense of finite-dimensional distributions as N → ∞ to the Bolthausen–
Sznitman coalescent (�(s),0 ≤ s ≤ 2πt).

The reason for the multiple mergers is that when a particle gets very far to the
right [in fact, at position 1√

2
(logN + 3 log logN + O(1))], many descendants of

this particle survive for a long time, as they are able to avoid being killed at zero.
They quickly generate a positive fraction of the population. As a result, when a
sample of particles is taken far into the future, many of their ancestral lines get
traced back to this particle and coalesce at nearly the same time. Our result is
accompanied by Theorem 2, which gives the evolution of the total number of par-
ticles MN(t) in the system. Under the same assumptions, MN((logN)3t)/(2πN)

converges in the sense of finite-dimensional distributions toward a continuous-state
branching process with branching mechanism �(u) = au + 2π2u logu for some
constant a ∈ R.

1.1. Related models and conjectures. Our inspiration for this model comes
from the work of Brunet et al. [21, 22] concerning the effect of natural selection
on the genealogy of a population. They considered a model of a population with
fixed size N in which each individual has a fitness. They assumed that each in-
dividual has k ≥ 2 offspring in the next generation, and that the fitness of each
offspring is the parent’s fitness plus an independent random variable with some
distribution μ. Of the kN offspring, the N with the highest fitness survive to form
the next generation. This process repeats itself in each generation. Brunet et al.
[21, 22] gave a detailed and intricate, but not mathematically rigorous, analysis of
this model and arrived at the following three conjectures:

(1) If Lm is the maximum of the fitnesses of the N individuals in generation m,
then Lm/m converges almost surely to some limiting velocity vN . Furthermore,
the limit v∞ = limN→∞ vN exists, and there is a constant C such that

v∞ − vN ∼ C

(logN)2 .(2)
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(2) If two individuals are sampled from the population at random in some gen-
eration, then the number of generations that we need to look back to find their most
recent common ancestor is of order (logN)3.

(3) If n individuals are sampled from the population at random in some gen-
eration, and their ancestral lines are traced backwards in time, the coalescence of
these lineages can be described by the Bolthausen–Sznitman coalescent.

This model is similar to a branching random walk in which the positions of the
particles correspond to the fitnesses of the individuals. Indeed, this model would be
precisely a branching random walk if all individuals were permitted to survive. The
limiting velocity v∞ that appears in the first conjecture is the limiting velocity of
the right-most particle in branching random walk, which was studied in the 1970s
by Kingman [44], Hammersley [37] and Biggins [10]. Interest in variations of the
branching random walk in which the number of particles stays fixed is more recent.
Bérard and Gouéré [3] recently proved the first conjecture in the form stated above,
in the case k = 2, under suitable regularity conditions on μ. Their proof builds on
previous work of Gantert, Hu and Shi [34] and Pemantle [58]. See also the work of
Durrett and Mayberry [29], who considered a model very similar to this one while
studying predator-prey systems, and Durrett and Remenik [30].

The analysis of Brunet et al. involves studying solutions u(x, t) to the noisy
FKPP equation

∂u

∂t
= ∂2u

∂x2 + u − u2 +
√

u(1 − u)

N
W(x, t),(3)

where W(x, t) is space–time white noise. If the noise term were removed, this par-
tial differential equation would be the well-known FKPP equation, which was in-
troduced in 1937 by Fisher [33] and by Kolmogorov, Petrovskii and Piscunov [46]
and is one of the simplest nonlinear partial differential equations that admits travel-
ing wave solutions. The link between the FKPP equation and branching Brownian
motion has been known since the work of McKean [54], who showed that if M(t)

denotes the position of the right-most particle at time t for branching Brownian
motion with variance parameter 2 and u(t, x) = P(M(t) > x), then u is the unique
solution to the FKPP equation with the initial condition u(0, x) = 1{x<0}. In [39],
Harris, Harris and Kyprianou use branching Brownian motion with absorption to
give a probabilistic analysis of solutions to the FKPP equation.

The first conjecture above can also be expressed as a conjecture about the ve-
locity of solutions to equations such as (3). This form of the conjecture goes back
to the work [19] of Brunet and Derrida, who refined their analysis and simulations
in [18, 20]. In this form, the conjecture states that the velocity of traveling wave
solutions to the original FKPP equation exceeds the velocity of solutions to equa-
tion (3) with the noise term by a quantity that is of the order 1/(logN)2. Recently
Mueller, Mytnik and Quastel [55] proved this result.
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With the first conjecture having been largely settled, the purpose of the present
paper is to provide rigorous versions of the second and third conjectures. As ex-
plained above, the model that we work with is not exactly the model studied in
[21, 22]. Instead, to simplify the analysis, we replace branching random walk by
branching Brownian motion, and rather than keeping the population size exactly
fixed, we control the population size by killing particles that drift too far to the left.
Note in particular that with our choice (1),

μc − μ ∼ π2
√

2(logN)2
(4)

as N → ∞, which matches precisely (2) in Conjecture 1 above. Models with non-
constant population size where already discussed by Derrida and Simon in [25, 65]
using nonrigorous methods. Although they do not study genealogies, their analysis
strongly suggests that a result similar to ours may be expected.

Another question of interest related to these nearly critical branching particle
systems (in the sense that the drift μ of particles is slightly above the critical value
μc = √

2), concerns asymptotics for the survival probability. This is a topic that
has attracted a considerable amount of attention in recent years; see, for example,
[1, 3, 4, 32, 34, 39, 41]. In [5], we use the techniques developed here to derive fairly
sharp estimates for the survival probability of nearly critical branching Brownian
motion.

We also emphasize that the Bolthausen–Sznitman coalescent describes pre-
cisely the ultrametric structure that is expected to emerge in the low-temperature
regime of mean-field spin glass models such as the well-known Sherrington–
Kirkpatrick model. This is perhaps not a coincidence, as the model which we study
here may be seen as a degenerate form of spin glass models, with the position of the
particles being approximately given by a Gaussian field with a covariance structure
which is closely related to their genealogy.

1.2. Continuous-state branching processes. A continuous-state branching
process is a [0,∞]-valued Markov process (Z(t), t ≥ 0) whose transition func-
tions pt(x, ·) satisfy

pt(x + y, ·) = pt(x, ·) ∗ pt(y, ·) for all x, y ≥ 0.

That is, the sum of independent copies of the process started from x and y has
the same law as the process started from x + y. Continuous-state branching pro-
cesses were introduced by Jirina [42]. Lamperti [48] showed that continuous-state
branching processes are precisely the processes that can be obtained by taking
scaling limits of Galton–Watson processes. Lamperti [49] and Silverstein [64] ob-
served a one-to-one correspondence between continuous-state branching processes
and Lévy processes with no negative jumps, by showing that it is possible to obtain
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any continuous-state branching process through a time change of the correspond-
ing Lévy process; see also [23] for a very readable account of this theory and
proofs.

If we exclude processes that can make an instantaneous jump to infin-
ity, continuous-state branching processes can be characterized by a function
� : [0,∞) → R of the form

�(u) = αu + βu2 +
∫ ∞

0

(
e−ux − 1 + ux1{x≤1}

)
ν(dx),

where α ∈ R, β ≥ 0 and ν is a measure on (0,∞) satisfying
∫∞

0 (1 ∧ x2)ν(dx) <

∞. The function � is called the branching mechanism. If (Z(t), t ≥ 0) is a
continuous-state branching process with branching mechanism � , then for λ ≥ 0,

E
[
e−λZ(t)|Z(0) = a

]= e−aut (λ),(5)

where the function t �→ ut (λ) is a solution to the differential equation

∂

∂t
ut (λ) = −�(ut(λ)), u0(λ) = λ.(6)

Neveu [57] studied the continuous-state branching process with �(u) = u logu.
We will be interested, more generally, in a continuous-state branching process
(Z(t), t ≥ 0) whose branching mechanism is of the form �(u) = au + bu logu,
where a ∈ R and b > 0. In this case (see, e.g., page 256 of [7]), there exists a real
number c such that

�(u) = −cu + b

∫ ∞
0

(
e−ux − 1 + ux1{x≤1}

)
x−2 dx.

Also, it is not difficult to solve (6) to obtain

ut (λ) = λe−bt

ea(e−bt−1)/b.(7)

Because
∫ δ

0 1/�(u)du = ∞ for all δ > 0, the process does not explode. That is,
almost surely Z(t) < ∞ for all t . Because

∫∞
δ 1/�(u) = ∞ for all δ > 0, the

process does not go extinct, that is, almost surely Z(t) > 0 for all t . Proofs of
these facts can be found in [36].

1.3. The Bolthausen–Sznitman coalescent. In mathematical population genet-
ics, it is standard to represent the ancestral relationships among a sample of n

individuals using a coalescent process (�(t), t ≥ 0), which is a continuous-time
Markov process taking its values in the set of partitions of {1, . . . , n}. Here �(0)

is the partition of {1, . . . , n} into n singletons, and blocks of the partition merge
over time. The merging of blocks of the partition corresponds to the merging of
ancestral lines when the ancestral lines of the n sampled individuals are traced
backwards in time. The standard coalescent model is Kingman’s coalescent. King-
man’s coalecent was introduced in [45] and is now the basis for much work in
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mathematical population genetics. Kingman’s coalescent has the property that only
two blocks of the partition ever merge at a time, and each transition that involves
two blocks merging into one happens at rate one.

Within the last decade, alternative models of coalescence, allowing for multiple
ancestral lines to merge at once, have been studied in some depth. These coalescent
processes, known as coalescents with multiple mergers or �-coalescents, were
introduced by Pitman [59] and Sagitov [62]. If � is a finite measure on [0,1], then
the �-coalescent has the property that whenever there are b blocks, each transition
that involves merging k blocks of the partition into one happens at rate

λb,k =
∫ 1

0
xk−2(1 − x)b−k�(dx).

Kingman’s coalescent is the special case of the �-coalescent in which � is the
unit mass at zero.

If � is the uniform distribution on [0,1], then the �-coalescent is known as
the Bolthausen–Sznitman coalescent. The Bolthausen–Sznitman coalescent was
introduced in [14] in the context of Ruelle’s probability cascades. The Bolthausen–
Sznitman coalescent has been studied extensively, and has been found to be related
to stable subordinators [9] and random recursive trees [35]. It also shows up in
Derrida’s generalized random energy model [15]. Properties of the Bolthausen–
Sznitman coalescent have been worked out, for example, in [2, 27, 59].

Bertoin and Le Gall [7] showed how to define precisely the notion of the ge-
nealogy of a continuous-state branching process. They found that the genealogy of
Neveu’s continuous-state branching process is given by the Bolthausen–Sznitman
coalescent. These results were extended in [13], where it was shown that the ge-
nealogy of any continuous-state branching process whose branching mechanism
is of the form �(u) = au + bu logu can still be described by the Bolthausen–
Sznitman coalescent. This connection between the Bolthausen–Sznitman coales-
cent and Neveu’s continuous-state branching process played a central role in
Bovier and Kurkova’s analysis of Derrida’s generalized random energy model [15].
A survey of this material can be found in [6].

1.4. Main results. Recall that for each positive integer N , we have a branching
Brownian motion (XN(t), t ≥ 0). We denote by MN(t) the number of particles at
time t , and we denote the positions of these particles by X1,N (t) ≥ X2,N (t) ≥
· · · ≥ XMN(t),N(t). We further define the process (ZN(t), t ≥ 0) by setting

L = 1√
2
(logN + 3 log logN)(8)

and then letting

ZN(t) =
MN(t)∑
i=1

eμXi,N (t) sin
(

πXi,N(t)

L

)
1{Xi,N (t)≤L}.(9)
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Note that only particles to the left of L contribute to ZN(t), and the level L depends
on N . As we will see later, ZN(t) is a good measure of the “size” of the process
at time t , in the sense that it predicts the number of particles shortly after time t .
Also let

YN(t) =
MN(t)∑
i=1

eμXi,N (t).(10)

We will see that as the branching Brownian motion evolves, most particles stay
well to the left of L, and as long as this is the case, the number of particles changes
little. However, occasionally a small number of particles get very far to the right.
Because the descendants of these particles are able to avoid the barrier at zero,
the number of particles increases rapidly. Indeed, the increase in the number of
particles is so rapid that when we take the scaling limit as N → ∞, we get a
process with jumps. The proposition below shows that this limiting process is a
continuous-state branching process.

PROPOSITION 1. For all positive integers N , define the process (VN(t), t ≥ 0)

by

VN(t) = 1

N(logN)2 ZN((logN)3t).(11)

Suppose as N → ∞, the distribution of VN(0) converges to ν, where ν is a prob-
ability distribution on [0,∞). Suppose also that YN(0)/N(logN)3 converges to
zero in probability as N → ∞. Then there exists a constant a ∈ R such that as
N → ∞, the finite-dimensional distributions of the process (VN(t), t ≥ 0) con-
verge to the finite-dimensional distributions of the continuous-state branching pro-
cess with branching mechanism �(u) = au + 2π2u logu started with distribution
ν at time zero.

The condition on VN(0) ensures that the number of particles in the system is of
order N , as shown below with the scaling in Theorem 2. The condition on YN(0)

ensures that no single particle at time 0 is likely to have descendants that constitute
a large fraction of the population a short time later. If we begin with N particles
in what is a relatively “stable” configuration, then the initial conditions will hold.
Furthermore, as shown in Proposition 3 of [5], if there is initially a single particle
near L, then these conditions will be satisfied after a time of order L2.

Note that because the processes (VN(t), t ≥ 0) for fixed N can increase very
rapidly in a short time but do not have large jumps, the sequence of processes
(VN,N ≥ 1) is not tight, and convergence in the Skorohod topology does not hold.

The theorem below converts this result about the scaling limit of (ZN(t), t ≥ 0)

to a result about the number of particles. This convergence result holds only for
t > 0. The hypothesis at time t = 0 still involves the processes (VN(t), t ≥ 0),
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which may not imply convergence of the number of particles at time zero. The
result needs to be stated in this way because it is the value of ZN(t) rather than
MN(t) that predicts the number of particles that will be alive a short time later.

THEOREM 2. Assume the hypotheses of Proposition 1 hold. Then as N → ∞,
the finite-dimensional distributions of the process(

1

2πN
MN((logN)3t), t > 0

)

converge to the finite-dimensional distributions of the continuous-state branching
process with branching mechanism �(u) = au + 2π2u logu started with distribu-
tion ν at time zero, where a is the constant from Proposition 1.

The next result shows that if we pick n particles at random from branching
Brownian motion with absorption at some time and trace back their ancestral
lines, the resulting process, properly scaled, converges to the Bolthausen–Sznitman
coalescent. This is a precise formulation of the result stated in the Introduc-
tion. Choose n particles uniformly at random from the MN((logN)3t) particles
at time (logN)3t , and label these particles at random by the integers 1, . . . , n.
Fix t > 0. For 0 ≤ s ≤ 2πt , define �N(s) to be the partition of {1, . . . , n} such
that i and j are in the same block of �N(s) if and only if the particles labeled
i and j are descended from the same ancestor at time (t − s/2π)(logN)3. Let
(�(s),0 ≤ s ≤ 2πt) be the Bolthausen–Sznitman coalescent run for time 2πt and
restricted to {1, . . . , n}.

THEOREM 3. Assume the hypotheses of Proposition 1 hold, and assume that
ν({0}) = 0. Then as N → ∞, the finite-dimensional distributions of (�N(s),0 ≤
s ≤ 2πt) converge to those of (�(s),0 ≤ s ≤ 2πt).

As discussed earlier, this result is, of course, the analog for this model of the
third conjecture of Brunet et al. [21, 22] stated above. The (logN)3 time scaling
that appears here, as well as in Proposition 1 and Theorem 2, matches the second
conjecture stated above. If two particles are chosen at random, the time back to
their most recent common ancestor is of the order (logN)3.

1.5. Overview of the proofs. Because the proofs of Proposition 1 and Theo-
rems 2 and 3 are rather long, we outline the basic strategy here. The key idea is
to treat separately the particles that reach approximately the level L. These are the
particles that will produce a large number of descendants within a short time, lead-
ing to jumps in the population size when we look forward in time, and multiple
mergers of ancestral lines going backwards in time.

The first step, carried out in Section 2, is to collect some results that we need
pertaining to branching Brownian motion in a strip, which are important both for



536 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

the proofs and for understanding the heuristics behind our choices of parameters.
Most importantly, we observe that if a branching Brownian motion is started with
a single particle at x, and particles are killed upon reaching 0 or L, then the ex-
pected number of particles in a set B at a sufficiently large time t is approximately∫
B pt(x, y) dy, where

pt(x, y) = 2

L
e(1−μ2/2−π2/2L2)t · eμx sin

(
πx

L

)
· e−μy sin

(
πy

L

)
.(12)

From this formula, we can make several observations concerning the behavior of
the branching Brownian motion. First, note that the time parameter t appears in
the formula only in the first exponential factor, so the population size should be
roughly constant over time provided that 1−μ2/2−π2/2L2 = 0. Indeed, we have
chosen the parameters μ and L above [see (1) and (8)] to satisfy this equation, as
this is the drift needed to stabilize the population size. Second, notice that the for-
mula is proportional to eμx sin(πx/L), which will equal ZN(t) if we sum over
the positions of all particles at time t . Thus, it is ZN(t) that predicts the number
of particles that will be in a given set at a later time, which is why ZN(t) pro-
vides a useful measure of the “size” of the process. Third, notice that the formula
is proportional to e−μy sin(πy/L). Consequently, regardless of the starting con-
figuration, once t is large enough for the approximation to be valid, the particles
will have settled into a “stable” configuration in which the “density” of particles
at position y is proportional to e−μy sin(πy/L). We will see in Lemma 5 that this
approximation becomes accurate when t gets to be larger than (logN)2.

If we begin at time zero with N particles that are approximately in the stable
configuration, so that their “density” is CLe−μy sin(πy/L), where CL is a nor-
malizing constant, then the value of ZN(0) should be approximately

N

∫ L

0
eμy sin

(
πy

L

)
· CLe−μy sin

(
πy

L

)
dy,

which is of the order NL2. On the other hand, if we begin instead with a single
particle at L, then one can show typically the right-most descendant of this particle
will reach a level that exceeds L by only a constant. This is essentially true because
critical branching Brownian motion dies out, and can be seen from Proposition 16
below which shows that particles reach L at a much faster rate than they reach
any level that is much greater than L. Consequently, we can estimate the typical
contribution of the descendants of this particle at time t by using (12) with L in
place of x and L + α in place of L, where α > 0 is a constant. This means that the
value of ZN(t) should be of the same order as∫ L

0
eμy sin

(
πy

L

)
· 2

L + α
eμL sin

(
πL

L + α

)
e−μy sin

(
πy

L + α

)
dy,

which is of the order L−1eμL. We have chosen L so that particles that reach L

produce substantial increases in the population size. Indeed, note that L−1eμL and
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NL2 are of the same order precisely when L is within a constant of the value in
(8).

In Section 3, we therefore define

LA = 1√
2
(logN + 3 log logN − A),(13)

where A ∈ R, and study the particles that stay to the left of LA. That is, we con-
sider branching Brownian motion with particles killed at 0 and at LA. Using (12),
it possible to estimate first and second moments of various quantities. In Section 3,
we apply these results to calculate the first and second moments of ZN(t), condi-
tional on the process a time θ(logN)3 earlier, where θ is a small constant. The first
moment calculation is Lemma 11, while the variance bound appears in Lemma 12.
The variance bound is sufficient to establish that when A is large, there is a law
of large numbers, with the value of ZN(t) being close to its expectation. A similar
variance bound for the number of particles is given in Lemma 14. Such results
would not be possible without the truncation at LA, because without truncation
the expected number of particles is dominated by rare events in which one particle
moves far to the right and produces a large number of surviving offspring. The
analysis in Section 3 is motivated by some of the arguments based on moment
bounds in [43].

In Section 3.2 we tackle the question of how many particles reach the level
LA. An estimate of the expected number is given in Proposition 16. From this
result, one can deduce that if we start with N particles that are in approximately
the “stable” configuration described above, then the time that it will take before
a particle reaches LA is of the order (logN)3, which explains the (logN)3 time
scaling in our main results. To see heuristically why this scaling occurs, note that
if β > 0 is a constant, then the number of particles between L − β and L at time t

is of the order

N

∫ L

L−β
CLe−μy sin

(
πy

L

)
dy,

which is of the order 1/(logN)3. Such particles have a positive probability of
reaching L between times t and t + 1, but the calculation in Proposition 16 shows
that particles that are more than a constant distance from L at time t are unlikely
to hit L by time t + 1. Thus, O(1/(logN)3) particles hit L per unit time.

Since branching by particles close to LA may enable several particles to hit LA

at nearly the same time, we also require the second moment estimate in Proposition
18 to establish that the expected number of particles that reach LA within a time
interval of length θ(logN)3, conditional on at least one particle reaching LA, is
bounded by a constant. Then in Section 3.3, we show in Proposition 23 that a
“good” event on which the bounds in Sections 3.1 and 3.2 are valid occurs with
high probability.
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In Section 4, we begin to consider the contribution from particles after they
reach the level LA. The key to this analysis is Proposition 24, which comes from
[56]. This result states that if a particle starts at LA, and y is a large constant,
then the number of descendants of the particle that reach LA − y is approxi-
mately y−1e

√
2yW , where W is a random variable. Some analysis that involves

a Tauberian theorem leads to Proposition 27, which says that for large x, we have
P(W > x) ∼ B/x. Conceptually, this result is the reason why the genealogy of the
population is described by the Bolthausen–Sznitman coalescent. The contribution
to the population of the particle at LA will be approximately proportional to the
number of descendants that hit y, if y is sufficiently large. The fact that a jump
of size greater than x results from a particle at LA with probability proportional
to 1/x implies that the Lévy measure of the limiting continuous-state branching
process will have a density proportional to x−2, which in turn leads to the duality
with the Bolthausen–Sznitman coalescent.

In Section 5, we show how to combine all of the previous estimates to get sharp
results for the behavior of the process (ZN(t), t ≥ 0). The key results are Propo-
sition 39, which bounds the expected change in ZN over a time interval of length
θ(logN)3 when there is no large jump, and Proposition 41, which estimates the
probability that ZN increases by at least rN(logN)2 over a time interval of length
θ(logN)3. These estimates on how the process behaves over a short time interval
can be matched with the infinitesimal generator of the continuous-state branching
process. This work is done in Section 6 and leads to a proof of Proposition 1. Once
Proposition 1 is established, we are able to prove Theorem 2 by arguing that the
value of ZN(t) can be used to predict accurately the number of particles shortly
after time t .

The proof that the genealogy of the process converges to the Bolthausen–
Sznitman coalescent is completed in Section 7. We represent the genealogy of
the branching Brownian motion using a “flow of bridges,” a tool introduced by
Bertoin and Le Gall in [8]. Using Proposition 1 and Theorem 2, we establish con-
vergence to the flow of bridges associated with the continuous-state branching
process, which is known to correspond to the Bolthausen–Sznitman coalescent.

1.6. Notational conventions and index of notation. For the benefit of the
reader, we include in Table 1 an index of some of the notation.

Some constraints on the constants ε, A and θ are introduced at the beginning
of Section 3; see equations (32)–(35). Further constraints on these constants, as
well as the choices of the constants δ, η, y and ζ , are set out in Section 5.1; see
equations (95)–(106).

Throughout the rest of the paper, C will denote a positive finite constant whose
value may change from line to line. The constant C may depend on u and s, but
may not depend on N or on the seven constants ε, A, θ , δ, η, y and ζ . We say a
sequence of random variables (RN)∞N=1 is o(f (N)) if for any choices of the con-
stants u, s, ε, A, θ , δ, η, y and ζ satisfying the constraints mentioned above, there
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TABLE 1
Index of some of the notation that is used throughout the paper

A used to control the level at which particles are killed; see the definition of LA.
GN,k event that ZN(tj ) and YN(tj ) are sufficiently small for j ≤ k.
GN(ε) event that GN,k occurs for all k.
h(N) slowly increasing function used to upper bound YN .
L level, given by (8), such that descendants of a particle that get near this level

will likely constitute a significant fraction of the population in the future.
LA level at which particles are killed, defined in (13).
MN(t) number of particles at time t .
Rk number of particles killed at LA between tk−1 and tk .
s the process ZN is often studied between times u(logN)3 and (u + s)(logN)3.
tk the process ZN is frequently studied at the times tk .
u the process ZN is often studied between times u(logN)3 and (u + s)(logN)3.
VN normalization of the process ZN , defined in (11).
XN(t) the branching Brownian motion at time t .
Xi,N (t) position of the ith particle from the right at time t .
y large constant; the number of descendants of a particle at LA that reach

LA − y plays a central role in the paper.
YN(t) weighted sum of particle positions at time t , defined in (10), such that a

particle at x contributes eμx to the sum.
ZN(t) measure of the “size” of the process at time t , defined in (9), such that a

particle at x ≤ L contributes eμx sin(πx/L).
ZN,1 similar to ZN , but with particles killed at LA, defined in (36).
Z′

N,1 similar to ZN,1, with LA used in place of L in the sine function; see (37).
Zy number of descendants of a particle at zero that reach −y.
δ small constant used to bound the error in an estimate of a branching process

limit; see (96).
ε small constant used to bound ZN above by ε−1/2N(logN)2.
μ drift of the branching Brownian motion, given by (1).
η small constant used to bound the difference between Zy and its limit.
θ small constant such that tk and tk+1 are θs(logN)3 apart.
ζ large constant chosen so that with high probability, descendants of a particle

at zero will have reached −y by time ζ .

is a deterministic sequence (bN)∞N=1 tending to zero such that |RN | ≤ bNf (N)

for all N . Note in particular that throughout this paper, the bounds implicit in the
notation o(1) or o(f (N)) are nonrandom and depend solely on the choices of pa-
rameters.

Also, if g is a function of some of the constants ε, A, θ , δ, η, y, ζ and N , we will
occasionally use the notation O(g(ε,A, θ, δ, η, y, ζ,N)) to denote an expression
whose absolute value is bounded by Cg(ε,A, θ, δ, η, y, ζ,N), where C is defined
as above.

