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THE GENERA OF EDGE AMALGAMATIONS

OF COMPLETE BIGRAPHS(i)
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SETH R. ALPERT

ABSTRACT. If G and H  ate graphs, then G V H  is defined to be a graph

obtained by identifying some edge of G with some edge of H. It is shown that

for all m, zz, p, and q the genus  e(K       V Ä      )  is either g(K       ) + e(/i.    )
'       r " °     m,n p,q °     m,72       