2. Branching Brownian motion in a strip. Suppose (Bt )t≥0 is Brownian
motion started at x, with 0 < x < K , and assume the process is killed when it hits
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0 or K . Then (see, e.g., page 188 of [50]) the density of the process at time t ,
restricted to (0,K), is

vt (x, y) = π

K
uπ2t/K2(πx/K,πy/K)

(14)

= 2

K

∞∑
n=1

e−π2n2t/2K2
sin
(

nπx

K

)
sin
(

nπy

K

)
.

Consider now branching Brownian motion in a strip in which each particle gives
birth at rate one, drifts to the left at rate μ > 0, and is killed upon reaching 0 or K .
We will need to estimate the expected number of particles at time t when t is
large. Suppose there is initially a single particle at x. The density of particles at the
position y at time t can be calculated using the well-known many-to-one lemma.
The density is a product of et , which represents the expected number of particles
at time t , a Girsanov factor eμ(x−y)−μ2t/2 relating Brownian motion with drift −μ

to ordinary Brownian motion, and the density of ordinary Brownian motion killed
upon reaching 0 or K . Therefore, the density of particles at time t is

qt (x, y) = e(1−μ2/2)t+μ(x−y) · 2

K

∞∑
n=1

e−π2n2t/2K2
sin
(

nπx

K

)
sin
(

nπy

K

)
,(15)

in the sense that if B ⊂ (0,K), then the expected number of particles in B at time
t is

∫
B qt (x, y) dy.

When t � K2, the first term in the sum in (15) dominates. We make this more
precise in Lemma 5 below. We first record the following trigonometric lemma.

LEMMA 4. If 0 ≤ y ≤ π and n ∈ N, then | sinny| ≤ n siny.

PROOF. We prove the result by induction. The result is trivial for n = 1. If it
is true for n − 1, then

| sinny| = ∣∣sin
(
(n − 1)y

)
cosy + cos

(
(n − 1)y

)
siny

∣∣
≤ ∣∣sin

(
(n − 1)y

)∣∣| cosy| + ∣∣cos
(
(n − 1)y

)∣∣| siny|
≤ ∣∣sin

(
(n − 1)y

)∣∣+ | siny| ≤ n siny,

where the last step uses the induction hypothesis. �

By applying Lemma 4 to each term in the sum on the right-hand side of (15),
we easily get the following estimate. Note that pt(x, y) is simply the n = 1 term
in the expression for qt (x, y). The error term Dt(x, y) is small when t � K2 and
is bounded above by a constant when t ≥ C1K

2 for some constant C1.



GENEALOGY OF BRANCHING BROWNIAN MOTION 541

LEMMA 5. Consider branching Brownian motion in a strip in which each
particle gives birth at rate one, drifts to the left at rate μ and is killed upon reaching
0 or K . Suppose there is initially a single particle at x. Let

pt(x, y) = 2

K
e(1−μ2/2−π2/2K2)t · eμx sin

(
πx

K

)
· e−μy sin

(
πy

K

)
.

Then for all x, y ∈ [0,K], define Dt(x, y) by

qt (x, y)

pt (x, y)
= 1 + Dt(x, y).

Then

|Dt(x, y)| ≤
∑∞

n=2 n2e−π2n2t/2K2

e−π2t/2K2 .(16)

Therefore, if B is a Borel subset of (0,K), then the expected number of particles
in B at time t may be written as (

∫
B pt(x, y) dy)(1 + D′

t (x,B)), where |D′
t (x,B)|

is bounded by the right-hand side of (16).

Using these densities, we can estimate the expected values of certain functions
of branching Brownian motion. Lemma 6, which is Lemma 2 of [38], gives a mar-
tingale for branching Brownian motion in which particles are killed only at zero.
Lemma 7 estimates the expected values of three specific functions of branching
Brownian motion in a strip.

LEMMA 6. Consider branching Brownian motion in which each particle gives
birth at rate one, drifts to the left at rate μ and is killed upon reaching 0. Let M(t)

be the number of particles at time t , and denote the positions of the particles at
time t by X1(t), . . . ,XM(t)(t). Let

V (t) =
M(t)∑
i=1

Xi(t)e
μXi(t)+(μ2/2−1)t .

Then (V (t), t ≥ 0) is a martingale.

LEMMA 7. Consider branching Brownian motion in a strip in which each
particle gives birth at rate one, drifts to the left at rate μ and is killed upon reaching
0 or K . Let M(t) be the number of particles at time t , and denote the positions of
the particles at time t by X1(t), . . . ,XM(t)(t). Let

Y(t) =
M(t)∑
i=1

eμXi(t), Z(t) =
M(t)∑
i=1

eμXi(t) sin
(

πXi(t)

K

)
.

Then

E[M(t)] = 2

K
e(1−μ2/2−π2/2K2)t (1 + D1)Z(0)

∫ K

0
e−μy sin

(
πy

K

)
dy(17)
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and

E[Y(t)] = 4

π
e(1−μ2/2−π2/2K2)t (1 + D2)Z(0),(18)

where |D1| and |D2| are bounded by the right-hand side of (16). Also,

E[Z(t)] = e(1−μ2/2−π2/2K2)tZ(0).(19)

PROOF. To prove (17), first suppose there is initially a single particle at x.
Lemma 5 gives

E[M(t)] =
(∫ K

0
pt(x, y) dy

)
(1 + D1)

= 2

K
e(1−μ2/2−π2/2K2)t (1 + D1)e

μx sin
(

πx

K

)∫ K

0
e−μy sin

(
πy

K

)
dy,

where |D1| is bounded by the right-hand side of (16). The result now follows by
summing over the particles at time zero.

Likewise, to prove (18), assume there is initially a single particle at x, and ob-
serve that Lemma 5 gives

E[Y(t)] =
(∫ K

0
eμypt (x, y) dy

)
(1 + D2),

where |D2| is bounded by the right-hand side of (16). Using∫ K

0
sin
(

πy

K

)
dy = 2K

π
,

we get

E[Y(t)] = 4

π
e(1−μ2/2−π2/2K2)t eμx sin

(
πx

K

)
(1 + D2).

The result again follows by summing over the particles at time zero.
To obtain (19), note that if n is a positive integer, then∫ K

0
sin
(

πy

K

)
sin
(

nπy

K

)
dy =

{
K/2, if n = 1,
0, if n ≥ 2.

If at time zero there is just a single particle at x, then

E[Z(t)]
=
∫ K

0
eμy sin

(
πy

K

)
qt (x, y) dy

= e(1−μ2/2)t+μx · 2

K

∞∑
n=1

e−π2n2t/2K2
sin
(

nπx

K

)∫ K

0
sin
(

πy

K

)
sin
(

nπy

K

)
dy

= eμx sin
(

πx

K

)
e(1−μ2/2)t e−π2t/2K2 = e(1−μ2/2−π2/2K2)t eμx sin

(
πx

K

)
.
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As before, the result now follows by summing over the particles at time zero. �

For the next result, we will need the Green’s function for Brownian motion in
a strip. Let (Bt , t ≥ 0) be one-dimensional Brownian motion without drift. Define
the Green’s function G(x,y) such that if (Bt , t ≥ 0) is Brownian motion started
from B0 = x ∈ (0,K) and if τ = inf{t :Bt /∈ (0,K)}, then for all bounded measur-
able functions g, we have

E

[∫ τ

0
g(Bt) dt

]
=
∫ K

0
G(x,y)g(y) dy.

The Green’s function is given by (see, e.g., (4.4) on page 225 of [28])

G(x,y) =
{

2x(K − y)/K, if y ≥ x,
2y(K − x)/K, if y ≤ x.

(20)

To obtain this result from (4.4) in [28], observe that in the notation of [28], we have
ϕ(x) = x and m(x) = 1 for ordinary Brownian motion. If y ≤ x, then 2y(K −
x)/K ≤ 2x(K − y)/K . Therefore, for all x, y ∈ [0,K],

G(x,y) ≤ 2x(K − y)/K.(21)

To control the fluctuations, we will also need a result about second moments.
The following result, which is a slight extension of Lemma 3.1 of [43], will be a
useful tool.

LEMMA 8. Consider branching Brownian motion with particles killed at both
0 and K . Assume that at time zero there is just a single particle at x, and that the
particles at time t are denoted by X1(t), . . . ,XM(t)(t). Let f : (0,K) → [0,∞) be
a measurable function. Then

E

[(
M(t)∑
i=1

f (Xi(t))

)2]
=
∫ K

0
f (y)2qt (x, y) dy

+ 2
∫ t

0

∫ K

0
qs(x, z)

(∫ K

0
f (y)qt−s(z, y) dy

)2
dzds.

PROOF. For a Borel set A ⊂ (0,K), let NA(t) be the number of particles in
the set A at time t . Equation (2.8) of [63] gives

E[NA(t)] =
∫
A

qt (x, y) dy,(22)

while equations (2.11) and (2.12) of [63] give

E[NA(t)NB(t)] = E[NA∩B(t)] + 2
∫ t

0

∫ K

0
qs(x, z)

(∫
A

qt−s(z,w)dw

)
(23)

×
(∫

B
qt−s(z, y) dy

)
dzds.
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Suppose f is a simple function, so that

f (x) =
m∑

i=1

ai1Ai
,

where the Ai are disjoint Borel subsets of (0,K) and the ai are positive real num-
bers. In this case, we have

E

[(
M(t)∑
i=1

f (Xi(t))

)2]
=

m∑
i=1

m∑
j=1

aiajE[NAi
(t)NAj

(t)].

It is now straightforward to check, using (22) and (23), that the conclusion of
Lemma 8 holds in this case. Since every nonnegative measurable function can be
approximated from below by simple functions, the general result then follows from
the monotone convergence theorem. �

LEMMA 9. Assume we are in the setting of Lemma 7. Assume that at time zero
there is just a single particle at x. Suppose that 1 − μ2/2 − π2/2K2 ≤ 0. Also,
assume there exist positive constants C1 and C2 such that C1K

2 ≤ t ≤ C2/(1 −
μ2/2). Then there exists a constant C, depending on μ, C1 and C2, but not on x

or K , such that

E[Z(t)2] ≤ CeμxeμK

(
1

K2 + t

K4

)
.

PROOF. We apply Lemma 8 with f (y) = eμy sin(πy/K) to get

E[Z(t)2] =
∫ K

0
e2μy sin

(
πy

K

)2

qt (x, y) dy

(24)

+ 2
∫ t

0

∫ K

0
qs(x, z)

(∫ K

0
eμy sin

(
πy

K

)
qt−s(z, y) dy

)2

dzds.

We begin by bounding the first term in (24). By Lemma 5, for all x, y ∈ [0,K]
we have

qt (x, y) ≤ C

K
eμ(x−y) sin

(
πx

K

)
sin
(

πy

K

)
,(25)

where we are using that 1 − μ2/2 − π2/2K2 ≤ 0. The assumption t ≥ C1K
2 en-

sures that the error term from Lemma 5 can be bounded by a constant (throughout
the proof, we allow the value of C to change from line to line). Note that∫ K

0
eμy sin

(
πy

K

)
dy =

∫ K

0
eμ(K−y) sin

(
π(K − y)

K

)
dy

= eμK
∫ K

0
e−μy sin

(
πy

K

)
dy(26)

≤ eμK
∫ K

0
e−μy

(
πy

K

)
dy ≤ CeμK

K
.
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Here we are using that μ > 0 and that C may depend on μ. Now using (25) and
(26) and the bound sin(πy/K)2 ≤ 1, we get∫ K

0
e2μy sin

(
πy

K

)2

qt (x, y) dy ≤ C

K

∫ K

0
e2μyeμ(x−y) sin

(
πx

K

)
sin
(

πy

K

)
dy

≤ Ceμx

K

∫ K

0
eμy sin

(
πy

K

)
dy(27)

≤ CeμxeμK

K2 .

It remains to bound the second term in (24). Recall that vt (x, y), defined in (14),
denotes the density at time t of Brownian motion started at x and killed when it
reaches 0 or K . Note that ∫ ∞

0
vs(x, y) ds = G(x,y),

where G(x,y) is Green’s function in (20). Since t ≤ C2/(1 − μ2/2), we also have
for s ≤ t ,

qs(x, y) = eμ(x−y)+(1−μ2/2)svs(x, y) ≤ Ceμ(x−y)vs(x, y).(28)

Since t ≥ C1K
2, the bound (25) is valid for qt−s(x, y) when s ≤ t/2. Using these

results and (21),∫ t/2

0

∫ K

0
qs(x, z)

(∫ K

0
eμy sin

(
πy

K

)
qt−s(z, y) dy

)2

dzds

≤
∫ t/2

0

∫ K

0
Ceμ(x−z)vs(x, z)

(∫ K

0
eμy sin

(
πy

K

)
· C

K
eμ(z−y)

× sin
(

πz

K

)
sin
(

πy

K

)
dy

)2

dzds

≤ Ceμx

K2

∫ t/2

0

∫ K

0
eμzvs(x, z) sin

(
πz

K

)2(∫ K

0
sin
(

πy

K

)2

dy

)2

dzds(29)

≤ Ceμx
∫ K

0
eμz sin

(
πz

K

)2(∫ t/2

0
vs(x, z) ds

)
dz

≤ Ceμx
∫ K

0
eμz sin

(
πz

K

)2 2x(K − z)

K
dz

≤ Ceμx
∫ K

0
eμz (K − z)3

K2 dz ≤ CeμxeμK

K2 ,

where for the third inequality, we used that sin(πy/K)2 ≤ 1, and for the next-to-
last inequality, we used that sin(πz/K) = sin(π(K − z)/K) ≤ (K − z)/K and
x/K ≤ 1.



546 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

Next, let v′
t (x, y) be the density at time t of Brownian motion started at x and

killed when it hits 0. By the Reflection Principle, for s ≤ t ,∫ K

0
yv′

s(x, y) dy = 1√
2πs

∫ K

0

(
ye−(x−y)2/2s − ye−(x+y)2/2s)dy

= 1√
2πs

∫ K−x

−x
(z + x)e−z2/2s dz

− 1√
2πs

∫ K+x

x
(z − x)e−z2/2s dz

≤ 1√
2πs

∫ x

−x
ze−z2/2s dz + 2x√

2πs

∫ ∞
−∞

e−z2/2s dz = 2x.

Therefore, using that vs(x, y) = vs(K − x,K − y) ≤ v′
s(K − x,K − y),∫ t

t/2

∫ K

0
qs(x, z)

(∫ K

0
eμy sin

(
πy

K

)
qt−s(z, y) dy

)2

dzds

≤
∫ t

t/2

∫ K

0

C

K
eμ(x−z) sin

(
πx

K

)
sin
(

πz

K

)

×
(∫ K

0
eμyeμ(z−y) sin

(
πy

K

)
vt−s(z, y) dy

)2

dzds

≤ Ceμx

K

∫ t

t/2

∫ K

0
eμz sin

(
πz

K

)(∫ K

0
sin
(

πy

K

)
vt−s(z, y) dy

)2

dzds

(30)

≤ Ceμx

K

∫ t

t/2

∫ K

0
eμz sin

(
πz

K

)(∫ K

0

(
K − y

K

)
vt−s(z, y) dy

)2

dzds

≤ Ceμx

K3

∫ t

t/2

∫ K

0
eμz sin

(
πz

K

)(∫ K

0
yv′

t−s(K − z, y) dy

)2

dzds

≤ Ceμx

K3

∫ t

t/2

∫ K

0
eμz sin

(
πz

K

)
(K − z)2 dzds

≤ Ceμxt

K4

∫ K

0
eμz(K − z)3 dz ≤ CeμxeμKt

K4 .

The result follows from (27), (29) and (30). �

3. Particles hitting the right-boundary. Recall that we are considering
(XN(t), t ≥ 0), which is a branching Brownian motion with drift −μ and killing
at the origin. Recall also that Proposition 1 involves the processes (ZN(t), t ≥ 0),
where ZN(t) is a weighted sum of the positions of the particles at time t . Through-
out this entire section, as well as Sections 5, 6 and 7, we assume that the hypotheses
of Proposition 1 hold.
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3.1. The particles that never reach LA. To prove Proposition 1, we will need
to consider these processes at two times u and u + s, where 0 ≤ u < u + s.
Fix a small number θ > 0 such that θ−1 ∈ N. For 0 ≤ k ≤ θ−1, define the time
tk = (u + θks)(logN)3. We will be interested in the value of the process ZN at
the times tk . The assumption that θ−1 ∈ N is useful for defining the sequence
{tk}0≤k≤θ−1 . However, many of our results pertain to the state of the process at
time tk , conditional on the state of the process up to time tk−1. For these results,
the assumption θ−1 ∈ N is not necessary.

Since YN(0)/N(logN)3 converges in probability to zero, there exists a nonran-
dom function h : N → (0,∞) such that h(N) → 0 and (logN)h(N) → ∞ as N →
∞, and YN(0)/(N(logN)3h(N)) converges in probability to zero. [This is a sim-
ple consequence of the following fact: if XN → 0 in probability, then there exists
a nonrandom sequence hN such that hN → 0 as N → ∞ and P(XN > hN) → 0.]
Let ε > 0. For 0 ≤ k ≤ θ−1, let GN,k be the event that for j = 0,1, . . . , k, the
following two events occur:

• We have ZN(tj ) ≤ ε−1/2N(logN)2.
• We have YN(tj ) ≤ N(logN)3h(N).

Finally, let GN(ε) = GN,θ−1 . Let (Ft , t ≥ 0) be the natural filtration of (XN(t),

t ≥ 0). This filtration, of course, depends on N , but we suppress this dependence
in the notation. We will need to consider the conditional distribution of ZN(tk)

given Ftk−1 . Note that the event GN,k−1 is in Ftk−1 .
In this section, we will consider the particles that would still be alive if, between

times tk−1 and tk , we killed particles that hit LA, where LA was defined in (13).
Recall that both LA and the drift μ depend on N . We will always assume that N

is large enough that LA > 0 and

h(N) ≤ eμLA

N(logN)3 = e−Ae(μ/
√

2−1)(logN+3 log logN−A),(31)

which is possible because, by (4), the right-hand side tends to e−A as N → ∞.
Because YN(tk) ≤ N(logN)3h(N) on GN,k , this ensures that on GN,k , all particles
at time tk are to the left of LA, a fact which will be invoked repeatedly in what
follows.

Note that we have defined three constants: ε, A and θ . We think of ε as being
small. Typically A will be a large positive constant, but we will also at times con-
sider negative values of A. Finally, θ will always be a small positive constant. In
particular, we will assume

θ ≤ 1,(32)

|A|θ ≤ 1,(33)

4π2Aθsε−1/2 ≤ e−A/4,(34)

θeAε−1/2 ≤ 1.(35)
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These assumptions will be in force through the rest of this section, except in Propo-
sition 23 below, where it will be convenient to allow θ to be any number with
θ−1 ∈ N. A stronger set of restrictions on θ will then be introduced at the begin-
ning of Section 5.

For t ∈ [tk−1, tk], we say i ∈ S(t) if for all v ∈ [tk−1, t], the particle at time v

that is the ancestor of Xi,N(t) is in (0,LA). Consequently, for tk−1 ≤ t ≤ tk , the
positions of the particles in S(t) follow a branching Brownian motion with drift
−μ, with particles killed when they reach 0 or LA. Define

ZN,1(tk) =
MN(tk)∑

i=1

eμXi,N (tk) sin
(

πXi,N(tk)

L

)
1{i∈S(tk)},(36)

and for t ∈ [tk−1, tk], define

Z′
N,1(t) =

MN(t)∑
i=1

eμXi,N (t) sin
(

πXi,N(t)

LA

)
1{i∈S(t)}.(37)

Although our interest is in ZN,1(tk), we will need to approximate this random
variable by Z′

N,1(tk), which is defined in the same way except with LA in place
of L. The next result shows that the difference between these quantities is small.

LEMMA 10. On GN,k−1, both |Z′
N,1(tk−1) − ZN(tk−1)| and E[|Z′

N,1(tk) −
ZN,1(tk)||Ftk−1] are o(N(logN)2).

PROOF. If a > 0, then∣∣∣∣ d

dx
sin
(

a

x

)∣∣∣∣=
∣∣∣∣ a

x2 cos
(

a

x

)∣∣∣∣≤ a

x2 .

Therefore, if 0 ≤ x ≤ LA, then∣∣∣∣sin
(

πx

L

)
− sin

(
πx

LA

)∣∣∣∣≤ |L − LA|πx

min{LA,L}2 ≤ π |A|LA√
2 min{LA,L}2

.

On GN,k−1, all particles at time tk−1 are to the left of both LA and L for sufficiently
large N . The indicators are therefore not needed in (9) and (37) when t = tk−1, and
we get

|Z′
N,1(tk−1) − ZN(tk−1)| ≤ π |A|LA√

2 min{LA,L}2

MN(tk−1)∑
i=1

eμXi,N (tk−1)

(38)

= π |A|LAYN(tk−1)√
2 min{LA,L}2

,

which is o(N(logN)2) on GN,k−1. Applying the same reasoning at time tk to the
particles in S(tk), we get

E[|Z′
N,1(tk) − ZN,1(tk)||Ftk−1] ≤ π |A|LAE[YN(tk)|Ftk−1]√

2 min{LA,L}2
.
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Note that

1 − μ2

2
− π2

2L2
A

= π2

(logN + 3 log logN)2 − π2

(logN + 3 log logN − A)2

(39)

= − 2π2A

(logN)3

(
1 + o(1)

)
.

Since tk − tk−1 = (logN)3θs and (33) holds, equations (18) and (39) give
E[YN(tk)|Ftk−1] ≤ CZN(tk−1)(1 + o(1)). It follows that

E[|Z′
N,1(tk) − ZN,1(tk)||Ftk−1] ≤ C|A|LAZN(tk−1)(1 + o(1))

min{LA,L}2 ,(40)

which is o(N(logN)2) on GN,k−1. �

We now estimate the conditional mean and variance of ZN,1(tk) given Ftk−1 .

LEMMA 11. On GN,k−1, we have

E[ZN,1(tk)|Ftk−1] = ZN(tk−1)
(
1 − 2π2Aθs + O(A2θ2)

)+ o(N(logN)2).

The same bound holds with E[Z′
N,1(tk)|Ftk−1] on the left-hand side.

PROOF. By (19) and the Markov property of branching Brownian motion with
particles killed at 0 and LA, we have for sufficiently large N on GN,k−1,

E[Z′
N,1(tk)|Ftk−1] = e(1−μ2/2−π2/2L2

A)(tk−tk−1)Z′
N,1(tk−1),(41)

using the fact that for sufficiently large N , on GN,k−1 all particles at time tk−1 are
to the left of LA. Since tk − tk−1 = (logN)3θs, it follows from (39) that

e(1−μ2/2−π2/2L2
A)(tk−tk−1) = e−2π2Aθs(1+o(1))

(42)
= 1 − 2π2Aθs + O(A2θ2) + o(1),

where assumption (33) ensures that the error term is O(A2θ2). The result now
follows from equations (41) and (42) together with the two bounds in Lemma 10.

�

LEMMA 12. Assume A ≥ 0. On GN,k−1, we have

Var(Z′
N,1(tk)|Ftk−1) ≤ CθN(logN)2e−A(ZN(tk−1) + o(N(logN)2)

)
.

PROOF. For t ∈ [tk−1, tk], define Z′
N,1(t) as in (37), and define

Y ′
N(t) =

MN(t)∑
i=1

eμXi,N (t)1{i∈S(t)}.
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Define tk−1 = s0 < s1 < · · · < sM = tk so that for some positive constants C1 and
C2, we have C1(logN)2 ≤ sn − sn−1 ≤ C2(logN)2 for all n. Recall that for any
random variable X and any σ -fields F and G with F ⊂ G , we have

Var(X|F ) = E[Var(X|G)|F ] + Var(E[X|G]|F ).

Therefore, for 1 ≤ n ≤ M , we have

Var(Z′
N,1(sn)|Fs0) = E[Var(Z′

N,1(sn)|Fsn−1)|Fs0] + Var(E[Z′
N,1(sn)|Fsn−1]|Fs0).

Equation (19) implies that E[Z′
N,1(sn)|Fsn−1] = e(1−μ2/2−π2/2L2

A)(sn−sn−1) ×
Z′

N,1(sn−1). Because A ≥ 0 and thus 1 − μ2/2 − π2/2L2
A ≤ 0, it follows that

Var(E[Z′
N,1(sn)|Fsn−1]|Fs0) ≤ Var(Z′

N,1(sn−1)|Fs0).

Therefore,

Var(Z′
N,1(sn)|Fs0) ≤ E[Var(Z′

N,1(sn)|Fsn−1)|Fs0] + Var(Z′
N,1(sn−1)|Fs0).

Now Var(Z′
N,1(s0)|Fs0) = 0, so by induction,

Var(Z′
N,1(sM)|Fs0) ≤

M∑
n=1

E[Var(Z′
N,1(sn)|Fsn−1)|Fs0].(43)

Because the particles at time sn−1 evolve independently between times sn−1

and sn, the conditional variance Var(Z′
N,1(sn)|Fsn−1) is the sum of the conditional

variances of the contributions to Z′
N,1(sn) from the individual particles at time

sn−1. We will use the inequality Var(X|F ) ≤ E[X2|F ] and apply Lemma 9 with
K = LA and t = sn − sn−1. The hypotheses are satisfied because 1 − μ2/2 −
π2/2L2

A ≤ 0, and both sn − sn−1 and 1/(1 − μ2/2) are of the order (logN)2.
Therefore,

Var(Z′
N,1(sn)|Fsn−1) ≤ CeμLAY ′

N(sn−1)

(
1

L2
A

+ sn − sn−1

L4
A

)
.

Now eμLA ≤ N(logN)3e−A, so

Var(Z′
N,1(sn)|Fsn−1) ≤ CN(logN)3e−A

(
1

L2
A

+ (logN)2

L4
A

)
.(44)

From (18), we get

max
2≤n≤M

E[Y ′
N(sn−1)|Fs0] ≤ CZ′

N,1(s0)
(
1 + o(1)

)
(45)

= CZ′
N,1(tk−1)

(
1 + o(1)

)
.
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Finally, note that M ≤ Cθ(logN). Combining this with (43), (44) and (45) gives
that on GN,k−1,

Var(Z′
N,1(tk)|Ftk−1) = Var(Z′

N,1(sM)|Fs0)

≤ CN(logN)3e−A

(
1

L2
A

+ (logN)2

L4
A

)
(46)

× (
Y ′

N(s0) + Cθ(logN)Z′
N,1(tk−1)

(
1 + o(1)

))
≤ CθN(logN)2e−A

(
Y ′

N(tk−1)

θ logN
+ Z′

N,1(tk−1)

)(
1 + o(1)

)
.

The result now follows from Lemma 10 and the fact that Y ′
N(tk−1) ≤ YN(tk−1) ≤

N(logN)3h(N) on GN,k−1. �

COROLLARY 13. Assume A ≥ 0. On GN,k−1, we have

P
(|ZN,1(tk) − ZN(tk−1)| > 4e−A/4N(logN)2|Ftk−1

)≤ Cθe−A/2ε−1/2(1 + o(1)
)
.

PROOF. By the conditional form of Chebyshev’s inequality and Lemma 12,
on GN,k−1 we have

P
(|Z′

N,1(tk) − E[Z′
N,1(tk)|Ftk−1]| > e−A/4N(logN)2|Ftk−1

)
≤ Var(Z′

N,1(tk)|Ftk−1)

e−A/2N2(logN)4(47)

≤ Cθe−A/2ε−1/2(1 + o(1)
)

because ZN(tk−1) ≤ ε−1/2N(logN)2 on GN,k−1. Using (39), some calculus and
the assumption that A ≥ 0, we get that for N large enough that A ≤ 3 log logN ,

∣∣e(1−μ2/2−π2/2L2
A)(tk−tk−1) − 1

∣∣≤ ∣∣∣∣1 − μ2

2
− π2

2L2
A

∣∣∣∣θs(logN)3 ≤ 2π2Aθs.

Therefore, by (41), if A ≤ 3 log logN , then

|E[Z′
N,1(tk)|Ftk−1] − Z′

N,1(tk−1)| ≤ 2π2AθsZ′
N,1(tk−1).

Because Z′
N,1(tk−1) = ZN(tk−1) + o(N(logN)2) ≤ ε−1/2N(logN)2 +

o(N(logN)2) on GN,k−1 by Lemma 10 and 2π2Aθsε−1/2 ≤ e−A/4/2 by (34),
it follows that for sufficiently large N ,

|E[Z′
N,1(tk)|Ftk−1] − Z′

N,1(tk−1)| ≤ e−A/4N(logN)2(48)
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on GN,k−1. By Lemma 10, on GN,k−1, we have

|Z′
N,1(tk−1) − ZN(tk−1)| ≤ e−A/4N(logN)2(49)

for sufficiently large N and

P
(|ZN,1(tk) − Z′

N,1(tk)| > e−A/4N(logN)2|Ftk−1

)→ 0(50)

uniformly as N → ∞ on GN,k−1. The result follows immediately from (47), (48),
(49) and (50). �

PROPOSITION 14. Suppose A = 0. Let

M ′
N(tk) =

MN(tk)∑
i=1

1{i∈S(tk)}

be the number of particles at time tk whose ancestor at time t is in (0,L) for all
t ∈ [tk−1, tk]. On GN,k−1, there exists a constant C such that

Var(M ′
N(tk)|Ftk−1) ≤ Cθε−1/2N2(1 + o(1)

)
.

PROOF. As in the proof of Lemma 12, the conditional variance can be
bounded by the sum of the variances of the contributions to M ′

N(tk) from the in-
dividual particles at time tk−1. The variance of the contribution from a particle at
x can be bounded by the expected square of the number of descendants of this
particle at time tk . This expectation is given by Lemma 8 with f (x) = 1 for all x

and tk − tk−1 in place of t . Therefore,

Var(M ′
N(tk)|Ftk−1)

=
MN(tk−1)∑

i=1

∫ L

0
qtk−tk−1(Xi,N(tk−1), y) dy

+ 2
MN(tk−1)∑

i=1

∫ tk

tk−1

∫ L

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt.

The first term is E[M ′
N(tk)|Ftk−1], which by (17) with K = L is at most

CZN(tk−1)(1 + o(1))/L2 because the integral on the right-hand side of (17) is
of the order 1/K . This expression is o(N2) on GN,k−1.

The argument to bound the second term is similar to the proof of Lemma 9
but requires splitting the outer integral into four pieces. First consider the piece
between tk−1 and tk−1 + (logN)2. If t ≤ (logN)2, then (28) holds and∫ ∞

0
vt (x, y) ds = G(x,y) ≤ 2x(L − y)

L
≤ 2(L − y)(51)
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by (21). Since 1 − μ2/2 − π2/2L2 = 0, Lemma 5 gives that on GN,k−1,

MN(tk−1)∑
i=1

∫ tk−1+(logN)2

tk−1

∫ L

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ C

MN(tk−1)∑
i=1

∫ (logN)2

0

∫ L

0
qt (Xi,N(tk−1), z)

×
(∫ L

0

2

L
eμz sin

(
πz

L

)
e−μy sin

(
πy

L

)
dy

)2

dzdt

≤ C

L4

MN(tk−1)∑
i=1

∫ (logN)2

0

∫ L

0
qt (Xi,N(tk−1), z)e

2μz sin
(

πz

L

)2

dzdt

≤ C

L4

MN(tk−1)∑
i=1

∫ L

0
e2μz sin

(
πz

L

)2(∫ (logN)2

0
qt (Xi,N(tk−1), z) dt

)
dz(52)

≤ C

L4

MN(tk−1)∑
i=1

∫ L

0
e2μz sin

(
πz

L

)2

× eμ(Xi,N (tk−1)−z)

(∫ ∞
0

vt (Xi,N(tk−1), z) dt

)
dz

≤ C

L4

(MN(tk−1)∑
i=1

eμXi,N (tk−1)

)∫ L

0
eμz sin

(
πz

L

)2

(L − z) dz

≤ C

L4 · YN(tk−1) · eμL

L2 ≤ CN2h(N).

We next consider the case tk−1 + (logN)2 ≤ t ≤ tk − (logN)2, and from
Lemma 5, we get that on GN,k−1,

MN(tk−1)∑
i=1

∫ tk−(logN)2

tk−1+(logN)2

∫ L

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ C

MN(tk−1)∑
i=1

∫ tk−(logN)2

tk−1+(logN)2

∫ L

0

2

L
eμXi,N (tk−1) sin

(
πXi,N(tk−1)

L

)

× e−μz sin
(

πz

L

)

×
(∫ L

0

2

L
eμz sin

(
πz

L

)
e−μy sin

(
πy

L

)
dy

)2

dzdt(53)
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≤ C(tk − tk−1)ZN(tk−1)

L3

(∫ L

0
eμz sin

(
πz

L

)3

dz

)[∫ L

0
e−μy sin

(
πy

L

)
dy

]2

≤ Cθ(logN)3ZN(tk−1)

L3 · eμL

L3 · 1

L2 ≤ Cθε−1/2N2.

Consider now the case tk − (logN)2 ≤ t ≤ tk − (logN)7/4. Note that if t ≤
C(logN)2, then e(1−μ2/2)t ≤ C, so by (15) and Lemma 4,

qt (x, y) ≤ C

L
eμx sin

(
πx

L

)
e−μy sin

(
πy

L

) ∞∑
n=1

n2e−π2n2t/L2
.

Breaking up the sum into blocks of size M = �L/
√

t� gives

∞∑
n=1

n2e−π2n2t/L2 ≤
∞∑

�=0

M
(
M(� + 1)

)2
e−π2(M�)2t/L2 ≤ M3

∞∑
�=0

(� + 1)2e−π2�2

≤ CL3

t3/2 .

Therefore,

MN(tk−1)∑
i=1

∫ tk−(logN)7/4

tk−(logN)2

∫ L

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ C

MN(tk−1)∑
i=1

∫ (logN)2

(logN)7/4

∫ L

0

2

L
eμXi,N (tk−1) sin

(
πXi,N(tk−1)

L

)
e−μz sin

(
πz

L

)

×
(∫ L

0

L2

t3/2 eμz sin
(

πz

L

)
e−μy sin

(
πy

L

)
dy

)2

dzdt

(54)

≤ CL3ZN(tk−1)

(∫ (logN)2

(logN)7/4

1

t3 dt

)(∫ L

0
eμz sin

(
πz

L

)3

dz

)

×
[∫ L

0
e−μy sin

(
πy

L

)
dy

]2

≤ CL3ZN(tk−1) · 1

(logN)7/2 · eμL

L3 · 1

L2 ≤ Cε−1/2N2

(logN)1/2 .

Next, consider the case tk − (logN)7/4 ≤ t ≤ tk −1. Using (28), and the obvious
fact that the density vt (x, y) of Brownian motion killed at 0 and L is dominated
by the transition probabilities of standard Brownian motion, for t ≤ (logN)2, we
have

qt (x, y) ≤ Ceμ(x−y)vt (x, y) ≤ Ceμxe−μy · 1

t1/2 e−(x−y)2/2t ≤ Ceμxe−μy

t1/2 .(55)
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We split the integral over z into two pieces and obtain

MN(tk−1)∑
i=1

∫ tk−1

tk−(logN)7/4

∫ 2L/3

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ CZN(tk−1)

L

∫ (logN)7/4

1

∫ 2L/3

0
e−μz sin

(
πz

L

)(∫ L

0
qt (z, y) dy

)2

dzdt

≤ CZN(tk−1)

L

∫ (logN)7/4

1

∫ 2L/3

0
e−μz sin

(
πz

L

)(∫ L

0

eμze−μy

t1/2 dy

)2

dzdt(56)

≤ CZN(tk−1)

L

(∫ (logN)7/4

1

1

t
dt

)(∫ 2L/3

0
eμz sin

(
πz

L

)
dz

)(∫ L

0
e−μy dy

)

≤ CZN(tk−1)

L
· log logN · e2μL/3 = o(N2)

and
MN(tk−1)∑

i=1

∫ tk−1

tk−(logN)7/4

∫ L

2L/3
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ CZN(tk−1)

L

∫ (logN)7/4

1

∫ L

2L/3
e−μz sin

(
πz

L

)(∫ L

0
qt (z, y) dy

)2

dzdt

≤ CZN(tk−1)

L
(57)

×
∫ (logN)7/4

1

∫ L

2L/3
eμz

(∫ L/3

0
e−μye−(z−y)2/2t dy +

∫ L

L/3
e−μy dy

)2

dzdt

≤ CZN(tk−1)

L
(logN)7/4eμL

(∫ L/3

0
e−μye−(logN)1/4/36 dy + e−μL/3

)2

≤ CN(logN)15/4ZN(tk−1)
(
e−(logN)1/4/36 + e−μL/3)2 = o(N2).

Finally, if 0 ≤ t ≤ 1, then
∫ L

0 qt (z, y) dy ≤ et ≤ C, so

MN(tk−1)∑
i=1

∫ tk

tk−1

∫ L

0
qt−tk−1(Xi,N(tk−1), z)

(∫ L

0
qtk−t (z, y) dy

)2

dzdt

≤ CZN(tk−1)

L

∫ 1

0

∫ L

0
e−μz sin

(
πz

L

)(∫ L

0
qt (z, y) dy

)2

dzdt(58)

≤ CZN(tk−1)

L

∫ L

0
e−μz sin

(
πz

L

)
dz ≤ CZN(tk−1)

L2 = o(N2).

The result now follows from (52)–(54) and (56)–(58). �
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3.2. The number of particles that hit LA. For k ∈ N, let Rk denote the number
of times t between tk−1 and tk that a particle reaches LA at time t and, for all
u ∈ [tk−1, t), the ancestor of this particle at time u was in (0,LA). Equivalently,
Rk is the number of particles that are killed by hitting LA between times tk−1 and
tk . Note that particles can reach LA before time tk−1 and still contribute to Rk .
Below we calculate the conditional mean and second moment of Rk given Ftk−1 .

LEMMA 15. Suppose there is a single particle at x at time zero, where x ∈
(0,LA). Suppose particles undergo branching Brownian motion with drift −μ and
are killed when they reach 0 or LA. Let R be the number of particles that hit LA

between times t and t + κ , where 0 < κ < 1. Then

E[R] = 2πeAκe(1−μ2/2−π2/2L2
A)t

(59)

· eμx sin
(

πx

LA

)
(1 + D)(1 + o(1))(1 + o(κ))

N(logN)5 ,

where |D| is bounded by the right-hand side of (16) with LA in place of K , and
o(κ) is a term whose absolute value is bounded by g(κ) for some bounded function
g : (0,1) → (0,∞) with limκ→0 g(κ) = 0.

PROOF. Let (Bt , t ≥ 0) be standard Brownian motion started at the origin.
Suppose that (for the branching Brownian motion), there is a particle at y at time t ,
and let 0 < κ < 1. The expected number of descendants of the particle at time t +κ

is eκ , and the drift of −μ can only reduce the probability that a Brownian particle
reaches LA. Therefore, an upper bound for the expected number of descendants
that reach LA at by time t + κ is

eκP
(

max
0≤t≤κ

Bt ≥ LA − y
)

= 2eκP (Bκ ≥ LA − y)

(60)

= eκ

√
2

κπ

∫ ∞
LA−y

e−z2/2κ dz,

where the first equality follows from the reflection principle. To get a lower bound,
we may ignore the branching, and bound the probability that Brownian motion
with drift −μ reaches LA by time κ without hitting the origin by the probability
that ordinary Brownian motion reaches LA + μκ by time κ without hitting μκ .
For y ≥ μκ , this leads to a lower bound of

P
(

max
0≤t≤κ

Bt ≥ LA − y + μκ
)

− P
(

min
0≤t≤κ

Bt ≤ −y + μκ
)

(61)

=
√

2

κπ

(∫ ∞
LA−y+μκ

e−z2/2κ dz −
∫ ∞
y−μκ

e−z2/2κ dz

)
.
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From Lemma 5, the expected number of particles in the set B at time t is
(
∫
B pt(x, y) dy)(1 + D′

t (x,B)). Now integrating over y and applying (60), we get

E[R] ≤ (1 + D)

∫ LA

0
pt(x, y) · eκ

√
2

κπ

(∫ ∞
LA−y

e−z2/2κ dz

)
dy

= (1 + D)eκ

√
2

κπ
· 2

LA

e(1−μ2/2−π2/2L2
A)t eμx sin

(
πx

LA

)
(62)

×
∫ LA

0

∫ ∞
LA−y

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy,

where |D| is bounded by the right-hand side of (16) with LA in place of K . Inter-
changing the roles of y and LA − y, then using Fubini’s theorem followed by the
bound siny ≤ y for y ≥ 0 gives∫ LA

0

∫ ∞
LA−y

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy

= e−μLA

∫ LA

0

∫ ∞
y

eμy sin
(

πy

LA

)
e−z2/2κ dz dy

= e−μLA

∫ ∞
0

∫ min{z,LA}
0

eμy sin
(

πy

LA

)
e−z2/2κ dy dz

(63)

≤ e−μLA

∫ ∞
0

(∫ z

0

πy

LA

dy

)
eμze−z2/2κ dz

= πe−μLA

2LA

∫ ∞
0

z2eμze−z2/2κ dz

= πe−μLA

2LA

(
κ3/2

√
π

2
+
∫ ∞

0
z2(eμz − 1)e−z2/2κ dz

)
.

The substitution y = z/
√

κ gives∫ ∞
0

z2(eμz − 1)e−z2/2κ dz = κ3/2
∫ ∞

0
(eμy

√
κ − 1)y2e−y2/2 dy,(64)

and the last integral goes to zero as κ → 0 by the dominated convergence theorem.
Therefore, combining (62), (63) and (64), we get

E[R] ≤ (1 + D)eκ

√
2

κπ
· 2

LA

e(1−μ2/2−π2/2L2
A)t eμx sin

(
πx

LA

)

× π3/2e−μLAκ3/2

23/2LA

(
1 + o(κ)

)
.

Since LA = (2−1/2 logN)(1 + o(1)) and e−μLA = eA(1 + o(1))/(N(logN)3), it
follows that E[R] is bounded above by the right-hand side of (59).
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We next establish the lower bound. Truncating the outer integral at LA/2 and
using (61), we get, for some D whose absolute value is bounded by the right-hand
side of (16) with LA in place of K ,

E[R] ≥ (1 + D)

∫ LA

LA/2
pt(x, y)

√
2

κπ

×
(∫ ∞

LA−y+μκ
e−z2/2κ dz −

∫ ∞
y−μκ

e−z2/2κ dz

)
dy

= (1 + D)

√
2

κπ
· 2

LA

e(1−μ2/2−π2/2L2
A)t eμx sin

(
πx

LA

)

×
∫ LA

LA/2
e−μy sin

(
πy

LA

)(∫ ∞
LA−y+μκ

e−z2/2κ dz −
∫ ∞
y−μκ

e−z2/2κ dz

)
dy

(65)

= (1 + D)

√
2

κπ
· 2

LA

e(1−μ2/2−π2/2L2
A)t eμx sin

(
πx

LA

)

×
(∫ LA

0

∫ ∞
LA−y+μκ

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy

−
∫ LA

LA/2
e−μy sin

(
πy

LA

)(∫ ∞
y−μκ

e−z2/2κ dz

)
dy

−
∫ LA/2

0

∫ ∞
LA−y+μκ

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy

)
.

To bound the second term in (65), note that by substituting w = z/
√

κ and using
the fact that

∫∞
x e−w2/2 dw ≤ x−1e−x2/2, we get

∫ ∞
(1/2)LA−μκ

e−z2/2κ dz ≤ 2
√

κ

LA − 2μκ
e−(LA−2μκ)2/8κ .

Therefore, ∫ LA

LA/2
e−μy sin

(
πy

LA

)(∫ ∞
y−μκ

e−z2/2κ dz

)
dy

≤
∫ LA

LA/2
e−μy sin

(
πy

LA

)(∫ ∞
(1/2)LA−μκ

e−z2/2κ dz

)
dy

(66)

≤ 2
√

κ

LA − 2μκ
e−(LA−2μκ)2/8κ

∫ LA

LA/2
e−μy sin

(
πy

LA

)
dy

=
(

e−μLA

LA

)
o(1).
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To bound the third term in (65), note that

∫ LA/2

0

∫ ∞
LA−y+μκ

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy

= e−μLA

∫ LA

LA/2

∫ ∞
y+μκ

eμy sin
(

πy

LA

)
e−z2/2κ dz dy

(67)

= e−μLA

∫ ∞
LA/2

∫ min{z−μκ,LA}
LA/2

eμy sin
(

πy

LA

)
e−z2/2κ dy dz

≤ πe−μLA

LA

∫ ∞
LA/2

z2eμze−z2/2κ dz =
(

e−μLA

LA

)
o(1).

For the first term, we argue as in the proof of the upper bound, and then use that
eμy ≥ 1 and siny ≥ y − y3/6 for all y ≥ 0 to get

∫ LA

0

∫ ∞
LA−y+μκ

e−μy sin
(

πy

LA

)
e−z2/2κ dz dy

= e−μLA

∫ ∞
0

∫ min{z−μκ,LA}
0

eμy sin
(

πy

LA

)
e−z2/2κ dy dz

≥ πe−μLA

LA

∫ ∞
0

∫ min{z−μκ,LA}
0

ye−z2/2κ dy dz

− π3e−μLA

6L3
A

∫ ∞
0

∫ z

0
y3e−z2/2κ dy dz

= πe−μLA

2LA

∫ ∞
0

min{z − μκ,LA}2e−z2/2κ dz

− π3e−μLA

24L3
A

∫ ∞
0

z4e−z2/2κ dz.

The second integral is a constant times κ5/2. The first integral would be κ3/2√π/2
if we had z2 in the integrand in place of min{z − μκ,LA}2. Also,
∫ ∞

0
(z2 − min{z − μκ,LA}2)e−z2/2κ dz ≤

∫ ∞
0

max
{
2μκz, z21{z≥LA}

}
e−z2/2κ dz.

If we use 2μκz in the integrand, the integral is bounded by Cκ2. If we use
z21{z≥LA}, the integral divided by κ3/2 tends to zero uniformly over κ ∈ (0,1) as
N → ∞, so the integral is κ3/2o(1). These observations, combined with (65) and
the bounds in (66) and (67), imply that E[R] is bounded below by the right-hand
side of (59). �



560 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

PROPOSITION 16. We have

E[Rk|Ftk−1] = 2πeA · Z′
N,1(tk−1)θs

N(logN)2

(
1 + O(|A|θ) + o(1)

)

+ CeAYN(tk−1)(1 + o(1))

N(logN)3 .

On GN,k−1, we have

E[Rk|Ftk−1] = 2πeA · ZN(tk−1)θs

N(logN)2

(
1 + O(|A|θ)

)+ o(1).

PROOF. We first consider the particles that reach LA between times tk−1 and
tk−1 + (logN)2. Define Rk(t) in the same manner as Rk , but counting only parti-
cles that reach LA between times tk−1 and t . Let Rk,1 = Rk(tk−1 + (logN)2). We
now consider the martingale from Lemma 6. Since μ2/2 − 1 < 0, this process will
still be a supermartingale if particles are stopped, but not killed, when reaching
LA. More precisely, for tk−1 ≤ t ≤ tk , let X

LA

i,N(t) = Xi,N(t) if, for all u ∈ [tk−1, t),

the ancestor at time u of the individual Xi,N(t) is in (0,LA), and let X
LA

i,N(t) = 0
otherwise, and then for tk−1 ≤ t ≤ tk , define

VA(t) = Rk(t)LAeμLA+(μ2/2−1)(t−tk−1) +
MN(t)∑
i=1

X
LA

i,N(t)e
μX

LA
i,N (t)+(μ2/2−1)(t−tk−1).

Then (VA(t), tk−1 ≤ t ≤ tk) is a supermartingale with respect to (Ft , tk−1 ≤ t ≤
tk). Therefore,

VA(tk−1) ≥ E
[
VA

(
tk−1 + (logN)2)|Ftk−1

]
≥ E

[
Rk,1LAeμLA+(μ2/2−1)(logN)2 |Ftk−1

]
= LAeμLA+(μ2/2−1)(logN)2

E[Rk,1|Ftk−1].
Note that since X

LA

i,N(t) ≤ LA, we have VA(tk−1) ≤ LAYN(tk−1), which means

E[Rk,1|Ftk−1] ≤ YN(tk−1)

eμLA+(μ2/2−1)(logN)2 .

Since (1 − μ2/2) ≤ C/(logN)2 and eμLA ≥ N(logN)3e−A(1 + o(1)), we have

E[Rk,1|Ftk−1] ≤ CeAYN(tk−1)(1 + o(1))

N(logN)3 .(68)

We next consider the particles that reach LA between times tk−1 + (logN)2

and tk . The strategy will be to choose a small number δ, break the time interval
[tk−1 + (logN)2, tk] into time intervals of length δ and then use Lemma 15 to
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estimate the number of particles that reach LA in each of these intervals. We first
make three remarks concerning the application of Lemma 15. First, note that if
the interval starts at time t , then t − tk−1 plays the role of t in Lemma 15. Since
t − tk−1 ≤ (logN)3θs, equation (39) implies that∣∣e(1−μ2/2−π2/2L2

A)(t−tk−1) − 1
∣∣≤ C|A|θ + o(1).(69)

Second, we need to consider all particles at time t rather than just a single particle
at x, so in place of eμx sin(πx/LA), we have the expression Z′

N,1(tk−1) from (37).
Third, note that by (16) with K = LA, the error term |D| is bounded by C(1+o(1))

for t ≥ tk−1 + (logN)2, and |D| is o(1) for t ≥ tk−1 + (logN)5/2.
Let Rk,2 be defined in the same way as R, but counting only particles that reach

LA between times tk−1 + (logN)2 and tk−1 + (logN)5/2. We can divide this time
interval into at most δ−1(logN)5/2 time intervals of length δ, so by Lemma 15,

E[Rk,2|Ftk−1] ≤ CeAδ · Z′
N,1(tk−1)

N(logN)5 · (logN)5/2

δ
· (1 + o(1)

)
(70)

≤ CeAZ′
N,1(tk−1)(1 + o(1))

N(logN)5/2 .

Let Rk,3 be defined in the same way as R, but counting only particles that
reach LA between times tk−1 + (logN)5/2 and tk . This interval can be divided
into δ−1(logN)3θs(1 + o(1)) intervals of length δ, so by Lemma 15 and (69),

E[Rk,3|Ftk−1] = 2πeAδ
(
1 + O(|A|θ)

)
× Z′

N,1(tk−1)(1 + o(1))(1 + o(δ))

N(logN)5 · (logN)3θs

δ
(71)

= 2πeA
Z′

N,1(tk−1)θs

N(logN)2

(
1 + O(|A|θ)

)(
1 + o(δ)

)(
1 + o(1)

)+ o(1).

The first statement of the proposition follows from (68), (70) and (71) by choosing
δ as a function of N so that δ → 0 as N → ∞. On GN,k−1, the second statement
follows from Lemma 10. �

The corollary below follows immediately from the above proof, because the
number of particles that hit LA between tk − (logN)5/2 and tk can be bounded in
the same manner as E[Rk,3|Ftk−1], and the number of intervals of length δ is only
(logN)5/2/δ.

COROLLARY 17. Define R̃k the same way as Rk , except only counting parti-
cles that reach LA between tk − (logN)5/2 and tk . Then E[R̃k|Ftk−1] is o(1) on
GN,k−1.
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PROPOSITION 18. Assume A ≥ 0. On GN,k−1, we have

E[R2
k |Ftk−1] ≤ CθeAZN(tk−1)

N(logN)2 + o(1).

PROOF. For the purposes of this proof, we may assume that particles are killed
upon reaching LA. Note that R2

k = Rk +2Y , where Y is the number of distinct pairs
of particles that get killed upon reaching LA. We may further write Y = Y1 + Y2,
where Y1 denotes the number of pairs of particles that get killed upon reaching LA

whose most recent common ancestor is before time tk−1 and Y2 counts the other
pairs of particles. Proposition 16 and (33) give that on GN,k−1,

E[Rk|Ftk−1] ≤ CθeAZN(tk−1)

N(logN)2 + o(1).(72)

If there is a particle at x at time tk−1 and a descendant of this particle reaches
LA by time tk , then the number of pairs in Y1 involving this descendant will be
precisely the number of particles descended from particles other than the particle
at x at time tk−1 that reach LA by time tk , which is bounded by Rk . Because
descendants of different particles evolve independently, it follows that

E[Y1|Ftk−1] ≤ (E[Rk|Ftk−1])2 ≤ C

(
θeAZN(tk−1)

N(logN)2

)2

+ o(1).(73)

It remains to consider Y2. Because pairs of particles contributing to Y2 have the
same ancestor at time tk−1, we may consider separately the contributions of the
particles at time tk−1. Assume for now that there is a single particle at x at time
tk−1, and we denote the number of associated pairs of particles contributing to Y2
by Yx

2 . Let h(t, y) be the expected number of offspring of a single particle that is at
y at time tk−1 + t that will hit LA before time tk . A branching event at (tk−1 + t, y)

produces, on average, h(t, y)2 pairs of particles that hit LA and have their most
recent common ancestor at time t . Since each particle branches at rate 1,

E[Yx
2 ] =

∫ (logN)3θs

0

∫ LA

0
qt (x, y)h(t, y)2 dy dt.(74)

Since h(t, y) ≤ h(0, y), it follows from Proposition 16 that

h(t, y) ≤ CeAθeμy

N(logN)2 sin
(

πy

LA

)(
1 + o(1)

)+ CeAeμy(1 + o(1))

N(logN)3

(75)

≤ CeA(1 + o(1))

N(logN)2

(
θeμy sin

(
πy

LA

)
+ eμy

logN

)
,

where the o(1) term tends to zero uniformly in y as N → ∞.
We first evaluate the portion of the integral in (74) when t ≤ (logN)2. Recall

from (28) that when t ≤ (logN)2,

qt (x, y) ≤ Ceμ(x−y)vt (x, y),
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where vt (x, y) is the density of Brownian motion in the strip (0,LA), defined as
in (14) with LA in place of K . Therefore, changing the order of integration,∫ (logN)2

0

∫ LA

0
qt (x, y)h(t, y)2 dy dt

≤ Ce2Aeμx(1 + o(1))

N2(logN)4

×
∫ LA

0

(
θeμy sin

(
πy

LA

)
+ eμy

logN

)2

e−μy

(∫ (logN)2

0
vt (x, y) dt

)
dy.

By (51),
∫∞

0 vt (x, y) dt ≤ 2(LA − y). Using also that (a + b)2 ≤ C(a2 + b2), that
sin(πy/LA) = sin(π(LA − y)/LA) ≤ π(LA − y)/LA ≤ C(LA − y)/(logN), that
eμLA = N(logN)3e−A(1 + o(1)), and that (32) holds, we get∫ (logN)2

0

∫ LA

0
qt (x, y)h(t, y)2 dy dt

≤ Ce2Aeμx(1 + o(1))

N2(logN)4

∫ LA

0

(
θ2eμy(LA − y)3

(logN)2 + eμy(LA − y)

(logN)2

)
dy(76)

≤ Ce2Aeμx(1 + o(1))

N2(logN)6 (θ2eμLA + eμLA) ≤ CeAeμx(1 + o(1))

N(logN)3 .

When t ≥ (logN)2, Lemma 5 implies that

qt (x, y) ≤ Cpt(x, y)
(
1 + o(1)

)≤ C(1 + o(1))

logN
eμx sin

(
πx

LA

)
e−μy sin

(
πy

LA

)

because A ≥ 0. Therefore,∫ (logN)3θs

(logN)2

∫ LA

0
qt (x, y)h(t, y)2 dy dt

≤ Ce2A(1 + o(1))

N2(logN)5 eμx sin
(

πx

LA

)

×
∫ (logN)3θs

(logN)2

∫ LA

0
e−μy sin

(
πy

LA

)(
θeμy sin

(
πy

LA

)
+ eμy

logN

)2

dy dt

(77)

≤ Cθe2A(1 + o(1))

N2(logN)2 eμx sin
(

πx

LA

)

×
∫ LA

0

(
θ2eμy(LA − y)3

(logN)3 + eμy(LA − y)

(logN)3

)
dy

≤ CθeA(1 + o(1))

N(logN)2 · eμx sin
(

πx

LA

)
,
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using that the last integral can be bounded by CeμLA/(logN)3 ≤ Ce−AN . By
combining (76) and (77) and summing over the contributions from different parti-
cles, we get on GN,k−1,

E[Y2|Ftk−1] ≤
(

CeAYN(tk−1)

N(logN)3 + CθeAZ′
N,1(tk−1)

N(logN)2

)(
1 + o(1)

)
(78)

≤ CθeAZN(tk−1)

N(logN)2 + o(1),

where the last inequality uses Lemma 10. The result now follows from (72), (73)
and (78), using the assumption from (35) that θeAε−1/2 ≤ 1. �

REMARK 19. By Proposition 16 and Markov’s inequality, we see that when θ

is small, during most intervals [tk−1, tk], no particles reach LA. Using Propositions
16 and 18 and the second moment method, we get that on GN,k−1,

P(Rk > 0|Ftk−1) ≥ (E[Rk|Ftk−1])2

E[R2
k |Ftk−1]

≥ C

(
θeAZN(tk−1)

N(logN)2

)2( N(logN)2

θeAZN(tk−1)

)(
1 + o(1)

)
(79)

≥ CθeAZN(tk−1)(1 + o(1))

N(logN)2 .

Thus, it follows that

E[Rk|Rk > 0, Ftk−1] = E[Rk|Ftk−1]
P(Rk > 0|Ftk−1)

≤ C
(
1 + o(1)

)
.

That is, conditional on the event that at least one particle reaches LA, the expected
number of particles that reach LA is bounded by a constant that does not depend
on θ or A.

3.3. The probability of GN(ε). We have now acquired enough tools to prove
that the probability of GN(ε) is close to 1 when ε is small and N is large. It is this
result that allows us to work on the event GN throughout much of the paper.

Throughout this section, we will assume that particles are killed upon reaching
LA. Define Z̄N(t) and ȲN (t) in the same way as ZN(t) and YN(t) in (9) and (10),
but for this modified process in which particles are killed upon reaching LA. Also,
we use LA rather than L in the definition of Z̄N(t).

LEMMA 20. For any fixed A ∈ R and any fixed t ≥ 0, under the hypotheses of
Proposition 1, we have

lim
N→∞P

(
ȲN (t (logN)3) > N(logN)3h(N)

)= 0.
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PROOF. Let BN be the event that all particles at time zero are in (0,LA).
We have P(BN) → 1 as N → ∞ because on the event that there is a parti-
cle to the right of LA at time zero, we have YN(0) ≥ N(logN)3h(N) by (31),
and YN(0)/(N(logN)3h(N)) converges in probability to zero by the definition of
h(N). On BN , we have YN(0) = ȲN (0), so the result holds when t = 0.

Suppose instead t > 0. By (18), on BN we have

E[ȲN (t (logN)3)|F0] = 4

π
e(1−μ2/2−π2/2L2

A)t (logN)3
(1 + D)ZN(0),

where |D| is bounded by the right-hand side of (16) with LA in place of K . There-
fore, using (39), on BN we have

E[ȲN (t (logN)3)|F0] ≤ Ce−2π2At(1+o(1))ZN(0)
(
1 + o(1)

)
.

Therefore, by Markov’s inequality, on BN we have

P
(
ȲN (t (logN)3) > N(logN)3h(N)|F0

)≤ E[ȲN (t (logN)3)|F0]
N(logN)3h(N)

≤ Ce−2π2At(1+o(1))ZN(0)(1 + o(1))

N(logN)3h(N)
.

The right-hand side converges in probability to zero because ZN(0)/N(logN)2

converges in distribution to ν and (logN)h(N) → ∞ as N → ∞. The result fol-
lows. �

For the rest of Section 3.3, we will assume that A < 0, so that LA > L.

LEMMA 21. Fix A < 0 and t ≥ 0. For all κ > 0, there exists a positive con-
stant C1, depending on κ but not on A or t , such that under the hypotheses of
Proposition 1,

P

(
max

0≤r≤t (logN)3
Z̄N(r) >

1

2
ε−1/2N(logN)2

)
≤ κ + C1ε

1/2e−2π2At(1+o(1)).

PROOF. By (19), if U(r) = e−(1−μ2/2−π2/2L2
A)sZ̄N(r), then (U(r), r ≥ 0) is a

martingale. Since A < 0, we have 1 − μ2/2 − π2/2L2
A > 0. Therefore, by Doob’s

maximal inequality (see, e.g., the p = 1 case of Theorem 1.4 in [24]) and (39),

P

(
max

0≤r≤t (logN)3
Z̄N(r) >

1

2
ε−1/2N(logN)2

∣∣∣F0

)

≤ P

(
max

0≤s≤t (logN)3
U(r) >

1

2
ε−1/2N(logN)2e−(1−μ2/2−π2/2L2

A)t (logN)3
∣∣∣F0

)

≤ 2Z̄N(0)ε1/2e(1−μ2/2−π2/2L2
A)t (logN)3

N(logN)2 ≤ 2Z̄N(0)ε1/2e−2π2At(1+o(1))

N(logN)2 .
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Because the distribution of ZN(0)/N(logN)2, and therefore that of Z̄N(0)/

N(logN)2, converges to ν, there exists a constant C1 such that P(Z̄N(0)/

N(logN)2 > C1) ≤ κ . The result follows. �

LEMMA 22. Let κ > 0 and t > 0. Under the hypotheses of Proposition 1,
there exist positive constants C2 and γ , depending on κ and t , such that for all
A < 0, the probability that some particle reaches LA before time t (logN)3 is at
most C2e

γA + κ for sufficiently large N .

PROOF. Let J = �4π2t�. For 1 ≤ j ≤ J , let Aj = 2j−J A and sj = (j/4π2) ×
(logN)3. Let s0 = 0. Consider a modified branching Brownian motion, defined up
to time t (logN)3, in which particles that reach LAj

between times sj−1 and sj are
killed. Because LAj

≤ LA for all j , it suffices to bound the probability that at least
one particle gets killed in this new modified branching Brownian motion.

Let M̃N(r) denote the number of particles alive at time r , and denote the posi-
tions of these particles by X̃1,N (r) ≥ · · · ≥ X̃MN(r),N (r). For r ∈ [sj−1, sj ], define

Z̃N,j (r) =
M̃N (r)∑
i=1

eμX̃i,N (r) sin
(

πX̃i,N(r)

LAj

)

and

ỸN (r) =
M̃N (r)∑
i=1

eμX̃i,N (r).

For all r ∈ [sj−1, sj ], we have, using (19) and (39),

E[Z̃N,j (r)|Fsj−1] = e
(1−μ2/2−π2/2L2

Aj
)(r−sj−1)

Z̃N,j (sj−1)

≤ e−2π2Aj (sj−sj−1)(1+o(1))/(logN)3
Z̃N,j (sj−1)(80)

= e−Aj (1+o(1))/2Z̃N,j (sj−1).

This bound allows us to bound the probability that a particle reaches L̃Aj
be-

tween times sj−1 and sj using Proposition 16. We divide the interval from sj−1
to sj into smaller subintervals of length approximately θ(logN)3. More precisely,
define times sj−1 = u0 < u1 < · · · < uD = sj such that θ(logN)3 ≤ uk − uk−1 ≤
2θ(logN)3 for all k, which is possible as long as we choose θ ≤ 1/4π2. Letting
R̃j,k denote the number of particles that reach LAj

between times uk−1 and uk , we
get from Proposition 16,

E[R̃j,k|Fuk−1] ≤ CeAj Z̃N,j (uk−1)θ(1 + o(1))

N(logN)2 + CeAj ỸN(uk−1)(1 + o(1))

N(logN)3 .
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By Markov’s inequality,

P(R̃j,k > 0|Fuk−1) ≤ CeAj Z̃N,j (uk−1)θ(1 + o(1))

N(logN)2

+ min
{
CeAj ỸN(uk−1)(1 + o(1))

N(logN)3 ,1
}
.

By Lemma 20 applied at the times u0, . . . , uD , the second term is op(1), which
means it tends to zero in probability as N → ∞ for any fixed values of the param-
eters A and θ . Therefore,

P(R̃j,k > 0|Fsj−1) = E[P(R̃j,k > 0|Fuk−1)|Fsj−1]

≤ CeAj E[Z̃N,j (uk−1)|Fsj−1]θ(1 + o(1))

N(logN)2 + op(1).

Let R̃j =∑D
k=1 R̃j,k . By (80) and the fact that D ≤ C/θ ,

P(R̃j > 0|Fsj−1) ≤ CeAj (1+o(1))/2Z̃N,j (sj−1)(1 + o(1))

N(logN)2 + op(1).(81)

Let G̃j be the event that ỸN (sk) ≤ N(logN)3h(N) for k = 0, . . . , j , and let
G̃ = G̃J−1. We have P(G̃) = 1 − o(1) by Lemma 20. We now show by induction
that for j = 1, . . . , J , on G̃j−1 we have

E[Z̃N,j (sj )|Fs0] ≤ Ce−(A1+···+Aj )(1+o(1))/2ZN(0) + o(N(logN)2).(82)

The j = 1 case follows from (80) and the fact that |Z̃N,1(0) − ZN(0)| ≤
C|A1|ỸN (0)/(logN) by (38), the difference between the expressions coming from
the fact that LA1 is used in the definition of Z̃N,1(0) and L is used in the definition
of ZN(0). Suppose the result is true for j − 1. On G̃j−1, we have, using (80) and
the argument leading to (38),

E[Z̃N,j (sj )|Fsj−1] ≤ e−Aj (1+o(1))/2Z̃N,j (sj−1)

≤ e−Aj (1+o(1))/2Z̃N,j−1(sj−1)

+ e−Aj (1+o(1))/2|Z̃N,j (sj−1) − Z̃N,j−1(sj−1)|
≤ e−Aj (1+o(1))/2Z̃N,j−1(sj−1)

+ Ce−Aj (1+o(1))/2|Aj − Aj−1|ỸN (sj−1)/(logN)

≤ e−Aj (1+o(1))/2Z̃N,j−1(sj−1) + o(N(logN)2).

Taking conditional expectations with respect to Fs0 and applying the induction
hypothesis gives (82). The result (82) for all j = 1, . . . , J on G̃j−1 follows by
induction.



568 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

We now take conditional expectations with respect to Fs0 on both sides of (81).
Using that |Z̃N,j (sj−1)−Z̃N,j−1(sj−1)| = o(N(logN)2) on G̃j−1 as shown above
and that

Aj − (A1 + · · · + Aj−1) = 2j−J A − (2j − 2)2−J A = A1 = 21−J A = A1,

we get

P(R̃j > 0|Fs0) ≤ CeAj (1+o(1))/2E[Z̃N,j (sj−1)|Fs0](1 + o(1))

N(logN)2 + op(1)

≤ Ce(Aj−(A1+···+Aj−1))(1+o(1))/2ZN(0)(1 + o(1))

N(logN)2 + op(1)

≤ CeA1(1+o(1))/2ZN(0)(1 + o(1))

N(logN)2 + op(1).

Therefore, the probability, conditional on Fs0 , that some particle reaches A = AJ

by time t (logN)3 is at most

CJeA2−J (1+o(1))ZN(0)(1 + o(1))

N(logN)2 + op(1).

Since ZN(0)/N(logN)2 converges in distribution to ν as N → ∞, there is a con-
stant c such that P(ZN(0)/N(logN)2 > c) < κ/2 for sufficiently large N . The
result follows. �

PROPOSITION 23. Under the hypotheses of Proposition 1, we have

lim
ε→0

sup
θ

(
lim sup
N→∞

(
1 − P(GN(ε))

))= 0,

where the supremum is taken over all values of θ > 0 such that θ−1 ∈ N.

PROOF. Let 0 < ε < 1, and let κ > 0. Choose C1 as in Lemma 21, and choose
γ and C2 as in Lemma 22, with u + s in place of t . Choose A = (log ε)/(8π2(u +
s)) < 0. We now assume that θ is small enough that assumptions (32)–(35) hold
for these choices of ε and A, so that previous results in this section may be applied.
This assumption is permissible because dividing θ by a positive integer to make it
small enough to satisfy these conditions can only reduce the value of P(GN(ε))

by adding additional times at which conditions on YN and ZN must hold.
By Lemma 22, the probability that some particle reaches LA by time (u + s)×

(logN)3 is at most

κ + C2e
γ (log ε)/(8π2(u+s))(83)

for sufficiently large N . By Lemma 20,

lim
N→∞P

(
ȲN (tj ) > N(logN)3h(N) for some j ≤ θ−1)= 0.(84)
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By Lemma 21,

lim sup
N→∞

P

(
Z̄N(tj ) >

1

2
ε−1/2N(logN)2 for some j ≤ θ−1

)

≤ κ + C1ε
1/2e−(log ε)(1+o(1))/4

≤ κ + C1ε
(1+o(1))/4.

Using (38), on the event that ȲN (tj ) ≤ N(logN)3h(N) and no particle reaches LA

by time (u + s)(logN)3, we have

ZN(tj ) ≤ Z̄N(tj ) + π |A|LAN(logN)3h(N)√
2L2

≤ Z̄N(tj ) + 1

2
ε−1/2N(logN)2

for sufficiently large N . Thus,

lim sup
N→∞

P
(
ZN(tj ) > ε−1/2N(logN)2 for some j ≤ θ−1)

(85)
≤ 2κ + C1ε

1/4 + C2e
γ (log ε)/(8π2(u+s)).

As ȲN (tj ) = YN(tj ) and Z̄N(tj ) = ZN(tj ) when no particles reach LA by time
(u + s)3(logN)3, we see that 1 − P(GN(ε)) is bounded by the sum of the prob-
abilities in (83), (84) and (85). Since none of the bounds depends on θ , it follows
that

lim sup
ε→0

sup
θ

(
lim sup
N→∞

(
1 − P(GN(ε))

))≤ 3κ,

and the result follows by letting κ → 0. �

4. Critical branching Brownian motion with killing at −y. Consider a
branching Brownian motion with drift −√

2 started with a single particle at 0.
From this process, a modified process can be constructed in which particles that
reach −y are killed. Let Zy denote the number of particles that reach −y and are
killed. Note that Zy has the same distribution as the number of particles that hit
zero in branching Brownian motion with drift −√

2 and absorption at zero, started
with a single particle at y. Because this process almost surely goes extinct by The-
orem 1.1 of [43], and it is easy to verify that infinitely many particles will not
reach the origin within any finite time interval, we see that Zy is almost surely
finite for every 0 ≤ y < ∞. Furthermore, because each particle that reaches −x

behaves thereafter like another particle started at zero, the number of particles that
reach −(x + y) conditional on Zx is the same as the distribution of the sum of Zx

independent random variables with the same distribution as Zy . Consequently, the
process (Zy)y≥0 is a continuous-time branching process, as is shown in Section 5
of [56]. As noted in [56] and in the more recent work of Maillard [53], this branch-
ing process is not in the L logL class. However, the following proposition appears
on page 238 of [56].
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PROPOSITION 24. There exists a random variable W such that almost surely

lim
y→∞ye−√

2yZy = W.

Furthermore, for all u ∈ R, we have

E
[
e−e

√
2uW ]= ψ(u),(86)

where ψ : R → (0,1) solves Kolmogorov’s equation

1
2ψ ′′ − √

2ψ ′ = ψ(1 − ψ).

COROLLARY 25. Let η > 0. There exists y such that

P(|ye−√
2yZy − W | > η) < η.(87)

Moreover, there exists ζ > 0 such that if particles are killed when they reach −y,
the probability that any particle remains alive after time ζ is less than η.

PROOF. Equation (87) is immediate from Proposition 24. The second state-
ment follows from the fact that Zy is almost surely finite, and therefore so is the
time when the last remaining particle hits −y. �

Our goal in this section is to show that P(W > x) ∼ B/x as x → ∞ for some
constant B . The strategy will be to consider the Laplace transform E[e−λW ] for
small values of λ, and then apply a Tauberian theorem. From (86), we see that
this requires having asymptotic results for ψ(u) as u → −∞. Equivalently, if we
define w(x) = ψ(−x), then

1
2w′′ + √

2w′ + w(w − 1) = 0,(88)

and we are looking for asymptotic results for w(x) as x → ∞. It is well known
that

1 − w(x) ∼ Cxe−√
2x;(89)

see, for example, (11) in [47] or (1.13) in [16]. However, this result turns out to be
insufficient for our purposes. The asymptotic result that we will need is given in
the proposition below.

PROPOSITION 26. Suppose that w is an increasing function satisfying (88)
with limx→∞ w(x) = 1 and limx→−∞ w(x) = 0. For all x, let u(x) = 1 − w(x)

and v(x) = u(x)/(xe−√
2x). Then for all c > 0, we have

lim
x→∞x

(
v(x + c) − v(x)

)= 0.
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PROOF. Let x > 0. Let (Rt , t ≥ 0) be a three-dimensional Bessel process with
R0 = x. According to (2.6) of [40], the process

Xt = v(Rt) exp
(
−
∫ t

0
u(Rs) ds

)

is a positive local martingale, and therefore a supermartingale. Let T = inf{t :Rt =
x + c}. By the optional sampling theorem,

v(x) = E[X0] ≥ E[XT ] = v(x + c)E

[
exp

(
−
∫ T

0
u(Rs) ds

)]
,

which means

v(x + c) − v(x) ≤ v(x + c)

(
1 − E

[
exp

(
−
∫ T

0
u(Rs) ds

)])
.

Let 0 < γ < 1, and let A be the event that Rt ≤ γ x for some t ≤ T . That is, A

is the event that the Bessel process reaches γ x before reaching x + c. By Corol-
lary 3.4 on page 253 of [61], we have

P(A) = (x + c)−1 − x−1

(x + c)−1 − (γ x)−1 = cγ

c + (1 − γ )x
.

In view of (89), there are constants C1 and C2 such that for sufficiently large x, we
have v(x + c) ≤ C1 and

max
γ x≤y≤x+c

u(y) ≤ C2xe−√
2γ x.

It follows that for sufficiently large x,

v(x + c) − v(x) ≤ C1E

[
1 − exp

(
−
∫ T

0
u(Rs) ds

)]

≤ C1E

[
1A +

(∫ T

0
u(Rs) ds

)
1Ac

]

≤ C1P(A) + C1C2xe−√
2γ xE[T ].

To bound E[T ], note that using Ex to denote expectation for the Bessel process
started at x, and τz to be the first time that the Bessel process hits z, we have
E0[τx+c] = E0[τx]+Ex[τx+c] by the strong Markov property. Therefore, E[T ] =
Ex[τx+c] ≤ E0[τx+c]. Furthermore, the three-dimensional Bessel process is the
Euclidean norm of three-dimensional Brownian motion, which is bounded below
by the absolute value of the first coordinate, which is a one-dimensional Brownian
motion. Therefore, E0[τx+c] is at most the the expected time for a one-dimensional
Brownian motion to reach −(x + c) or x + c, which for sufficiently large x is at
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most C3x
2 for some constant C3. It follows that

lim sup
x→∞

x
(
v(x + c) − v(x)

) ≤ lim sup
x→∞

(
x · C1

cγ

c + (1 − γ )x
+ C1C2C3x

4e−√
2γ x

)

= cγC1

1 − γ
.

Because this holds for any γ > 0, and C1 does not depend on γ , the result follows.
�

PROPOSITION 27. Let W be the limiting random variable in Proposition 24.
Then, there exists a constant B > 0 such that as x → ∞,

P(W > x) ∼ B

x
.

PROOF. Let φ(λ) = E[e−λW ]. According to the discussion on page 335 of
[12], the condition that P(W > x) ∼ B/x as x → ∞ is equivalent to the condition
that the function f (z) = z(1 − φ(1/z)) has B-index 1, meaning (see page 128 of
[12]) that for all r ≥ 1, we have

lim
z→∞

(
f (rz) − f (z)

)= B log r.

That is, P(W > x) ∼ B/x is equivalent to the condition that for all r ≥ 1, we have

lim
z→∞ rz

(
1 − φ(1/rz)

)− z
(
1 − φ(1/z)

)= B log r,

or equivalently, letting λ = 1/z,

lim
λ→0

r(1 − φ(λ/r)) − (1 − φ(λ))

λ
= B log r.(90)

Consequently we need to show that (90) holds for all r ≥ 1.
By (86), we have φ(λ) = ψ((logλ)/

√
2). Let w(x) = ψ(−x), so w satisfies

(88). For all x, let u(x) = 1 − w(x) and v(x) = u(x)/(xe−√
2x), as in Proposi-

tion 26. Then

1 − φ(λ) = 1 − ψ

(
logλ√

2

)
= u

(− logλ√
2

)
= u

(
log(1/λ)√

2

)

= v

(
log(1/λ)√

2

)(
log(1/λ)√

2

)
λ.

Likewise,

1 − φ(λ/r) = v

(
log(r/λ)√

2

)(
log(r/λ)√

2

)
λ

r
.
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Letting x = (log(1/λ))/
√

2 and c = (log r)/
√

2, it follows that

r(1 − φ(λ/r)) − (1 − φ(λ))

λ

= v

(
log(r/λ)√

2

)(
log(r/λ)√

2

)
− v

(
log(1/λ)√

2

)(
log(1/λ)√

2

)

= v(x + c)(x + c) − v(x)x = x
(
v(x + c) − v(x)

)+ cv(x + c).

As x → ∞, we have v(x + c) → C, where C is the constant from (89), and
x(v(x + c) − v(x)) → 0 by Proposition 26. Therefore,

lim
λ→0

r(1 − φ(λ/r)) − (1 − φ(λ))

λ
= lim

x→∞
[
x
(
v(x + c) − v(x)

)+ cv(x + c)
]

= C log r√
2

,

so (90) holds with B = C/
√

2. �

We will see later in the proof of Proposition 41 that B = 1/
√

2.

COROLLARY 28. There is a constant C such that P(W > x) ≤ C/x for all x,
and E[W1{W≤x}] ≤ C logx and E[W 21{W≤x}] ≤ Cx for all x ≥ 2.

PROOF. The first statement is immediate from Proposition 27. Since

E
[
W1{W≤x}

]≤ ∫ x

0
P(W ≥ y)dy ≤ 1 +

∫ x

1

C

y
dy = 1 + C logx

and

E
[
W 21{W≤x}

]≤ ∫ x

0
2yP (W ≥ y)dy ≤ 1 + 2

∫ x

1
y · C

y
dy ≤ 1 + 2Cx,

the other two statements follow. �

5. The particles after hitting LA. Recall that in Section 3.1, we obtained
estimates on the number of particles in branching Brownian motion that never
reach the level LA, while in Section 3.2 we estimated the number of particles that
reach LA. In this section, we determine how much the descendants of the particles
that reach LA will contribute to the process at later times. The basic strategy will
be to argue that if a particle reaches LA, then the number of descendants that it
will have in the population a long time into the future can be approximated by the
number of its descendants that reach LA − y, where y is some large constant. The
number of descendants that reach LA − y can be approximated using the random
variable W in Proposition 24.
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5.1. Notation and constants. Recall from Section 3.2 that Rk particles reach
LA between times tk−1 and tk . By Propositions 16 and 18, on GN,k−1 we have

E[Rk|Ftk−1] ≤ CθeAε−1/2 + o(1)(91)

and

E[R2
k |Ftk−1] ≤ CθeAε−1/2 + o(1).(92)

These moment estimates will be used repeatedly in what follows. Denote by u1 <

u2 < · · · < uRk
the times at which these particles reach LA. Recalling (9) and (36),

define

ZN,2(tk) =
MN(tk)∑

i=1

eμXi,N (tk) sin
(

πXi,N(tk)

L

)
1{i /∈S(tk)}1{Xi,N (tk)≤L}.

Note that

ZN(tk) = ZN,1(tk) + ZN,2(tk),

and the particles contributing to ZN,2(tk) are precisely the particles at time tk that
are descended from the particles that reach LA at one of the times u1, . . . , uRk

.
Our aim in this section will be to estimate, on GN,k−1, the expectation

E
[(

ZN(tk) − ZN(tk−1)
)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}|Ftk−1

]
,(93)

as well as probabilities of the form

P
(
ZN(tk) − ZN(tk−1) > rN(logN)2|Ftk−1

)
(94)

for r ≥ ε. We apply the truncation at εN(logN)2 to focus separately on particles
reaching LA that make a small addition to the value of the process, whose contri-
butions are counted in (93), and particles reaching LA that lead to large jumps in
the value of the process, an event whose probability is estimated by (94).

Estimating these quantities precisely will involve manipulating seven constants.
Recall that we have been already working with the three constants ε, A and θ .
Throughout this section, ε will be a fixed number with 0 < ε < 1. We will also
introduce a new constant δ > 0 and in fact will fix

δ ≤ ε7.(95)

By Proposition 27, one can choose x large enough that if z ≥ x, then

(1 − δ)B

z
≤ P(W > z) ≤ (1 + δ)B

z
,(96)

where B comes from Proposition 27. We will then choose A ≥ 1 large enough that

2
√

2πe−Ax ≤ ε,(97)

4e−A/9 ≤ δ/6.(98)
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Once ε, δ and A are chosen, we will choose θ > 0 small enough to satisfy the
following equations:

Aθ ≤ 1;(99)

4π2Aθsε−1/2 ≤ e−A/4;(100)

4θ1/4 ≤ δ/6;(101)

θ1/4eA ≤ δ;(102)

θA2 ≤ δ1/2;(103)

θA2eAε−1/2 ≤ 1;(104)

C0Aθ1/2 ≤ 1,(105)

where C0 is a constant to be defined later in (112). Note that (99) and (100) were
already assumed in (33) and (34), while (104) implies (35) because A ≥ 1. In this
section, we will also work with the additional constants η, y and ζ from Corol-
lary 25. We will choose η = θ . We will then choose y to be large enough to satisfy
both (87) and the equation

1 ≤ θy.(106)

We finally choose ζ to satisfy the conditions of Corollary 25 for these values of η

and y.
Consider the particle that reaches LA at time uj ∈ (tk−1, tk]. Denote by Vj,k the

number of descendants of this particle that, at some time t > uj , reach LA − y +
(t −uj )(

√
2−μ) and have the property that, for all u ∈ [uj , t), the ancestor of this

particle was in the interval (LA − y + (u−uj )(
√

2 −μ),∞). This is equivalent to
the number of descendant particles that would reach LA − y + (t − uj )(

√
2 − μ)

at time t for some t if particles were killed upon reaching this level. Denote the
first times at which these Vj,k particles reach level LA − y + (t − uj )(

√
2 − μ)

by r1,j,k < r2,j,k < · · · < rVj,k,j,k . Note that Vj,k has the same distribution as the

random variable Zy of Proposition 24, and the adjustment of (t − uj )(
√

2 − μ) is
necessary because particles drift to the left at rate μ, rather than at rate

√
2 as in

the setting of Proposition 24. Now let

W ′
j,k = ye−√

2yVj,k.

By Corollary 25, there exists a random variable Wj,k with the same distribution
as the random variable W in Corollary 25 such that P(|W ′

j,k − Wj,k| > η) < η.
Furthermore, it is clear that for fixed k, conditional on Ftk−1 and conditional on
Rk = r , the random variables W ′

1,k, . . . ,W
′
r,k are independent and have the same

distribution as ye−√
2yZy . Likewise, the random variables Wj,k can be chosen such

that conditional on Ftk−1 and conditional on Rk = r , W1,k, . . . ,Wr,k are indepen-
dent and have the same distribution as the random variable W in Corollary 25.
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5.2. The contribution of one particle at LA. In this subsection, we show that
the contribution to ZN,2(tk) from the j th particle to hit LA can be approximated by
π

√
2e−AN(logN)2Wj,k . As a result, typically ZN(tk) − ZN(tk−1) > εN(logN)2

precisely when Wj,k > ε/(π
√

2e−A) for some j ≤ Rk . Establishing the validity of
this approximation requires bounding the probabilities of several unlikely events.

LEMMA 29. Let B1 be the event that there exist j1, j2 ≤ Rk with j1 �= j2 such
that Wj1,k ≥ e2A/3 and Wj2,k ≥ e2A/3. Then on GN,k−1, we have P(B1|Ftk−1) ≤
Cθe−A/3ε−1/2 + o(1).

PROOF. Conditional on Ftk−1 and Rk , the expected number of pairs (j1, j2)

with j1 �= j2 such that Wj1,k ≥ e2A/3 and Wj2,k ≥ e2A/3 is
(Rk

2

)
P(W ≥ e2A/3)2,

where W is the random variable defined in Corollary 25. By Proposition 27,
P(W ≥ e2A/3) ≤ Ce−2A/3, so

P(B1|Ftk−1) ≤ CE[R2
k |Ftk−1]e−4A/3 ≤ Cθe−A/3ε−1/2 + o(1),

where the last inequality uses (92). �

LEMMA 30. Fix r ≥ ε, and let B2 be the event that

r − 4e−A/4 − e−A/9 − 4θ1/4

π
√

2e−A
≤ Wj,k ≤ r + 4e−A/4 + 4θ1/4

π
√

2e−A

for some j ≤ Rk . On GN,k−1, we have P(B2|Ftk−1) ≤ Cθδε−5/2 +o(1), where the
constant C does not depend on r .

PROOF. Let γ = 4e−A/4 + e−A/9 + 4θ1/4. Note that γ ≤ δ/2 ≤ ε/2 be-
cause 4e−A/4 ≤ 4e−A/9 ≤ δ/6 and 4θ1/4 ≤ δ/6 by (98) and (101). Assume x

is chosen so that (96) holds for z ≥ x. By (97), we have (r − γ )/(π
√

2e−A) ≥
(ε − γ )/(π

√
2e−A) ≥ x. Therefore,

P

(
r − γ

π
√

2e−A
≤ W ≤ r + γ

π
√

2e−A

)

≤ B(1 + δ)π
√

2e−A

r − γ
− B(1 − δ)π

√
2e−A

r + γ

≤ Ce−A

(
1 + δ

r − γ
− 1 − δ

r + γ

)
= Ce−A

(
2γ + 2rδ

r2 − γ 2

)
≤ Ce−Aδ

ε2 .

It follows from this bound and Markov’s inequality that P(B2|Ftk−1) ≤ Ce−Aδ ×
ε−2E[Rk|Ftk−1]. The result now follows from (91). �
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LEMMA 31. Let B3 be the event that for some j , the particle that reaches
LA at time uj has a descendant that at some time t ∈ (uj , tk] reaches LA − y +
(t − uj )(

√
2 − μ), and that this descendant itself has a descendant that reaches

LA before time tk . Then on GN,k−1, we have P(B3|Ftk−1) ≤ CeAθ3/2ε−1/2 +
o(1).

PROOF. The particle that reaches LA at time uj has Vj,k descendants that
reach LA − y + (t − uj )(

√
2 − μ) at some time t > uj . Let Aj,k be the event that

one of these particles reaches LA −y + (t −uj )(
√

2−μ) at some time t > uj + ζ .
By Corollary 25 and Proposition 27, since θ = η < 1,

P(Aj,k ∪ {W ′
j,k > θ−1/2} for some j ≤ Rk|Ftk−1)

≤ E[Rk|Ftk−1]
(
2η + P(W > θ−1/2 − η)

)
(107)

≤ CE[Rk|Ftk−1]
(
η + √

θ
)
.

At most y−1e
√

2yW ′
j,k descendants of the particle that reaches LA at time uj will

hit LA − y + (t − uj )(
√

2 − μ) at some time t ≤ tk . This is an upper bound rather
than an equality because some particles may reach this level after time tk . We now
consider N large enough that y ≥ ζ(

√
2−μ). On the event Ac

j,k ∩{W ′
j,k ≤ θ−1/2},

the probability that a descendant of one of these particles reaches LA by time tk

can be bounded above by y−1e
√

2yθ−1/2 times the probability that a single particle
at LA − y + ζ(

√
2 − μ) has a descendant that reaches LA by time (logN)3θs.

Using Markov’s inequality to bound this latter probability by the expectation of the
number of such descendants, it follows from Proposition 16 that the probability is
bounded above by

CeA

N(logN)2

(
θeμ(LA−y+ζ(

√
2−μ)) sin

(
π(LA − y + ζ(

√
2 − μ))

LA

)

+ eμ(LA−y+ζ(
√

2−μ))

logN

)(
1 + o(1)

)
.

Note that we are applying Proposition 16 in the case when k = 1, and there is
just a single particle initially at the location LA − y + ζ(

√
2 − μ). Since eμLA =

N(logN)3e−A(1 + o(1)), sin(π(LA − y + ζ(
√

2 − μ))/LA) ≤ (Cy/ logN)(1 +
o(1)), and eμζ(

√
2−μ) is 1 + o(1) this expression can be bounded above by

CeA

N(logN)2

(
θye−μyN(logN)2e−A + e−μyN(logN)2e−A)(1 + o(1)

)
≤ Ce−μy(θy + 1)

(
1 + o(1)

)
.



578 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

Combining these observations gives

P(B3|Ftk−1)

≤ CE[Rk|Ftk−1]
(
η + √

θ + y−1e
√

2yθ−1/2 · e−μy(θy + 1)
)(

1 + o(1)
)

≤ CE[Rk|Ftk−1]
(
η + √

θ + θ−1/2y−1)(1 + o(1)
)
.

The result now follows from (91) and the assumptions that η = θ and 1 ≤ θy. �

Recall that the particles at time tk contributing to ZN,2(tk) are precisely the
particles at time tk that are descended from the particles that reach LA at one of
the times u1, . . . , uRk

. To separate the contributions from each of these particles,
write i ∈ Sj if the particle at Xi,N(tk) at time tk is descended from the particle that
was at LA at time uj . Then for 1 ≤ j ≤ Rk , define

ZN,2,j (tk) =
MN(tk)∑

i=1

eμXi,N (tk) sin
(

πXi,N(tk)

L

)
1{i∈Sj }1{Xi,N (t)≤L}.(108)

Note that ZN,2(tk) =∑Rk

j=1 ZN,2,j (tk). The next lemma shows that ZN,2,j (tk) is
approximately determined by the random variable Wj,k .

LEMMA 32. Let B4 be the event that for some j ≤ Rk , we have∣∣ZN,2,j (tk) − π
√

2e−AN(logN)2Wj,k

∣∣> 4N(logN)2θ1/4.

On GN,k−1, we have P(B4|Ftk−1) ≤ CeAθ5/4ε−1/2 + o(1).

PROOF. Define a new random variable Z′
N,2,j (tk) by modifying ZN,2,j (tk) in

the following three ways:

• We set Z′
N,2,j (tk) to zero if uj > tk − (logN)5/2.

• We set Z′
N,2,j (tk) to zero if rVj,k,j,k > uj + ζ.

• We modify Sj to exclude particles that, after time uj , reach LA − y + (t −
uj )(

√
2 − μ) at some time t ∈ (uj , tk] but then reach LA again before time tk .

[Note that this modification is equivalent to killing particles that reach LA after
they reach LA − y + (t − uj )(

√
2 − μ) at some time t > uj .]

Then define Z′′
N,2,j (tk) by making these three modifications and replacing L by

LA in the definition (108).
By Corollary 17 and Markov’s inequality, P(uRk

> tk − (logN)5/2|Ftk−1) =
o(1) on GN,k−1. This implies that the first of the four modifications above is un-
likely to occur. By Corollary 25 and (91),

P(rVj,k,j,k > uj + ζ for some j |Ftk−1) ≤ ηE[Rk|Ftk−1] ≤ CηθeAε−1/2 + o(1),
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which bounds the probability of the second type of modification. Lemma 31
bounds the probability of the third type of modification. These results and the fact
that η = θ imply that on GN,k−1,

P
(
Z′

N,2,j (tk) �= ZN,2,j (tk) for some j ≤ Rk|Ftk−1

)
(109)

≤ CeAθ3/2ε−1/2 + o(1).

Let �j be the event that uj ≤ tk − (logN)5/2, that rVj,k,j,k ≤ uj + ζ and that
W ′

j,k ≤ θ−1/4. The probability that either of the first two of these events fails to
occur has already been bounded, so using the argument given in (107), on GN,tk−1

we have

P

(
Rk⋃
j=1

�c
j

∣∣∣Ftk−1

)
≤ CeAθ5/4ε−1/2 + o(1).(110)

Let Hk−1 = σ(Ftk−1,V1,k, . . . , VRk,k, u1, . . . , uRk
, (ri,j,k)1≤i≤Vj,k,1≤j≤Rk

). Note
that �j ∈ Hk−1 for all j , and on �j for sufficiently large N , the Vj,k particles
that reach LA − y + (t − uj )(

√
2 − μ) for some t > uj are all reaching a level be-

tween LA − y and LA − y + ζ(
√

2 − μ) at some time between tk−1 and tk . These
particles and their descendants then evolve independently until time tk , and we kill
particles that return to LA if we are evaluating Z′

N,2,j (tk) or Z′′
N,2,j (tk).

By the argument leading to (40), with the times ri,j,k playing the role of tk−1,
on �j we have

E[|Z′
N,2,j (tk) − Z′′

N,2,j (tk)||Hk−1]

≤ Vj,k

CAeμ(LA−y)

logN

(
1 + o(1)

)

≤ Cy−1e
√

2yW ′
j,k · Ae−AN(logN)3e−μy

logN

(
1 + o(1)

)
≤ Cy−1N(logN)2θ−1/4(1 + o(1)

)
.

Therefore, by Markov’s inequality and assumption (106), that 1 ≤ θy, on �j , we
have

P
(|Z′

N,2,j (tk) − Z′′
N,2,j (tk)| > N(logN)2θ1/4|Hk−1

)≤ Cy−1θ−1/2 + o(1)
(111)

≤ Cθ1/2 + o(1).

Let

yi,j,k = eμ(LA−y+(ri,j,k−uj )(
√

2−μ))

and

zi,j,k = yi,j,k sin
(

π(LA − y + (ri,j,k − uj )(
√

2 − μ))

LA

)
.
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The ith of the Vj,k particles that reach LA −y + (t −uj )(
√

2−μ) for some t > uj

reaches this level at time ri,j,k . Therefore, by (19) and (39), on �j the expected
contribution to Z′′

N,2,j (tk) from descendants of this particle is given by

e(1−μ2/2−π2/2L2
A)(tk−ri,j,k)zi,j,k

= (
1 + O(Aθ) + o(1)

)
eμ(LA−y) πy

LA

(
1 − O

(
ζ(

√
2 − μ)

y

))

= eμ(LA−y) πy

LA

(
1 + O(Aθ) + o(1)

)
.

Thus, on �j ,

E[Z′′
N,2,j (tk)|Hk−1] = Vj,k

(
eμ(LA−y) πy

LA

(
1 + O(Aθ) + o(1)

))

= Vj,k

(
N(logN)3e−Ae−μy πy

LA

)(
1 + O(Aθ) + o(1)

)
= W ′

j,k

(
π

√
2e−AN(logN)2)(1 + O(Aθ) + o(1)

)
.

This means there is a constant C0 such that for sufficiently large N , on �j ,∣∣E[Z′′
N,2,j (tk)|Hk−1] − π

√
2e−AN(logN)2W ′

j,k

∣∣≤ C0N(logN)2W ′
j,kAθ

≤ C0N(logN)2Aθ3/4.

Therefore, using (105),∣∣E[Z′′
N,2,j (tk)|Hk−1] − π

√
2e−AN(logN)2W ′

j,k

∣∣≤ N(logN)2θ1/4(112)

for sufficiently large N . On �j we can similarly estimate the variance of the con-
tribution of each of these particles. We apply (46), with the times ri,j,k playing the
role of tk−1. Since the descendants of these particles after times r1,j,k, . . . , rVj,k,j,k

evolve independently, we get

Var(Z′′
N,2,j (tk)|Hk−1) ≤

Vj,k∑
i=1

CθN(logN)2e−A

(
zi,j,k + yi,j,k

θ logN

)(
1 + o(1)

)
.

Arguing as above and using (106), we find that on �j ,

Var(Z′′
N,2,j (tk)|Hk−1)

≤ CVj,kθN(logN)2

× e−A

(
eμ(LA−y) sin

(
π(LA − y)

LA

)
+ eμ(LA−y)

θ logN

)(
1 + o(1)

)
≤ CVj,kθN(logN)2(113)
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× e−2A(ye−μyN(logN)2 + θ−1e−μyN(logN)2)(1 + o(1)
)

≤ CW ′
j,kN

2(logN)4θe−2A(1 + θ−1y−1)
(
1 + o(1)

)
≤ CN2(logN)4θ3/4(1 + o(1)

)
.

By (112), (113) and the conditional form of Chebyshev’s inequality, on �j we have

P
(∣∣Z′′

N,2,j (tk) − π
√

2e−AN(logN)2W ′
j,k

∣∣> 2N(logN)2θ1/4|Hk−1
)

≤ CN2(logN)4θ3/4(1 + o(1))

(N(logN)2θ1/4)2 ≤ Cθ1/4 + o(1).

Note that π
√

2e−Aη ≤ θ1/4 because A ≥ 0, η = θ , δ ≤ 1 by (95), and thus θ3/4 ≤
1/243 by (101). Therefore, since P(|W ′

j,k − Wj,k| > η) < η, on �j we have

P
(∣∣Z′′

N,2,j (tk) − π
√

2e−AN(logN)2Wj,k

∣∣> 3N(logN)2θ1/4|Hk−1
)

≤ Cθ1/4 + η + o(1) ≤ Cθ1/4 + o(1).

Now (111) leads to

P
(∣∣Z′

N,2,j (tk) − π
√

2e−AN(logN)2Wj,k

∣∣> 4N(logN)2θ1/4|Hk−1
)

≤ 1�c
j
+ Cθ1/4 + o(1).

Taking the union over over j ≤ Rk and then taking conditional expectations of
both sides with respect to Ftk−1 , we get

P
(∣∣Z′

N,2,j (tk) − π
√

2e−AN(logN)2Wj,k

∣∣> 4N(logN)2θ1/4

for some j ≤ Rk|Ftk−1

)
(114)

≤ P

(
Rk⋃
j=1

�c
j

∣∣∣Ftk−1

)
+ (

Cθ1/4 + o(1)
)
E[Rk|Ftk−1].

The result now follows from (109), (110) and (91). �

LEMMA 33. Let B5 be the event that

Rk∑
j=1

ZN,2,j (tk)1{Wj,k≤e2A/3} > e−A/9N(logN)2

or
Rk∑
j=1

Wj,k1{Wj,k≤e2A/3} >
e8A/9

π
√

2
.

Then P(B5|Ftk−1) ≤ C(θ5/4eA + θe−A/9)ε−1/2 + o(1) on GN,k−1.
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PROOF. We have

P(B5|Ftk−1) ≤ P(B4|Ftk−1)
(115)

+ P

(
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3} >
e8A/9

π
√

2

∣∣∣Ftk−1

)
,

where β = 4eAθ1/4/(π
√

2), which by (102) is bounded by a constant. Let Gk−1 =
σ(Ftk−1,Rk). Using Corollary 28 with x = e2A/3 and (91),

E

[
Var

(
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3}|Gk−1

)∣∣∣Ftk−1

]

= E
[
Rk Var

(
(W + β)1{W≤e2A/3}

)|Ftk−1

]
≤ E

[
(W + β)21{W≤e2A/3}

]
E[Rk|Ftk−1](116)

≤ Ce2A/3 · CθeAε−1/2 + o(1)

≤ Cθe5A/3ε−1/2 + o(1).

Likewise, using Corollary 28 and (92),

Var

(
E

[
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3}
∣∣∣Gk−1

]∣∣∣Ftk−1

)

≤ Var
(
RkE

[
(W + β)1{W≤e2A/3}

]|Ftk−1

)
(117)

≤ Var(CARk|Ftk−1) ≤ CA2E[R2
k |Ftk−1] ≤ CθA2eAε−1/2 + o(1).

Recall that for all random variables X and σ -fields F and G with F ⊂ G ,

Var(X|F ) = E[Var(X|G)|F ] + Var(E[X|G]|F ).

Therefore, summing (116) and (117) gives

Var

(
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3}
∣∣∣Ftk−1

)
≤ Cθe5A/3ε−1/2 + o(1),

as A2e−2A/3 is bounded by a constant. Also, using again Corollary 28 and since
A2θeAε−1/2 ≤ 1 by (104),

E

[
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3}
∣∣∣Ftk−1

]
≤ CE(Rk|Ftk−1)(β + 2A/3)

≤ Cθε−1/2AeA + o(1) ≤ C + o(1).
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Thus by the conditional form of Chebyshev’s inequality, we get

P

(
Rk∑
j=1

(Wj,k + β)1{Wj,k≤e2A/3} >
e8A/9

π
√

2

∣∣∣Ftk−1

)
≤ Cθe5A/3ε−1/2

(e8A/9/π
√

2)2
+ o(1)

≤ Cθe−A/9ε−1/2 + o(1),

which, combined with (115) and Lemma 32, gives the result. �

LEMMA 34. Fix r ≥ ε. Consider the event E that ZN(tk) − ZN(tk−1) >

rN(logN)2, and consider the event F that Wj,k > r/(π
√

2e−A) for some j ≤ Rk .
Let B6 be the event that one of these two events occurs but not the other (i.e., the
symmetric difference of these two events). Then P(B6|Ftk−1) ≤ Cθδε−5/2 + o(1)

on GN,k−1, where the constant C does not depend on r .

PROOF. Let B0 be the event that |ZN,1(tk) − ZN(tk−1)| > 4e−A/4N(logN)2.
By Corollary 13 and Lemmas 29–33 as well as the assumptions (98) and (102), we
have on GN,k−1,

P

( 5⋃
i=0

Bi

∣∣∣Ftk−1

)
≤ Cδθε−5/2 + o(1).

Therefore, it suffices to show that

B6 ⊂ B =
5⋃

i=0

Bi.

Thus, suppose first ω ∈ Ec ∩ F , and let us show that ω ∈ B . We have Wj,k >

r/(π
√

2e−A) for some j ≤ Rk . It follows that if ω ∈ Bc
2 , we have Wj,k > (r +

4e−A/4 + 4θ1/4)/(π
√

2e−A). If furthermore ω ∈ Bc
2 ∩ Bc

4 , we have ZN,2,j (tk) >

N(logN)2(r + 4e−A/4). Now if also ω ∈ Bc
0 , we have ZN,1(tk) ≥ ZN(tk−1) −

4e−A/4N(logN)2, so on Bc
2 ∩Bc

4 ∩Bc
0 , we have ZN(tk) ≥ ZN,1(tk)+ZN,2,j (tk) >

ZN(tk−1) + rN(logN)2, and so E occurs. Since we have assumed that ω /∈ E, it
must be that ω ∈ B0 ∪ B2 ∪ B4 ⊂ B .

Alternatively, suppose ω ∈ E ∩ Fc, hence Wj,k ≤ r/(π
√

2e−A) for all j ≤ Rk .
It follows that on Bc

2 , we have Wj,k ≤ (r − 4e−A/4 − e−A/9 − 4θ1/4)/(π
√

2e−A)

for all j ≤ Rk . Then on Bc
2 ∩ Bc

4 , we have ZN,2,j (tk) ≤ N(logN)2(r − 4e−A/4 −
e−A/9) for all j ≤ Rk . On Bc

1 , there exists at most one j ≤ Rk such that Wj,k ≥
e2A/3. Therefore, on Bc

2 ∩ Bc
4 ∩ Bc

1 ∩ Bc
5 , we have

ZN,2(tk) =
Rk∑
j=1

ZN,2,j (tk) ≤ N(logN)2(r − 4e−A/4).
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Finally, on Bc
0 , we have ZN,1(tk) ≤ ZN(tk−1)+4e−A/4N(logN)2, so on

⋂5
i=0 Bc

i ,
we have ZN(tk) ≤ ZN(tk−1) + rN(logN)2 which means that E does not occur.
Since we assumed ω ∈ E, it must be that ω ∈ ⋃5

i=0 Bi = B , which finishes the
proof of the lemma. �

5.3. The small jumps. In this subsection, we estimate the expectation in (93),
which covers the case in which the process ZN does not jump by more than
εN(logN)2 between times tk−1 and tk . We have

ZN(tk) − ZN(tk−1) = (
ZN,1(tk) − ZN(tk−1)

)+ Rk∑
j=1

ZN,2,j (tk).

Lemma 34 with r = ε shows that with high probability, we have ZN(tk) −
ZN(tk−1) > εN(logN)2 if and only if one of the random variables W1,k, . . . ,WRk,k

is greater than ε/(π
√

2e−A). Therefore, in view of Lemma 32, we can approxi-
mate the quantity in (93) by

Sk = (
ZN,1(tk) − ZN(tk−1)

)
(118)

+ π
√

2e−AN(logN)2
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)},

which omits the contributions from terms with Wj,k > ε/(π
√

2e−A). We now cal-
culate the expected value of Sk and will later justify in Lemma 38 that this is
sufficiently close to the quantity in (93).

LEMMA 35. On GN,k−1, we have

E[Sk|Ftk−1] = ZN(tk−1)θs
(
2
√

2π2E
[
W1{W≤ε/(π

√
2e−A)}

]− 2π2A
)

+ O(A2θ2ε−1/2N(logN)2) + o(N(logN)2).

PROOF. By Lemma 11, we have on GN,k−1

E[ZN,1(tk) − ZN(tk−1)|Ftk−1]
(119)

= −ZN(tk−1)
(
2π2Aθs + O(A2θ2)

)+ o(N(logN)2).

Also, since the random variables Wj,k are independent of one another, and of Ftk−1

and Rk , we have

E

[
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}
∣∣∣Ftk−1

]
= E

[
W1{W≤ε/(π

√
2e−A)}

]
E[Rk|Ftk−1].
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Combining this result with Proposition 16, we get on GN,k−1,

E

[
π

√
2e−AN(logN)2

Rk∑
i=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}
∣∣∣Ftk−1

]

= E
[
W1{W≤ε/(π

√
2e−A)}

]
(120)

× (
2
√

2π2θsZN(tk−1)
(
1 + O(Aθ)

)+ o(N(logN)2)
)
.

Note that from Corollary 28,

E
[
W1{W≤ε/(π

√
2e−A)}

]≤ 1 + C log
(

ε

π
√

2e−A

)
(121)

≤ 1 + C(log ε + A) ≤ CA,

since log ε < 0. The result now follows by combining (119) and (120), and using
(121) to help bound some of the error terms. �

It remains to bound the expected error that is made when approximating the
increment (ZN(tk) − ZN(tk−1))1{ZN(tk)−ZN(tk−1)≤εN(logN)2} by Sk .

LEMMA 36. We have E[(Z′
N,1(tk) − ZN(tk−1))

2|Ftk−1] ≤ CθN2(logN)4 ×
(e−Aε−1/2 + o(1)) on GN,k−1.

PROOF. By Lemmas 11 and 12, on GN,k−1,

E
[(

Z′
N,1(tk) − ZN(tk−1)

)2|Ftk−1

]
= Var(Z′

N,1(tk)|Ftk−1) + (
E[Z′

N,1(tk) − ZN(tk−1)|Ftk−1]
)2

≤ CθN(logN)2e−A(ZN(tk−1) + o(N(logN)2)
)

+ (CAθZN(tk−1) + o(N(logN)2)
)2

≤ CθN2(logN)4e−Aε−1/2 + CA2θ2N2(logN)4ε−1 + o(N2(logN)4)

≤ CθN2(logN)4(e−Aε−1/2 + A2θε−1 + o(1)
)
,

and the result follows from (104). �

LEMMA 37. On GN,k−1, we have

E

[(
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}

)2∣∣∣Ftk−1

]
≤ Cθe2Aε1/2 + o(1).
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PROOF. Note that e−A/9 ≤ Cδ ≤ Cε by (95) and (98). Because A2e−8A/9 is
bounded above by a constant, it follows that A2 ≤ CεeA. Therefore, by (91), (92),
(121) and Corollary 28, on GN,k−1,

E

[(
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}

)2∣∣∣Ftk−1

]

= E[Rk|Ftk−1]E
[
W 21{W≤ε/(π

√
2e−A)}

]
+ E[Rk(Rk − 1)|Ftk−1]

(
E
[
W1{W≤ε/(π

√
2e−A)}

])2
≤ (CθeAε−1/2 + o(1)

)
(εeA + A2) ≤ Cθe2Aε1/2 + o(1)

as claimed. �

LEMMA 38. On GN,k−1, we have

E
[∣∣Sk − (ZN(tk) − ZN(tk−1)

)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣|Ftk−1

]
(122)

≤ CθN(logN)2δ1/2ε−3 + o(N(logN)2).

PROOF. Throughout this proof, we work on the event GN,k−1. Choose r = ε,
and recall from the proof of Lemma 34 that the event B = ⋃5

i=0 Bi can also be
written as B =⋃6

i=0 Bi since B6 ⊂⋃5
i=0 Bi . We will bound the following three

terms:

E
[
1Bc

∣∣Sk − (
ZN(tk) − ZN(tk−1)

)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣|Ftk−1

];(123)

E
[
1B

∣∣(ZN(tk) − ZN(tk−1)
)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣|Ftk−1

];(124)

E[1B |Sk||Ftk−1].(125)

We first bound (123). On Bc
6 , we have ZN(tk) − ZN(tk−1) > εN(logN)2 if

and only if Wj,k > ε/(π
√

2e−A) for some j ≤ Rk . In this case, on the event that
Wj0,k > ε/(π

√
2e−A) for some j0 ≤ Rk , the difference between Sk and (ZN(tk)−

ZN(tk−1))1{ZN(tk)−ZN(tk−1)≤εN(logN)2} will simply be Sk , as the latter expression
will be zero. However, on Bc

0 , we have

|ZN,1(tk) − ZN(tk−1)| ≤ 4e−A/4N(logN)2.

By (98) and the fact that δ ∈ (0, ε) we have ε/(π
√

2e−A) ≥ e2A/3. Thus Wj0,k ≥
e2A/3 and on Bc

1, for all j �= j0,Wj,k ≤ e2A/3. Thus, the definition of B5 from
Lemma 33 implies that on Bc

1 ∩ Bc
5 , we have

Rk∑
i=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)} ≤ e8A/9

π
√

2
.
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Therefore, |Sk| ≤ (4e−A/4 + e−A/9)N(logN)2 on Bc ∩ {Wj0,k > ε/(π
√

2e−A)

for some j0 ≤ Rk}. If, however, Wj,k ≤ ε/(π
√

2e−A) for all j ≤ Rk , then on Bc
4 ,

the difference between Sk and (ZN(tk) − ZN(tk−1))1{ZN(tk)−ZN(tk−1)≤εN(logN)2} is

bounded by 4RkN(logN)2θ1/4. Therefore,

E
[∣∣Sk − (

ZN(tk) − ZN(tk−1)
)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣1Bc |Ftk−1

]
≤ ((4e−A/4 + e−A/9)

× P
(
Wj0,k > ε/

(
π

√
2e−A) for some j0|Ftk−1

)
+ 4θ1/4E[Rk|Ftk−1]

)
N(logN)2.

Now (91) gives E[Rk|Ftk−1] ≤ CθeAε−1/2 + o(1), and Proposition 27 implies

P
(
Wj0,k ≥ ε/

(
π

√
2e−A) for some j0|Ftk−1

)≤ Ce−Aε−1E[Rk|Ftk−1]
≤ Cθε−3/2 + o(1).

Therefore,

E
[∣∣Sk − (ZN(tk) − ZN(tk−1)

)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣1Bc |Ftk−1

]
(126)

≤ (Cθε−3/2e−A/9 + Cθ5/4eAε−1/2 + o(1)
)
N(logN)2,

which gives a bound on (123).
We next bound (124). By Lemma 34 and its proof, we have

P(B|Ftk−1) ≤ Cθδε−5/2 + o(1).(127)

The random variable in (124) is bounded in absolute value by max{ZN(tk−1),

εN(logN)2}. Therefore, on GN,k−1,

E
[∣∣(ZN(tk) − ZN(tk−1)

)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}

∣∣1B |Ftk−1

]
(128)

≤ P(B|Ftk−1)N(logN)2ε−1/2 ≤ Cθδε−3N(logN)2 + o(N(logN)2).

It remains to bound (125). By the conditional Cauchy–Schwarz inequality,
Lemma 36, and (127),

E[|Z′
N,1(tk) − ZN(tk−1)|1B |Ftk−1]

≤
√

E
[(

Z′
N,1(tk) − ZN(tk−1)

)2|Ftk−1

]
P(B|Ftk−1)

(129)
≤
√

CθN2(logN)4e−Aε−1/2 · θδε−5/2
(
1 + o(1)

)
≤ Cθe−A/2δ1/2ε−3/2N(logN)2(1 + o(1)

)
.
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Likewise, by the conditional Cauchy–Schwarz inequality and Lemma 37,

E

[∣∣∣∣∣π
√

2e−AN(logN)2
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}

∣∣∣∣∣1B

∣∣∣Ftk−1

]

≤ Ce−AN(logN)2
√

θe2Aε1/2 · θδε−5/2
(
1 + o(1)

)
(130)

≤ CθN(logN)2δ1/2ε−1(1 + o(1)
)
.

Now Lemma 10, (129) and (130) imply

E[|Sk|1B |Ftk−1] ≤ CθN(logN)2δ1/2

(131)
× (e−A/2ε−3/2 + ε−1) + o(N(logN)2).

The result follows from (126), (128) and (131) in view of the inequality (98) and
δ ≤ ε, as well as (102). �

PROPOSITION 39. There exists a real number c such that

E
[(

ZN(tk) − ZN(tk−1)
)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}|Ftk−1

]
= ZN(tk−1)θs

(
c + 2π2 log ε + g(ε,A)

)
+ O(θN(logN)2δ1/2ε−3) + o(N(logN)2),

where g : (0,∞) × (0,∞) → R is a function such that limy→∞ g(x, y) = 0 for all
x > 0.

PROOF. By combining Lemmas 35 and 38 and using (103), we get

E
[(

ZN(tk) − ZN(tk−1)
)
1{ZN(tk)−ZN(tk−1)≤εN(logN)2}|Ftk−1

]
= ZN(tk−1)θs

(
2
√

2π2E
[
W1{W≤ε/(π

√
2e−A)}

]− 2π2A
)

(132)

+ O(θN(logN)2δ1/2ε−3) + o(N(logN)2).

Denote the conditional expectation on the left-hand side of this equation by
f (N, ε, θ). Note that this expectation depends on N , ε and θ , but can not depend
on δ or A, as these constants were introduced just for the proof. Assume for the mo-
ment that k = 1, and the initial conditions are chosen so that ZN(0) = N(logN)2.
Then there exists a positive constant C such that

lim sup
θ→0

lim sup
N→∞

f (N, ε, θ)

N(logN)2θs

≤ (2√
2π2E

[
W1{W≤ε/(π

√
2e−A)}

]− 2π2A
)+ Cδ1/2ε−3
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and likewise

lim inf
θ→0

lim inf
N→∞

f (N, ε, θ)

N(logN)2θs

≥ (2√
2π2E

[
W1{W≤ε/(π

√
2e−A)}

]− 2π2A
)− Cδ1/2ε−3.

We now simultaneously take δ → 0 and A → ∞. This can be done without vio-
lating the constraints on the constants because once δ is chosen, we can pick A

large enough to satisfy (97) and (98), and then only consider θ small enough that
(99)–(105) are satisfied. The second term Cδ1/2ε−3 then tends to zero. Since the
left-hand side does not depend on A, the first term must also tend to a limit as
A → ∞. That is, we know that

lim
A→∞

(
2
√

2π2E
[
W1{W≤ε/(π

√
2e−A)}

]− 2π2A
)

exists.(133)

Now let r = ε/(π
√

2e−A), so

A = log
(

π
√

2r

ε

)
= log

(
π

√
2r
)− log ε.

Therefore, the limit in (133) is equal to

lim
r→∞ 2π2(√2E

[
W1{W≤r}

]− log
(
π

√
2r
)+ log ε

)= c + 2π2 log ε(134)

for some real number c that does not depend on ε. The proposition follows. �

REMARK 40. Equation (133) is a statement which concerns only critical
branching Brownian motion with absorption and does not depend on N . It would
be desirable to find a direct proof of this fact, but we were not able to obtain one.
This would follow if one could show that∫ ∞

1

∣∣∣∣P(W > x) − 1√
2x

∣∣∣∣dx < ∞.

An explicit expression for the value of the limit in (133) would also make it possi-
ble to identify the constant a appearing in the statement of Proposition 1.

5.4. The large jumps. We now estimate the probability in (94) that the process
ZN makes a large jump between times tk−1 and tk .

PROPOSITION 41. For all r ≥ ε, on GN,k−1 we have

P
(
ZN(tk) − ZN(tk−1) > rN(logN)2|Ftk−1

)
= 2π2θs

r
· ZN(tk−1)

N(logN)2 + O(θδε−5/2) + o(1).
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PROOF. By Lemma 34, we have

P
(
ZN(tk) − ZN(tk−1) > rN(logN)2|Ftk−1

)
= P

(
Wj,k > r/

(
π

√
2e−A) for some j |Ftk−1

)+ O(θδε−5/2) + o(1).

Recall that ε/(π
√

2e−A) ≥ e2A/3 by (98) and the fact that δ ∈ (0, ε). By
Lemma 29, for sufficiently large A the probability that Wj1,k > r/(π

√
2e−A) and

Wj2,k > r/(π
√

2e−A) for some j1 �= j2 is at most Cθe−A/3ε−1/2 + o(1). There-
fore,

P
(
Wj,k > r/

(
π

√
2e−A) for some j |Ftk−1

)
= E[Rk|Ftk−1]P

(
W > r/

(
π

√
2e−A))+ O(θe−A/3ε−1/2) + o(1),

and the error term is smaller than O(θδε−5/2) by (98).
By Proposition 27, if we use ∼ to mean that the ratio of the two sides tends to

one as x → ∞, then

E
[
W1{W≤x}

]= ∫ x

0
P(y ≤ W ≤ x)dy

=
∫ x

0
P(W ≥ y)dy − xP (W > x) ∼ B logx.

Therefore, (134) implies that B = 1/
√

2. Therefore, by (96),

(1 − δ)π

reA
≤ P

(
W >

r

π
√

2e−A

)
≤ (1 + δ)π

reA
.

Combining this result with Proposition 16, we get on GN,k−1,

E[Rk|Ftk−1]P
(
W > r/

(
π

√
2e−A))

(135)

= 2π2θs

r
· ZN(tk−1)

N(logN)2 · (1 + O(Aθ)
)(

1 + O(δ)
)+ o(1),

which is enough to imply the result. Since 1/r ≤ ε−1 and ZN(tk−1)/N(logN)2 ≤
ε−1/2 on GN,k−1, the dominant error term coming from (135) is O(θδε−3/2). �

6. Convergence to the CSBP. In this section, we prove Proposition 1 and
Theorem 2. Both of these results require proving that a sequence of processes
converges to the continuous-state branching process (Z(t), t ≥ 0) with branching
mechanism

�(u) = au + 2π2u logu = −cu + 2π2
∫ ∞

0

(
e−ux − 1 + ux1{x≤1}

)
x−2 dx,

where c is the constant defined in (134). We will first establish Proposition 1, and
then use this result to deduce Theorem 2.
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6.1. The generator of the CSBP. Let C0([0,∞)) be the set of continuous func-
tions f : [0,∞) → R that vanish at infinity, endowed with the sup norm so that for
f ∈ C0([0,∞)), we have

‖f ‖ = sup
x≥0

|f (x)|.

For f ∈ C0([0,∞)) and x ∈ [0,∞), let Ttf (x) = E[f (Z(t))|Z(0) = x]. It is
well-known (see, e.g., [23]) that (Tt , t ≥ 0) is a Feller semigroup. The follow-
ing result describes the associated infinitesimal generator. This result is essentially
well-known. The form of the generator appeared in [64], and later in [26] where
a particle representation of continuous-state branching processes was constructed.
The fact that the set E defined below is a core for the generator was established for
closely related families of processes in [51, 52]. However, we give a short proof of
the result below for completeness.

PROPOSITION 42. Let A be the infinitesimal generator for (Z(t), t ≥ 0). Let
E ⊂ C0([0,∞)) be the set of functions of the form

f (x) = a1e
−λ1x + · · · + ame−λmx,(136)

where a1, . . . , am ∈ R and λ1, . . . , λm > 0. Then E is a core for A, and for f ∈ E ,

Af (x) = x

(
cf ′(x)+2π2

∫ ∞
0

(
f (x+y)−f (x)−y1{y≤1}f ′(x)

)
y−2 dy

)
.(137)

PROOF. If f (x) = e−λx , then by (5) and (6), we have

Af (x) = lim
t→0

Ttf (x) − f (x)

t
= lim

t→0

e−xut (λ) − e−λx

t

= ∂

∂t
e−xut (λ)

∣∣∣∣
t=0

= xe−λx�(λ),

which equals the right-hand side of (137). The result (137) then follows for all
f ∈ E by linearity. By the Stone–Weierstrass theorem, E is dense in C0([0,∞)).
By (5), we have Ttf ∈ E whenever f ∈ E . It now follows from Proposition 3.3 in
Chapter 1 of [31] that E is a core for A. �

6.2. Proof of Proposition 1. The next result is Theorem 8.2 in Chapter 4 of
[31] in the present context.

PROPOSITION 43. Suppose the distribution of VN(0) converges to the distri-
bution of Z(0) as N → ∞. Then the finite-dimensional distributions of (VN(t),

t ≥ 0) converge to those of (Z(t), t ≥ 0) as N → ∞ if and only if for all
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j ≥ 0, all 0 ≤ s1 < s2 < · · · < sj ≤ u < u + s, all bounded continuous functions
h1, . . . , hj : [0,∞) → R, and all f ∈ E , we have

lim
N→∞E

[(
f
(
VN(u + s)

)− f (VN(u))

(138)

−
∫ u+s

u
Af (VN(t)) dt

) j∏
i=1

hi(VN(si))

]
= 0.

In view of this result, we will aim to establish (138), which will imply Proposi-
tion 1. We will assume that 0 ≤ s1 < s2 < · · · < sj ≤ u < u + s. We also define the
times

u = τ0 < τ1 < · · · < τθ−1 = u + s,

where τk = tk/(logN)3 for all k. This means that VN(τk) = ZN(tk)/(N(logN)2)

for all k. We also assume that the function f ∈ E and the bounded continuous
functions h1, . . . , hj are fixed throughout this subsection.

Since f is of the form given in (136), the norms ‖f ‖, ‖f ′‖ and ‖f ′′‖ are finite
and thus can be treated as constants. If g(x) = xf (x) and d(x) = xf ′(x), then ‖g‖,
‖g′‖ and ‖d‖ are likewise finite. Also, if we define

h(x) = sup
y≥x

x|f ′′(y)|, k(x) = sup
y≥x

x|f (y)|,(139)

then it is easy to check that ‖h‖ < ∞ and ‖k‖ < ∞. Finally, if y ≥ 0, then by
Taylor’s theorem there is a z ∈ [x, x + y] such that f (x + y) = f (x) + yf ′(x) +
1
2y2f ′′(z). Therefore,

∣∣∣∣x
∫ 1

0

(
f (x + y) − f (x) − yf ′(x)

)
y−2 dy

∣∣∣∣≤ 1

2
|h(x)|

and ∣∣∣∣x
∫ ∞

1

(
f (x + y) − f (x)

)
y−2 dy

∣∣∣∣≤ |k(x)| + |g(x)|.

It follows that

‖Af ‖ ≤ |c|‖d‖ + 2π2(‖g‖ + ‖k‖ + 1
2‖h‖)< ∞.(140)

LEMMA 44. We have

E
[(

f (VN(τk)) − f (VN(τk−1))
)
1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

(141)
= f ′(VN(τk−1))VN(τk−1)θs(c + 2π2 log ε)1GN,k−1 + O(θε1/2) + o(1).
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PROOF. Define

S̄k = Z′
N,1(tk) − ZN(tk−1)

N(logN)2 + π
√

2e−A
Rk∑
j=1

Wj,k1{Wj,k≤ε/(π
√

2e−A)}.

Note that S̄k would be equal to Sk/(N(logN)2), where Sk is defined in (118), if
Z′

N,1(tk) were replaced in the definition by ZN,1(tk). Therefore, by Lemma 10,

E

[∣∣∣∣S̄k − Sk

N(logN)2

∣∣∣∣∣∣∣Ftk−1

]
1GN,k−1 = o(1).(142)

Thus, by Lemma 38,

E
[∣∣S̄k − (VN(τk) − VN(τk−1)

)∣∣1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

(143)
≤ Cθδ1/2ε−3 + o(1).

It follows from (143) that

E
[∣∣f (VN(τk)) − f

(
VN(τk−1) + S̄k

)∣∣1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

(144)
≤ C‖f ′‖θδ1/2ε−3 + o(1) ≤ Cθδ1/2ε−3 + o(1).

By Taylor’s theorem, there exists ξ between VN(τk−1) and VN(τk−1) + S̄k such
that

E
[(

f
(
VN(τk−1) + S̄k

)− f (VN(τk−1))
)
1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

= E
[(

f ′(VN(τk−1))S̄k + f ′′(ξ)S̄2
k /2

)
1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

(145)
= f ′(VN(τk−1))E

[
S̄k1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

+ O(E[S̄2
k |Ftk−1]1GN,k−1).

Lemma 38 and (142) give

E
[|S̄k|1{VN(τk)−VN(τk−1)>ε}|Ftk−1

]
1GN,k−1 ≤ Cθδ1/2ε−3 + o(1).(146)

Note that δ1/2ε−3 ≤ ε1/2 by (95), and A can be chosen large enough so that
g(ε,A) ≤ ε, where g is the function from Proposition 39. Therefore, (146) com-
bined with Lemma 38, equation (142), and Proposition 39 implies

f ′(VN(τk−1))E
[
S̄k1{VN(τk)−VN(τk−1)≤ε}|Ftk−1

]
1GN,k−1

= f ′(VN(τk−1))E[S̄k|Ftk−1]1GN,k−1 + O(θε1/2) + o(1)(147)

= f ′(VN(τk−1))VN(τk−1)θs(c + 2π2 log ε)1{GN,k−1} + O(θε1/2) + o(1).

Since e−Aε−1/2 ≤ ε1/2 by (95) and (98), it follows from Lemmas 36 and 37 that

E[S̄2
k |Ftk−1]1GN,k−1 ≤ C(θe−Aε−1/2 + e−2A · θe2Aε1/2) + o(1)

(148)
≤ Cθε1/2 + o(1).

The result follows from (144), (145), (147) and (148). �
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LEMMA 45. We have

E
[(

f (VN(τk)) − f (VN(τk−1))
)
1{VN(τk)−VN(τk−1)>ε}|Ftk−1

]
1GN,k−1

= 2π2θsVN(τk−1)1GN,k−1

∫ ∞
ε

(
f
(
VN(τk−1) + y

)− f (VN(τk−1))
)
y−2 dy

+ O(θε1/2) + o(1).

PROOF. By Proposition 41 with r = ε,

E
[
f (VN(τk−1))1{VN(τk)−VN(τk−1)>ε}|Ftk−1

]
1GN,k−1

= f (VN(τk−1))P
(
VN(τk) − VN(τk−1) > ε|Ftk−1

)
1GN,k−1

(149)

= f (VN(τk−1))VN(τk−1) · 2π2θs

ε
1GN,k−1 + O(θδε−5/2) + o(1)

= 2π2θsVN(τk−1)1GN,k−1

∫ ∞
ε

f (VN(τk−1))y
−2 dy + O(θδε−5/2) + o(1).

To simplify notation, assume that ε−1 is an integer. Then

E
[
f (VN(τk))1{VN(τk)−VN(τk−1)>ε}|Ftk−1

]
1GN,k−1

=
∞∑

m=ε−1

E
[
f (VN(τk))1{mε2<VN(τk)−VN(τk−1)≤(m+1)ε2}|Ftk−1

]
1GN,k−1

=
ε−3−1∑
m=ε−1

f
(
ε2m + VN(τk−1)

)

× P
(
mε2 < VN(τk) − VN(τk−1) ≤ (m + 1)ε2|Ftk−1

)
1GN,k−1(150)

+
ε−3−1∑
m=ε−1

E
[(

f (VN(τk)) − f
(
ε2m + VN(τk−1)

))

× 1{mε2<VN(τk)−VN(τk−1)≤(m+1)ε2}|Ftk−1

]
1GN,k−1

+ E
[
f (VN(τk))1{VN(τk)−VN(τk−1)>ε−1}|Ftk−1

]
1GN,k−1 .

Denote the three terms on the right-hand side of (150) by T1, T2 and T3. Proposi-
tion 41 gives

|T2| ≤ ε2‖f ′‖P (VN(τk) − VN(τk−1) > ε|Ftk−1

)
1GN,k−1

≤ CθεVN(τk−1)1GN,k−1 + O(θδε−1/2) + o(1)(151)

≤ Cθ(ε1/2 + δε−1/2) + o(1)
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and

|T3| ≤ ‖f ‖P (VN(τk) − VN(τk−1) > ε−1|Ftk−1

)
1GN,k−1

≤ CθεVN(τk−1)1GN,k−1 + O(θδε−5/2) + o(1)(152)

≤ Cθ(ε1/2 + δε−5/2) + o(1).

By Proposition 41 and the fact that

1

ε2

(
1

m
− 1

m + 1

)
= 1

ε2m(m + 1)
,

we have

P
(
mε2 < VN(τk) − VN(τk−1) ≤ (m + 1)ε2|Ftk−1

)
1GN,k−1

= 2π2θsVN(τk−1)

ε2m(m + 1)
1GN,k−1 + O(θδε−5/2) + o(1).

Adding up at most ε−3 error terms of order θδε−5/2 to get a single error term of
order θδε−11/2, we get

T1 = 2π2θsVN(τk−1)1GN,k−1

ε−3−1∑
m=ε−1

f (ε2m + VN(τk−1))

ε2m(m + 1)

+ O(θδε−11/2) + o(1)
(153)

= 2π2θsVN(τk−1)1GN,k−1

ε−3−1∑
m=ε−1

f
(
ε2m + VN(τk−1)

) ∫ ε2(m+1)

ε2m
y−2 dy

+ O(θδε−11/2) + o(1).

Because an error of at most ‖f ′‖ε2 is made when replacing f (ε2m + VN(τk−1))

by f (VN(τk−1) + y) with ε2m ≤ y ≤ ε2(m + 1), we get∣∣∣∣∣
ε−3−1∑
m=ε−1

f
(
ε2m + VN(τk−1)

) ∫ ε2(m+1)

ε2m
y−2 dy −

∫ ∞
ε

f
(
VN(τk−1) + y

)
y−2 dy

∣∣∣∣∣
≤ C

(∫ ε−1

ε
ε2y−2 dy +

∫ ∞
ε−1

y−2 dy

)
≤ Cε.

Combining this with (153) gives

T1 = 2π2θsVN(τk−1)1GN,k−1

∫ ∞
ε

f
(
VN(τk−1) + y

)
y−2 dy

(154)
+ O(θε1/2) + O(θδε−11/2) + o(1).
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Since we have chosen δ ≤ ε7 ≤ ε6 by (95), the lemma now follows by summing
(151), (152) and (154) and subtracting (149) from the result. �

Note that∫ ∞
ε

y1{y≤1}f ′(x)y−2 dy = f ′(x)

∫ 1

ε
y−1 dy = −f ′(x) log ε.

Therefore, for every ε > 0 one can write

Af (x) = A1f (x) + A2f (x),

where

A1f (x) = x

(
(c + 2π2 log ε)f ′(x)

(155)

+ 2π2
∫ ε

0

(
f (x + y) − f (x) − yf ′(x)

)
y−2 dy

)

and

A2f (x) = x

(
2π2

∫ ∞
ε

(
f (x + y) − f (x)

)
y−2 dy

)
.

LEMMA 46. On GN,k−1, we have

E

[∫ τk

τk−1

1{|VN(t)−VN(τk−1)|>ε2} dt
∣∣∣Ftk−1

]
≤ Cθε2 + o(1).

PROOF. Since θ ≤ θ1/4, and since δ < ε5/2 by (95), it follows from (102) that
θeAε−1/2 ≤ ε2. Therefore, by Proposition 16 and Markov’s inequality, on GN,k−1,

P(Rk > 0|Ftk−1) ≤ CθeAε−1/2 + o(1) ≤ Cε2 + o(1).

(ZN,1(tk)−ZN(tk−1))/(N(logN)2) = VN(τk)−VN(τk−1) on GN,k−1 ∩{Rk = 0}
and 4e−A/4 ≤ ε2 by (95) and (98), it follows from Corollary 13 that

P
(|VN(τk) − VN(τk−1)| > ε2|Ftk−1

)≤ Cε2 + Cθe−A/2ε−1/2 + o(1)
(156)

≤ Cε2 + o(1).

We claim that (156) also holds with τk replaced by any t such that τk−1 < t < τk .
Applying Corollary 13 requires specifying five parameters: u, s, ε, A and θ . To
establish the claim, we apply Corollary 13 with new parameters ũ = tk−1/(logN)3,
s̃ = s, ε̃ = ε, Ã = A and θ̃ = (t −τk−1)/s. Note that θ̃ ≤ θ , so conditions (32)–(35)
continue to hold with the new parameters. Also, using the new parameters, we get
t̃0 = ũ(logN)3 = tk−1 and t̃1 = (ũ+ θ̃ s)(logN)3 = t (logN)3. It thus follows from
Corollary 13 that

P
(|VN(t) − VN(τk−1)| > ε2|Ftk−1

)≤ Cε2 + Cθ̃e−Ã/2ε̃−1/2 + o(1) ≤ Cε2 + o(1).
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Here the constant C does not depend upon the choice of t . The absolute value of
the o(1) can be bounded above by BN(t), where BN(t) ≤ 1 for all N and t , and
limN→∞ BN(t) = 0 for every fixed t . Thus, by Fubini’s theorem and the dominated
convergence theorem,

E

[∫ τk

τk−1

1{|VN(t)−VN(τk−1)|>ε2} dt
∣∣∣Ftk−1

]
≤
∫ τk

τk−1

Cε2 + BN(t) dt ≤ Cθε2 + o(1)

as claimed. �

LEMMA 47. We have

E

[∫ τk

τk−1

A1f (VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1

= f ′(VN(τk−1))VN(τk−1)θs(c + 2π2 log ε)1GN,k−1 + O(θε1/2) + o(1).

PROOF. If 0 ≤ y ≤ ε, then

f
(
VN(t) + y

)= f (VN(t)) + yf ′(VN(t)) + 1
2f ′′(ξy)y

2

for some ξy satisfying VN(t) ≤ ξy ≤ VN(t) + ε. Therefore,∣∣∣∣
∫ τk

τk−1

VN(t)

∫ ε

0

(
f
(
VN(t) + y

)− f (VN(t)) − yf ′(VN(t))
)
y−2 dy dt

∣∣∣∣
=
∣∣∣∣
∫ τk

τk−1

VN(t)

(∫ ε

0

1

2
f ′′(ξy) dy

)
dt

∣∣∣∣
(157)

≤ θs sup
t∈[τk−1,τk]

sup
z∈[VN(t),VN(t)+ε]

ε

2
VN(t)|f ′′(z)|

≤ Cεθs,

where the last inequality follows from the fact that ‖h‖ < ∞, where h is defined
in (139). Equations (155) and (157) give

E

[∫ τk

τk−1

A1f (VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1

(158)

= (c + 2π2 log ε)E

[∫ τk

τk−1

VN(t)f ′(VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1 + O(θε).

Recall that d(x) = xf ′(x) for x ≥ 0. Therefore,

E

[∫ τk

τk−1

VN(t)f ′(VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1

= f ′(VN(τk−1))VN(τk−1)θs1GN,k−1(159)

+ E

[∫ τk

τk−1

d(VN(t)) − d(VN(τk−1)) dt
∣∣∣Ftk−1

]
1GN,k−1 .
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The absolute value of the second term on the right-hand side of (159) is at most

2‖d‖E
[∫ τk

τk−1

1{|VN(t)−VN(τk−1)|>ε2} dt
∣∣∣Ftk−1

]
1GN,k−1 + θs‖d ′‖ε2,

which is at most Cθε2 + o(1) by Lemma 46.
Therefore, the result follows from (158) and (159), since ε| log ε| < ε1/2 for

sufficiently small ε. �

LEMMA 48. We have

E

[∫ τk

τk−1

A2f (VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1

= 2π2θsVN(τk−1)1GN,k−1

∫ ∞
ε

(
f
(
VN(τk−1) + y

)− f (VN(τk−1))
)
y−2 dy

+ O(θε) + o(1).

PROOF. For y ≥ 0, define the function gy(x) = xf (x + y). Note that
supy≥0 ‖gy‖ < ∞ and supy≥0 ‖g′

y‖ < ∞. We have

E

[∫ τk

τk−1

A2f (VN(t)) dt
∣∣∣Ftk−1

]
1GN,k−1

= E

[
2π2

∫ τk

τk−1

VN(t)

∫ ∞
ε

(
f
(
VN(t) + y

)− f (VN(t))
)
y−2 dy dt

∣∣∣Ftk−1

]

× 1GN,k−1
(160)

= 2π2θsVN(τk−1)1GN,k−1

∫ ∞
ε

(
f
(
VN(τk−1) + y

)− f (VN(τk−1))
)
y−2 dy

+ 2π2E

[∫ τk

τk−1

∫ ∞
ε

(
gy(VN(t)) − g0(VN(t)) − gy(VN(τk−1))

+ g0(VN(τk−1))
)
y−2 dy dt

∣∣∣Ftk−1

]
1GN,k−1 .

The absolute value of the second term on the right-hand side of (160) is at most

2π2s

ε

(
2 sup

y≥0
‖gy‖ + 2‖g0‖

)
E

[∫ τk

τk−1

1{|VN(t)−VN(τk−1)|>ε2} dt
∣∣∣Ftk−1

]
1GN,k−1

+ 2π2θsε
(
sup
y≥0

‖g′
y‖ + ‖g′

0‖
)
,

using that
∫∞
ε y−2 dy = ε−1. By Lemma 46, this expression is at most Cθε+o(1),

which, combined with (160), implies the result. �
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PROOF OF PROPOSITION 1. Recall that we need to establish (138). For 1 ≤
k ≤ θ−1, define

Jk = f (VN(τk)) − f (VN(τk−1)) −
∫ τk

τk−1

Af (VN(t)) dt.

Then

f
(
VN(u + s)

)− f (VN(s)) −
∫ u+s

u
Af (VN(t)) dt =

θ−1∑
k=1

Jk.(161)

Let BN,0 = Gc
N,0, and for 1 ≤ k ≤ θ−1, let BN,k = GN,k−1 ∩ Gc

N,k . Then

GN(ε)c =⋃θ−1

k=0 BN,k and

1 − P(GN(ε)) =
θ−1∑
k=0

P(BN,k).

Now

E

[(
θ−1∑
k=1

Jk

) j∏
i=1

hi(VN(si))

]

= E

[(
θ−1∑
k=1

Jk

(
1GN,k−1 +

k−1∑
�=0

1BN,�

)) j∏
i=1

hi(VN(si))

]

(162)

= E

[(
θ−1∑
k=1

Jk1GN,k−1

) j∏
i=1

hi(VN(si))

]

+
θ−1−1∑
�=0

E

[(
θ−1∑

k=�+1

Jk

)
1BN,�

j∏
i=1

hi(VN(si))

]
.

For 0 ≤ � ≤ θ−1 − 1,
∣∣∣∣∣

θ−1∑
k=�+1

Jk

∣∣∣∣∣=
∣∣∣∣f (VN(u + s)

)− f (VN(τ�)) −
∫ u+s

τ�

Af (VN(t)) dt

∣∣∣∣
≤ 2‖f ‖ + s‖Af ‖.

Therefore, the absolute value of the second term on the right-hand side of (162) is
at most ( j∏

i=1

‖hi‖
)
(2‖f ‖ + s‖Af ‖)

θ−1−1∑
�=0

P(BN,�) ≤ C
(
1 − P(GN(ε))

)
,
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using (140). To bound the first term on the right-hand side of (162), note that by
conditioning on Ftk−1 ,

E

[(
θ−1∑
k=1

Jk1GN,k−1

) j∏
i=1

hi(VN(si))

]

=
θ−1∑
k=1

E

[
Jk1GN,k−1

j∏
i=1

hi(VN(si))

]

=
θ−1∑
k=1

E

[( j∏
i=1

hi(VN(si))

)
E[Jk|Ftk−1]1GN,k−1

]
.

By Lemmas 44, 45, 47 and 48,

|E[Jk|Ftk−1]1GN,k−1 | ≤ Cθε1/2 + o(1)

for all k. Therefore,∣∣∣∣∣E
[(

θ−1∑
k=1

Jk1GN,k−1

) j∏
i=1

hi(VN(si))

]∣∣∣∣∣
≤
( j∏

i=1

‖hi‖
)(

θ−1∑
k=1

E[|E[Jk|Ftk−1]1GN,k−1 |]
)

≤ Cε1/2 + o(1).

It follows that∣∣∣∣∣E
[(

θ−1∑
k=1

Jk

) j∏
i=1

hi(VN(si))

]∣∣∣∣∣≤ Cε1/2 + C
(
1 − P(GN(ε))

)+ o(1).

In view of (161) and Proposition 23, equation (138) now follows by letting N →
∞ and then letting ε → 0. �

6.3. The number of particles. Because the value of ZN(t) approximately de-
termines the number of particles a short time after time t , the fact that the number
of particles converges to a continuous-state branching process follows rather sim-
ply from Proposition 1.

PROOF OF THEOREM 2. In view of Proposition 1, it suffices to show that for
any fixed t > 0, we have∣∣∣∣ 1

2πN
MN((logN)3t) − VN(t)

∣∣∣∣→p 0.(163)



GENEALOGY OF BRANCHING BROWNIAN MOTION 601

Let γ > 0 be arbitrary. Set u = 0 and s = t . By Proposition 23, we can choose
ε ∈ (0, γ ) sufficiently small that

sup
θ

(
lim sup
N→∞

(
1 − P(GN(ε))

))
<

γ

2
,(164)

where the supremum is taken over all θ such that θ−1 ∈ N. Proposition 41 implies
that for sufficiently small θ ,

P
(|VN(t) − VN

(
t (1 − θ)

)| ≥ γ
)≤ Cθε−3/2 + (

1 − P(GN(ε))
)+ o(1).(165)

It follows from (164) and (165) that for sufficiently small θ and sufficiently
large N ,

P
(|VN(t) − VN

(
t (1 − θ)

)| < γ
)
> 1 − γ.(166)

Let M ′
N((logN)3t) denote the number of particles at time (logN)3t whose an-

cestor at time u is in (0,L) for all (logN)3(t (1 − θ)) ≤ u ≤ (logN)3t . By Propo-
sition 16 and (164), for sufficiently small θ > 0 and sufficiently large N ,

P
(
MN((logN)3t) = M ′

N((logN)3t)
)
> 1 − γ.(167)

By (17) and the fact that 1 − μ2/2 − π2/2L2 = 0,

E
[
M ′

N((logN)3t)|F(logN)3(t (1−θ))

]

= 2N(logN)2VN(t (1 − θ))(1 + o(1))

L

∫ L

0
e−μy sin

(
πy

L

)
dy.

Now∫ L

0
e−μy sin

(
πy

L

)
dy =

∫ ∞
0

πy

L
e−μy dy +

∫ L

0
e−μy

(
sin
(

πy

L

)
− πy

L

)
dy

−
∫ ∞
L

πy

L
e−μy dy

= π

Lμ2 + O

(∫ L

0
e−μy y3

L3 dy

)
+ O(e−μL)

= π

Lμ2 + O

(
1

L3

)
+ O(e−μL) = π

2L

(
1 + o(1)

)
.

It follows that

E
[
M ′

N((logN)3t)|F(logN)3(t (1−θ))

]= πN(logN)2VN(t (1 − θ))(1 + o(1))

L2

= 2πNVN

(
t (1 − θ)

)(
1 + o(1)

)
.

Therefore, for sufficiently large N ,

P

(∣∣∣∣E
[
M ′

N((logN)3t)

2πN

∣∣∣F(logN)3(t (1−θ))

]
−VN

(
t (1−θ)

)∣∣∣∣< γ

)
> 1−γ.(168)
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By Proposition 14, we have

Var
(
M ′

N((logN)3t)|F(logN)3(t (1−θ))

)≤ Cθε−1/2N2(1 + o(1)
)

on an event defined in the same manner as GN,k−1 but with (logN)3(t (1 − θ))

playing the role of tk−1. Combining this result with (164) and the conditional form
of Chebyshev’s inequality, we get for sufficiently small θ and sufficiently large N ,

P

(∣∣∣∣M
′
N((logN)3t)

2πN
− E

[
M ′

N((logN)3t)

2πN

∣∣∣F(logN)3(t (1−θ))

]∣∣∣∣< γ

)
(169)

> 1 − γ.

If now follows from (166)–(169) that for sufficiently large N , we have

P

(∣∣∣∣ 1

2πN
MN((logN)3) − VN(t)

∣∣∣∣< 3γ

)
> 1 − 4γ.

Result (163) follows. �

7. Convergence to the Bolthausen–Sznitman coalescent. In this section, we
prove Theorem 3. The strategy will be to show that a sequence of processes that de-
scribe the genealogy of branching Brownian motion converges to a flow of bridges
defined in [8], which is known to be dual to the Bolthausen–Sznitman coalescent.

7.1. The flow of bridges. Consider the continuous state branching process of
Proposition 1 and Theorem 2 with branching mechanism �(u) = au+2π2u logu.
Recall from [7] that we can define this as a two-parameter process (Z(t, x), t ≥ 0,

x ≥ 0), where t is the time parameter, and x is the initial population size. Also
recall from [7] that we can associate with this continuous-state branching pro-
cess a flow of subordinators. On some probability space, there exists a process
(S(s,t)(x),0 ≤ s ≤ t, x ≥ 0) such that:

• For every 0 ≤ s ≤ t , the process S(s,t) = (S(s,t)(x), x ≥ 0) is a subordinator with
Laplace exponent ut−s .

• For every integer k ≥ 2 and every 0 ≤ t1 ≤ · · · ≤ tk , the subordinators
S(t1,t2), . . . , S(tk−1,tk) are independent, and

S(t1,tk) = S(tk−1,tk) ◦ · · · ◦ S(t1,t2).

• The processes (Z(t, x), t ≥ 0, x ≥ 0) and (S(0,t)(x), t ≥ 0, x ≥ 0) have the same
finite-dimensional marginals.

Here S(s,t)(x) can be understood as the descendants in the population at time t of
the first x individuals in the population at time s.

Suppose that we start with the initial population Z(0) = z. For each s ≤ t , we
can define the renormalized process (Bs,t (x),0 ≤ x ≤ 1) by

Bs,t (x) = S(s,t)(xS(0,s)(z)
)
/S(0,t)(z).
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It is easily seen that Bs,t is a bridge, which we define as in [8] to be a nondecreas-
ing, [0,1]-valued stochastic process (B(r),0 ≤ r ≤ 1) with exchangeable incre-
ments and right-continuous paths such that B(0) = 0 and B(1) = 1.

It follows from (7) that when �(u) = au + 2π2u logu, the subordinator S(s,t)

is a stable subordinator with index e−2π(t−s). Consequently, letting Rs,t denote the
range of Bs,t , the lengths of the disjoint open intervals whose union is [0,1] \ Rs,t

are independent of S(0,s)(z) and have the Poisson–Dirichlet distribution with pa-
rameters (e−2π(t−s),0). See [60] for a definition and further discussion of the two-
parameter Poisson–Dirichlet distribution and its connections with stable subordi-
nators. It now follows (see Example 2 in [8]) that (Bs,t (x),0 ≤ s ≤ t,0 ≤ x ≤ 1)

is a flow of bridges, which is a collection (Bs,t ,0 ≤ s ≤ t) of bridges such that if
Id denotes the identity function from [0,1] to itself, then:

• For every s < t < u, we have Bs,u = Bt,u ◦ Bs,t .
• The law of Bs,t only depends on t − s.
• If s1 < s2 < · · · < sn, then the bridges Bs1,s2, . . . ,Bsn−1,sn are independent.
• B0,0 = Id and B0,t → Id as t → 0 in probability, in the sense of Skorohod’s

topology.

Note that we are using a different convention for the time parameters than in [8].
The bridge Bs,t defined here would be called B−t,−s in [8].

If B is a bridge, define, for u ∈ [0,1],
B−1(u) = inf{s ∈ [0,1] :B(s) ≥ u}.(170)

If s < t < u, then B−1
s,u = B−1

s,t ◦ B−1
t,u . Given independent random variables

U1, . . . ,Un with the uniform distribution on [0,1], we can define π(B) to be the
partition of {1, . . . , n} such that i and j are in the same block of π(B) if and only if
B−1(Ui) = B−1(Uj ). Now, given a flow of bridges (Bs,t ,0 ≤ s ≤ t) and indepen-
dent uniform random variables U1, . . . ,Un, we can fix a time t > 0 and consider
the partition-valued process (�(s),0 ≤ s ≤ t) defined by �(s) = π(Bt−s,t ). The
main result of Bertoin and Le Gall [8] establishes that this process is a so-called ex-
changeable coalescent process and that there is in fact a one-to-one correspondence
between flows of bridges and exchangeable coalescent processes. In the example
above, in which the flow of bridges is defined from a continuous-state branching
process with �(u) = au + 2π2u logu, the process (π(Bt−s/2π,t ),0 ≤ s ≤ 2πt) is
the Bolthausen–Sznitman coalescent run for time 2πt (see, e.g., Example 2 in [8]).

7.2. Flows describing the genealogy of branching Brownian motion. To rep-
resent the genealogy of branching Brownian motion, we now introduce a sequence
of discrete versions of these flows of bridges. We fix K ∈ N and the times 0 = t0 <

t1 < · · · < tK. For 0 ≤ i < j ≤ K we will define a process (BN
ti ,tj

(s),0 ≤ s ≤ 1).
We consider the branching Brownian motion XN at the successive times

tj (logN)3. We assign labels to the particles at these times, and denote by ui,j
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the label of the ith largest particle at time tj (logN)3, that is, the particle in posi-
tion Xi,N(tj (logN)3). We first define a collection of independent random variables
(vi,j , i ≥ 0,0 ≤ j ≤ K) having the uniform distribution on [0,1]. For i ≤ MN(0),
we define ui,0 = vi,0. That is, the individuals at time zero are labeled by inde-
pendent uniform random variables. For j ≥ 1, the ui,j are sequences of length
j + 1 which are defined inductively by saying that ui,j = (up(i),j−1, vi,j ), where
up(i),j−1 is the label of the particle at time tj−1(logN)3 from which the ith parti-
cle at time tj (logN)3 has descended. That is, we concatenate vi,j with the label of
the ancestor of the ith particle to obtain the label of the ith particle. The particles at
time tj (logN)3 can now be ordered using the lexicographical order of their labels.
We denote by xi,j the position of the ith individual in this lexicographical order at
time tj (logN)3.

We now assign weights to the individuals. For 0 ≤ j ≤ K and 1 ≤ i ≤
MN(tj (logN)3), define

w(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

ZN(tj (logN)3)
eμxi,j sin

(
πxi,j

L

)
1{xi,j≤L}, if 0 ≤ j ≤ K − 1,

1

MN(tj (logN)3)
, if j = K .

That is, the particles are weighted proportional to their contribution to the sum in
(9), except at time tK(logN)3 when all particles are weighted equally. We use these
weights because we will later sample particles uniformly at time tK(logN)3, but
the number of descendants that a particle at time ti(logN)3 has at time tK(logN)3

will be roughly proportional to the weight that it has been assigned. Also define
Ai(j, k) to be the set of descendants at time tk(logN)3 of the ith individual at time
tj (logN)3. More precisely, Ai(j, k) is the set of indices � such that the individual
at position x�,k at time tk(logN)3 is descended from the individual in position
xi,j at time tj (logN)3. We are now ready to define the discrete bridges. First, for
0 ≤ y ≤ 1, and 0 ≤ j ≤ K , define

Lj(y) = max

{
I ∈ N :

I∑
i=1

w(i, j) ≤ y

}
,(171)

with the convention that the maximum of the empty set is 0. We think of Lj(y)

as being approximately the yth quantile of the population at time tj (logN)3 when
individuals are weighted as above and ordered according to their labels. Then for
0 ≤ y ≤ 1 and 0 ≤ j < k ≤ K , let

BN
tj ,tk

(y) =
Lj (y)∑
i=1

∑
m∈Ai(j,k)

w(m, k).

Note that these discrete bridges BN
tj ,tk

are not exactly bridges in the sense defined
above; for example, their increments are not exactly exchangeable because there
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are only finitely many particles at time tj . However, we will show in Lemmas 52
and 54 below that these discrete bridges converge to the bridges Btj ,tk .

LEMMA 49. If 0 ≤ i < j < k ≤ K , then BN
ti,tk

= BN
tj ,tk

◦BN
ti,tj

and (BN
ti ,tk

)−1 =
(BN

ti ,tj
)−1 ◦ (BN

tj ,tk
)−1, where the inverse functions are defined as in (170).

PROOF. For 0 ≤ y ≤ 1,

BN
ti,tk

(y) =
Li(y)∑
�=1

∑
m∈A�(i,k)

w(m, k).

Note that m ∈ A�(i, k) for some � ≤ Li(y) if and only if m ∈ A�(j, k) for some
� ≤ Lj(B

N
ti ,tj

(y)). Therefore,

BN
ti,tk

(y) =
Lj (BN

ti ,tj
(y))∑

�=1

∑
m∈A�(j,k)

w(m, k) = BN
tj ,tk

(BN
ti ,tj

(y)).

That is, BN
ti,tk

= BN
tj ,tk

◦ BN
ti,tj

. Also,

(BN
ti ,tk

)−1(y) = inf{s :BN
ti,tk

(s) ≥ y}
= inf{s :BN

tj ,tk
(BN

ti ,tj
(s)) ≥ y}

= inf{s :BN
ti,tj

(s) ≥ (BN
tj ,tk

)−1(y)}
= (BN

ti ,tj
)−1((BN

tj ,tk
)−1(y)),

which implies that (BN
ti ,tk

)−1 = (BN
ti ,tj

)−1 ◦ (BN
tj ,tk

)−1. �

7.3. Convergence of one bridge. Let (Bs,t ,0 ≤ s ≤ t) be the flow of bridges
defined above from the continuous-state branching process with branching mecha-
nism �(u) = au+2π2u logu. We will now show that for 1 ≤ i ≤ K , the sequence
of discrete bridges (BN

0,ti
(u),0 ≤ u ≤ 1) converges to (B0,ti (u),0 ≤ u ≤ 1) in the

sense of finite-dimensional distributions. The first step is the following extension
of Proposition 1.

LEMMA 50. Assume that the initial population is subdivided into m possibly
random subgroups S1, . . . , Sm, and that given the initial positions of the parti-
cles, they evolve according to branching Brownian motion killed at 0. Assume that
YN(0)/(N(logN)3) converges to zero in probability. Let Zi,N(t) denote the con-
tribution to the sum in (9) from particles descended from one of the particles that
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is in Si at time zero, and let Mi,N(t) denote the number of particles at time t de-
scended from one of the particles that is in Si at time zero. Assume that the initial
joint distribution of (

Zi,N(0)

N(logN)2

)m

i=1
(172)

converges as N → ∞ to some probability measure ρ on [0,∞)m. Then the finite-
dimensional distributions of the m-dimensional vector-valued processes{(

Zi,N(t (logN)3)

N(logN)2

)m

i=1
, t ≥ 0

}
and

{(
Mi,N(t (logN)3)

2πN

)m

i=1
, t > 0

}

each converge as N → ∞ to the finite-dimensional distributions of {(Zi(t))
m
i=1,

t ≥ 0}, where (Zi(0))mi=1 has distribution ρ, and conditional on (Zi(0))mi=1, each
Zi evolves independently as a continuous-state branching process with branching
mechanism �(u) = au + 2πu logu.

PROOF. While this is in principle a simple extension of Proposition 1, some
care is needed in the proof because the components of the process are not indepen-
dent but only conditionally independent given the initial configuration. To ease no-
tation, we only show here the proof of the one-dimensional marginal convergence
(which is all that is needed later), as the general result is conceptually identical
but more cumbersome. Thus, let t > 0, and fix arbitrary bounded and continuous
test functions f1, . . . , fm : [0,∞) → R. By Skorohod’s Representation Theorem,
we may assume that all the branching Brownian motions XN are constructed on
the same probability space in such a way that the expression in (172) converges
almost surely to (Zi(0))mi=1 having joint distribution ρ.

For i = 1, . . . ,m, let Xi,N denote the branching Brownian motion obtained by
considering only the descendants of the particles in Si . Let F = σ(Xi,N(0), i =
1, . . . ,m,N = 1,2, . . .) be the filtration generated by all the processes at time
zero for all subgroups. Let also G = σ(Z1(0), . . . ,Zm(0)). Note that the ran-
dom variables Z1,N (t (logN)3), . . . ,Zm,N(t (logN)3) are conditionally indepen-
dent given F . Therefore,

E

[
m∏

i=1

fi

(
Zi,N(t (logN)3)

N(logN)2

)]
= E

[
E

[
m∏

i=1

fi

(
Zi,N(t (logN)3)

N(logN)2

)∣∣∣F
]]

(173)

= E

[
m∏

i=1

E

[
fi

(
Zi,N(t (logN)3)

N(logN)2

)∣∣∣F
]]

.

By Proposition 1, for 1 ≤ i ≤ m we have that E[fi(Zi,N(t (logN)3)/(N(logN)2))|
F ] converges almost surely to the random variable EZi(0)[fi(Z(t))], where
Ex[fi(Z(t))] denotes the expected value for the continuous-state branching pro-
cess started from the value Z(0) = x. The application of Proposition 1 is justified
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here because the condition that YN(0)/(N(logN)3) converges in probability to
zero is satisfied for the entire process, and hence the analogous condition is satis-
fied for each of the m components. We may rewrite this random variable as

EZi(0)[fi(Z(t))] = E[fi(Zi(t))|G].
Since all random variables on the right-hand side of (173) are bounded, we deduce
by the dominated convergence theorem that

lim
N→∞E

[
m∏

i=1

fi

(
Zi,N(t (logN)3)

N(logN)2

)]
= E

[
m∏

i=1

E[fi(Zi(t))|G]
]

= E

[
m∏

i=1

fi(Zi(t))

]
,

since the random variables (Zi(t))
m
i=1 are conditionally independent given G . This

completes the proof of convergence for the processes Zi,N . The proof for the pro-
cesses Mi,N is identical, except that we invoke Theorem 2 instead of Proposition 1.

�

Before proving the convergence of bridges, we establish the following lemma,
which states that at a typical time t , no single particle makes too large a contribu-
tion to ZN(t).

LEMMA 51. Let

mN(s) = max
1≤i≤MN(s(logN)3)

eμXi,N (s(logN)3) sin
(

πXi,N(s(logN)3)

L

)
.

Then for all s ≥ 0, we have mN(s)/(N(logN)2) → 0 in probability as N → ∞.

PROOF. Suppose (xN)∞N=1 is a sequence such that eμxN /(N(logN)3) → 0 as
N → ∞. Letting wN = L − xN , we have wN → ∞ as N → ∞. Therefore,

eμxN sin
(

πxN

L

)
= eμ(L−wN) sin

(
πwN

L

)
≤ πeμL

L
· wNe−μwN

(174)
= o(N(logN)2).

Observe that YN(s(logN)3)/(N(logN)3) converges in probability to zero, which
is true by assumption when s = 0 and by Proposition 23 when s > 0. Therefore,
given any subsequence (Nj )

∞
j=1, there is a further subsequence (Njk

)∞k=1 such that

YNjk
(s(logNjk

)3)/(Njk
(logNjk

)3) converges to zero almost surely. It follows from

(174) that mNjk
(s)/(Njk

(logNjk
)2) converges to zero almost surely, which implies

the result. �
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LEMMA 52. Assume the hypotheses of Theorem 3 hold. Recall that 0 = t0 <

t1 < · · · < tK . Let m ≥ 1 and let 0 = u0 < u1 < · · · < um = 1. Then for each fixed
i, with 1 ≤ i ≤ K , we have

(BN
0,ti

(uj ))
m
j=1 ⇒ (B0,ti (uj ))

m
j=1,

where ⇒ denotes convergence in distribution as N → ∞.

PROOF. It suffices to prove the joint convergence of the increments
(BN

0,ti
(uj ) − BN

0,ti
(uj−1))

m
j=1. Define L0 as in (171), and for 1 ≤ j ≤ m, let

Sj = {L0(uj−1) + 1,L0(uj−1) + 2, . . . ,L0(uj )}
be the subset of particles in the population at time zero associated with the quan-
tiles in [uj−1, uj ). Note that the Sj are disjoint, and divide the population at time
zero into m subgroups. We treat the positions of the particles in these m subgroups
as m random starting configurations, to which we will apply Lemma 50.

For 1 ≤ j ≤ m, define the process (Zj,N(t), t ≥ 0) as in Lemma 50. We claim
that the distribution of (

Zj,N(0)

N(logN)2

)m

j=1
(175)

converges as N → ∞ to some probability measure ρ on [0,∞)m. Here ρ has
the distribution of (δjX)mj=1, where δj = uj − uj−1 for 1 ≤ j ≤ m and X has
distribution ν. To check that this convergence holds, note that

|Zj,N(0) − δjZN(0)| ≤ 2mN(0),

where mN(0) is defined as in Lemma 51 and the error term 2mN(0) comes from
the fact that

∑j
k=1 eμxk,0 sin(πxk,0/L) increases discontinuously with j . In view of

Lemma 51, the convergence of the distribution of (175) to ρ follows by Slutsky’s
theorem (see Corollary 3.3 in Chapter 3 of [31]) and Proposition 1. Therefore, the
hypotheses of Lemma 50 are satisfied.

Assume for now that i ≤ K − 1. By Lemma 50,(
Zj,N(ti(logN)3)

N(logN)2

)m

j=1
⇒ (Zj (ti))

m
j=1,

where {(Zj (t))
m
j=1, t ≥ 0} is defined as in Lemma 50. Thus for any α > 0,

(
Zj,N(ti(logN)3)

ZN(ti(logN)3) ∨ αN(logN)2

)m

j=1
⇒
(

Zj(ti)

α ∨∑m
k=1 Zk(ti)

)m

j=1
.(176)

Choose γ > 0, and let α be such that P(Z(ti) < α) ≤ γ , where (Z(t), t ≥ 0) is a
continuous-state branching process with branching mechanism � and initial dis-
tribution ν, which is possible because ν({0}) = 0 and (Z(t), t ≥ 0) never goes
extinct. Thus, by Proposition 1 we have for N large enough,

P
(
ZN(ti(logN)3) < αN(logN)2)≤ 2γ.
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Now fix f1, . . . , fm, some arbitrary bounded and continuous test functions on
[0,1] and let M = ‖f1‖ · · · ‖fm‖. Thus, we have∣∣∣∣∣E

[
m∏

j=1

fj

(
BN

0,ti
(uj ) − BN

0,ti
(uj−1)

)]− E

[
m∏

j=1

fj

(
Zj(ti)∑m

k=1 Zk(ti)

)]∣∣∣∣∣
≤
∣∣∣∣∣E
[

m∏
j=1

fj

(
Zj,N(ti(logN)3)

αN(logN)2 ∨ ZN(ti(logN)3)

)]

− E

[
m∏

j=1

fj

(
Zj(ti)

α ∨∑m
k=1 Zk(ti)

)]∣∣∣∣∣
+ MP

(
ZN(ti(logN)3) < αN(logN)2)+ MP

(
Z(ti) < α

)
.

Taking the limsup of both sides, we find that the first term in the right-hand side of
the above inequality converges to 0 by (176), and the second and third terms are
respectively smaller than 2Mγ and Mγ . Since γ > 0 is arbitrary, and since(

Zj(ti)∑m
k=1 Zk(ti)

)m

j=1

has the same distribution as (B0,ti (uj ) − B0,ti (uj−1))
m
j=1, this finishes the proof

when 1 ≤ i ≤ K − 1.
The proof when i = K is the same, except Zj,N(ti(logN)3)/(N(logN)2) needs

to be replaced throughout the argument by Mj,N(ti(logN)3)/(2πN), where the
processes (Mj,N(t), t ≥ 0) are defined as in Lemma 50. �

7.4. Joint convergence of bridges. In this subsection we extend the conver-
gence obtained in Lemma 52 to the joint convergence of the finite-dimensional
distributions of several bridges. We begin by establishing a result about the conver-
gence of the distribution of a single bridge, conditional on the branching Brownian
motion up to the starting point of the bridge.

LEMMA 53. Assume the hypotheses of Theorem 3 hold. Recall that 0 = t0 <

t1 < · · · < tK . Let m ≥ 1, and let 0 = u0 < u1 < · · · < um. Let f : [0,1]m+1 → R

be bounded and continuous. For 0 ≤ i ≤ K − 1, we have

E
[
f (BN

ti ,ti+1
(u0), . . . ,B

N
ti ,ti+1

(um))|Fti (logN)3
]

→p E[f (Bti ,ti+1(u0), . . . ,Bti ,ti+1(um))],
where →p denotes convergence in probability as N → ∞.

PROOF. Let (Z(t), t ≥ 0) be a continuous-state branching process with
branching mechanism � and initial distribution ν. By Proposition 1,

ZN(ti(logN)3)

N(logN)2 ⇒ Z(ti).
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Also, we have YN(ti(logN)3)/(N(logN)3) →p 0 by assumption if i = 0 and by
Proposition 23 if i ≥ 1. Therefore, by Skorohod’s Representation Theorem, the
branching Brownian motion processes (XN,N ≥ 1) can be constructed on a single
probability space in such a way that ZN(ti(logN)3)/(N(logN)2) → Z(ti) a.s.
and YN(ti(logN)3)/(N(logN)3) → 0 a.s. Furthermore, it can be arranged that the
processes XN evolve independently of one another after time ti(logN)3.

Let F̃t = σ(XN(s),N ≥ 1,0 ≤ s ≤ t) be the σ -field generated by all the in-
formation up to time t by all processes. By the Markov property, conditional on
F̃ti (logN)3 , the process XN evolves after time ti(logN)3 like a branching Brown-
ian motion with absorption whose initial configuration is that of XN(ti(logN)3).
Therefore, we can apply Lemma 52, with ti+1 − ti playing the role of ti in
Lemma 52, to get that on this probability space

E
[
f (BN

ti ,ti+1
(u0), . . . ,B

N
ti ,ti+1

(um))|F̃ti (logN)3
]

→ E[f (B0,ti+1−ti (u0), . . . ,B0,ti+1−ti (um))] a.s.

The result follows because the bridges B0,ti+1−ti and Bti,ti+1 have the same law.
�

LEMMA 54. Assume the hypotheses of Theorem 3 hold. Recall that 0 = t0 ≤
t1 < · · · < tK and let 0 = u0 < u1 ≤ · · · < um ≤ 1. Then

(BN
ti ,ti+1

(uj ))
0≤i≤K−1

1≤j≤m

⇒ (Bti ,ti+1(uj ))
0≤i≤K−1

1≤j≤m

,(177)

where the bridges Bti,ti+1 , 0 ≤ i ≤ K − 1, are independent.

PROOF. We proceed by induction. The convergence of (BN
t0,t1

(uj ))1≤j≤m to
(Bt0,t1(uj ))1≤j≤m is a consequence of Lemma 52. Thus assume that the con-
vergence (177) holds for 0 ≤ i ≤ k − 1 with 2 ≤ k ≤ K − 1. Let f1, . . . , fk :
[0,1]m+1 → R be bounded continuous functions. By Proposition 1, we know that

(ZN(t1(logN)3), . . . ,ZN(tk(logN)3)) ⇒ (Z(t1), . . . ,Z(tk)),(178)

where (Z(t), t ≥ 0) is a continuous-state branching process with branching mech-
anism � and initial distribution ν. Let F̃t = σ(XN(s),N ≥ 1,0 ≤ s ≤ t) be the
σ -field generated by the information up to time t . To simplify notation, we write
βN

i = (BN
ti ,ti+1

(uj ))1≤j≤m and βi = (Bti ,ti+1(uj ))
m
j=1. Since βN

k is conditionally

independent of βN
1 , . . . , βN

k−1 given Ftk−1(logN)3 ,

E

[
k∏

i=1

fi(β
N
i )

]
= E

[(
k−1∏
i=1

fi(β
N
i )

)
E
[
fk(β

N
k )|F̃tk−1(logN)3

]]
.(179)

Lemma 53 states that

E
[
fk(β

N
k )|F̃tk−1(logN)3

]→p E[fk(βk)],(180)



GENEALOGY OF BRANCHING BROWNIAN MOTION 611

where →p denotes convergence in probability as N → ∞. Using the identity of
real numbers

x′y′ − xy = x′(y′ − y) + y(x′ − x)

in (179) with x′ = ∏k−1
i=1 fi(β

N
i ), y′ = E[fk(β

N
k )|F̃tk−1(logN)3], x =∏k−1

i=1 E[fi(βi)] and y = E[fk(βk)], and then taking the expectation, we get

E

[
k∏

i=1

fi(β
N
i )

]
−

k∏
i=1

E[fi(βi)]

= E

[
k−1∏
i=1

fi(β
N
i )
(
E
[
fk(β

N
k )|F̃tk−1(logN)3

]− E[fk(βk)])
]

+ E[fk(βk)]
(
E

[
k−1∏
i=1

fi(β
N
i )

]
−

k−1∏
i=1

E[fi(βi)]
)
.

The first term on the right-hand side converges to 0 by the dominated convergence
theorem and (180) since f1, . . . , fk are bounded, and the second term converges to
0 by the induction hypothesis. This finishes the proof of Lemma 54. �

7.5. Tightness. Our goal in this subsection is to prove the following tightness
result.

LEMMA 55. Assume the hypotheses of Theorem 3 hold. For 0 ≤ i ≤ K − 1,
the sequence of random discrete bridges (BN

ti ,ti+1
(u),0 ≤ u ≤ 1) is a tight sequence

with respect to the Skorohod topology.

PROOF. For δ > 0 and a function B : [0,1] → [0,1], define

w′(B, δ) = inf{xj } max
j

sup
x,y∈[xj ,xj+1)

|B(x) − B(y)|,

where the infimum is taken over all subdivisions {xj } of [0,1] with 0 = x0 < x1 <

· · · < xm = 1 and min(xj+1 − xj ) ≥ δ. It suffices to show (see Chapter 13 of [11])
that for all ε > 0, there exists δ > 0 such that

lim sup
N→∞

P
(
w′(BN

ti ,ti+1
, δ) ≥ ε

)≤ ε.(181)

Assume for now that i ≤ K − 2. To prove (181), we need to show that two
jumps do not occur very close to one another. Let ε > 0. Let (Z(t), t ≥ 0) be a
continuous-state branching process with branching mechanism � and initial dis-
tribution ν. Since ν({0}) = 0, the continuous-state branching process does not ex-
plode or go extinct, so we can fix 0 < a < 1 such that

P
(
a < Z(ti+1) < 1/a

)≥ 1 − ε/4.



612 J. BERESTYCKI, N. BERESTYCKI AND J. SCHWEINSBERG

Let A(a,N) be the event that aN(logN)2 < ZN(ti+1(logN)3) < a−1N(logN)2.
By Proposition 1, we can choose N0 so that for all N ≥ N0, we have P(A(a,N)) ≥
1 − ε/2.

For 0 ≤ x ≤ 1, let

ZN
ti,ti+1

(x) = ZN(ti+1(logN)3)BN
ti,ti+1

(x)

=
Li(x)∑
�=1

∑
m∈A�(i,i+1)

eμxm,i+1 sin
(

πxm,i+1

L

)
.

We now define our subdivision {xj }. Let x0 = 0, and for j ≥ 1 such that xj−1 < 1,
let

xj = 1 ∧ min{x ≥ 0 :ZN
ti,ti+1

(x) − ZN
ti,ti+1

(xj−1) ≥ aεN(logN)2}.
Since P(A(a,N)) ≥ 1 − ε/2, and since this subdivision ensures that |BN

ti,ti+1
(x)−

BN
ti,ti+1

(y)| < ε for all x, y ∈ [xj , xj+1) on the event A(a,N), it remains only to
show that there is a δ > 0 such that

lim sup
N→∞

P
(
A(a,N) ∩

{
min

j
(xj − xj−1) < δ

})
≤ ε/2.

Let Dj be the event that xj ≤ 1 − δ. On the event A(a,N), there can be at most
1/εa2 values of xj less than 1. Also, on the event Dj , we have xj −xj−1 ≤ δ if and
only if ZN

ti,ti+1
(xj−1 + δ) − ZN

ti,ti+1
(xj−1) ≥ aεN(logN)2. Therefore, it suffices to

show that there exists δ > 0 such that

lim sup
N→∞

P
(
ZN

ti,ti+1
(1) − ZN

ti,ti+1
(1 − δ) ≥ aεN(logN)2)≤ ε/4

and for all 0 ≤ i ≤ (1/εa2) − 1,

lim sup
N→∞

P
(
Di ∩ {ZN

ti,ti+1
(xj−1 + δ) − ZN

ti,ti+1
(xj−1) ≥ aεN(logN)2})≤ ε2a2/4.

In view of Lemma 51, both of these statements follow from an application of
Proposition 1, in which the distribution of δZ(ti) plays the role of ν.

If i = K −1, the proof proceeds in the same way, except that instead of working
with ZN

ti,ti+1
, we define MN

tK−1,tK
(x) = MN(tK(logN)3)BtK−1,tK (x). The subdivi-

sion is defined by x0 = 0 and, for j ≥ 1,

xj = 1 ∧ min{x ≥ 0 :MN
tK−1,tK

(x) − MN
tK−1,tK

(xj−1) ≥ 2πaεN}.
The proof concludes with an application of Theorem 2 rather than Proposition 1.

�

Because the tightness of each sequence (BN
ti ,ti+1

(u),0 ≤ u ≤ 1) implies the joint
tightness of the K sequences of bridges, Lemmas 54 and 55 combine to yield the
following corollary.
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COROLLARY 56. The sequence of processes ((BN
t0,t1

(u),BN
t1,t2

(u), . . . ,

BN
tK−1,tK

(u)),0 ≤ u ≤ 1) converges in the Skorohod topology to ((Bt0,t1(u),

Bt1,t2(u), . . . ,BtK−1,tK (u)),0 ≤ u ≤ 1).

7.6. Coalescence. Let D be the set of functions f : [0,1] → R that are right
continuous and have left limits. Let ρ denote the Skorohod metric on D. Let �

denote the set of functions λ : [0,1] → [0,1] that are continuous and strictly in-
creasing and satisfy λ(0) = 0 and λ(1) = 1. Recall (see Chapter 12 of [11]) that
if f,f1, f2, . . . are functions in D, then limn→∞ ρ(fn, f ) = 0 if and only if there
exists a sequence of functions (λn)

∞
n=1 in � such that

lim
n→∞ sup

0≤t≤1
|fn(λn(t)) − f (t)| = 0(182)

and

lim
n→∞ sup

0≤t≤1
|λn(t) − t | = 0.(183)

The lemma below is similar to Lemma 1 of [8] but differs in that we do not
require the processes BN to have exchangeable increments.

LEMMA 57. Suppose b, b1, b2, . . . are functions from [0,1] to [0,1] that are
nondecreasing and right continuous and have left limits at every point other than 0.
Suppose limN→∞ ρ(bN, b) = 0, where ρ denotes the Skorohod metric. Suppose
(xN)∞N=1 and (yN)∞N=1 are sequences in [0,1] such that xN → x and yN → y

as N → ∞. Suppose x and y are not in the closure of the range of b. Then for
sufficiently large N we have b−1

N (xN) = b−1
N (yN) if and only if b−1(x) = b−1(y).

Furthermore,

lim
N→∞b−1

N (xN) = b−1(x).(184)

PROOF. Because x is not in the closure of the range of b, there exists some
maximal open interval (u, v) with u < x < v such that (u, v) does not intersect the
range of b. For sufficiently small δ, we have u + 2δ < x < v + 2δ, which implies
u + δ < xN < v − δ for sufficiently large N . By condition (182) applied to bN and
b, for sufficiently large N the interval (u+ δ, v − δ) does not intersect the range of
bN . Therefore, there exists γN such that bN(γN) ≥ v − δ and bN(γN−) ≤ u + δ.
Then b−1

N (xN) = γN for sufficiently large N . Also, there is a sequence of functions
(λN)∞N=1 in � such that λN(b−1(x)) = γN for sufficiently large N by (182) and
therefore limN→∞ γN = b−1(x) by (183). Result (184) follows.

Suppose b−1(x) = b−1(y). Because b is right continuous with left limits, we
have u < y < v. Arguing as above, we have b−1

N (yN) = γN for sufficiently large
N , and thus b−1

N (xN) = b−1
N (yN) for sufficiently large N . Alternatively, suppose

b−1(x) �= b−1(y). We may assume without loss of generality that x < y. Then
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y > v, and there is some open interval (r, s) with v < r < y < s such that (r, s)

does not intersect the range of b. As above, there exists δ > 0 and ξN such
that for sufficiently large N , we have bN(ξN) ≥ s − δ, bN(ξN−) ≤ r + δ, and
b−1
N (yN) = ξN . Therefore, b−1

N (xN) �= b−1
N (yN) for sufficiently large N , and the

lemma follows. �

PROOF OF THEOREM 3. Fix times 0 = t0 < t1 < · · · < tK = t . By Corol-
lary 56 and Skorohod’s representation theorem, we may work on a probabil-
ity space on which the sequence of discrete bridges ((BN

t0,t1
(u),BN

t1,t2
(u), . . . ,

BN
tK−1,tK

(u)),0 ≤ u ≤ 1) converges almost surely to ((Bt0,t1(u),Bt1,t2(u), . . . ,

BtK−1,tK (u)),0 ≤ u ≤ 1). Note that in this setting, almost sure convergence means
that ρ(BN

ti ,ti+1
,Bti ,ti+1) → 0 as N → ∞ for i = 0,1, . . . ,K − 1, where ρ denotes

the Skorohod metric.
Fix a positive integer n, and let U1, . . . ,Un be independent random variables

having the uniform distribution on [0,1]. For 0 ≤ i ≤ K − 1, define the partition
π(BN

ti ,t
) = π(BN

ti ,tK
) to be the partition of {1, . . . , n} such that i and j are in the

same block of the partition if and only if (BN
ti,tK

)−1(Ui) = (BN
ti ,tK

)−1(Uj ). Like-
wise, define π(Bti,t ) = π(Bti,tK ) to be the partition of {1, . . . , n} such that i and
j are in the same block of the partition if and only if B−1

ti ,tK
(Ui) = B−1

ti ,tK
(Uj ).

It follows from the definition of the processes BN
ti,tK

that i and j are in the
same block of the partition if and only if the individuals who are in positions
�UiMN(tK(logN)3)� and �UjMN(tK(logN)3)� in the lexicographical order at
time tK(logN)3 are descended from the same ancestor at time ti(logN)3. As a
result, we have the equality in distribution

(π(BN
tK−1,tK

), . . . , π(BN
t0,tK

))
(185)

=d

(
�N

(
2π(t − tK−1)

)
, . . . ,�N

(
2π(t − t0)

))
,

where �N is the process defined in Theorem 3. We note that the sampling scheme
here using the random variables U1, . . . ,Un corresponds to sampling with replace-
ment from the individuals at time tK(logN)3, but the difference between sampling
with and without replacement is unimportant because the probability of sampling
the same individual twice tends to zero as N → ∞.

We claim that for 0 ≤ i ≤ K − 1, almost surely

π(BN
ti ,tK

) = π(Bti,tK )(186)

for sufficiently large N . Because we know the process (π(Bt−s/2π,t ),0 ≤ s ≤ 2πt)

is the Bolthausen–Sznitman coalescent run for time t , this claim in combination
with (185) will imply Theorem 3.

We now prove (186) by backward induction. Since the lengths of the intervals of
the complement of the range of BtK−1,tK have a Poisson–Dirichlet distribution and
thus sum to 1 (see, e.g., Proposition 2 in [60]), the closure of the range of BtK−1,tK
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has Lebesgue measure zero almost surely. Therefore, almost surely U1, . . . ,Un

are not in the closure of the range of BtK−1,tK . It follows from Lemma 57 that
π(BN

tK−1,tK
) = π(BtK−1,tK ) for sufficiently large N almost surely. Furthermore,

lim
N→∞(BN

tK−1,tK
)−1(Uj ) = B−1

tK−1,tK
(Uj )

almost surely for j = 1, . . . , n. Also, by Lemma 2 of [8], the random variables
B−1

tK−1,tK
(Uj ) each have the uniform distribution on [0,1].

For the induction step, suppose that for some i = 2, . . . ,K − 1, the following
hold:

• We have limN→∞(BN
ti ,tK

)−1(Uj ) = B−1
ti ,tK

(Uj ) almost surely for j = 1, . . . , n.

• The random variables B−1
ti ,tK

(Uj ) each have the uniform distribution on [0,1].
Now (BN

ti−1,tK
)−1(Uj ) = (BN

ti−1,ti
)−1((BN

ti ,tK
)−1(Uj )) by Lemma 49, and likewise

B−1
ti−1,tK

(Uj ) = B−1
ti−1,ti

(B−1
ti ,tK

(Uj )). Because the random variables B−1
ti ,tK

(Uj ) each
have the uniform distribution on [0,1] and are independent of Bti−1,ti , almost
surely none of these random variables is in the closure of the range of Bti−1,ti .
Since also (BN

ti ,tK
)−1(Uj ) → B−1

ti ,tK
(Uj ) almost surely for j = 1, . . . , n, Lemma 57

implies that π(BN
ti−1,tK

) = π(Bti−1,tK ) for sufficiently large N almost surely. Fur-

thermore, (BN
ti−1,tK

)−1(Uj ) → B−1
ti−1,tK

(Uj ) almost surely for j = 1, . . . , n. By

Lemma 2 of [8], the random variables B−1
ti−1,tK

(Uj ) each have the uniform dis-
tribution on [0,1]. The claim (186) now follows by induction. �
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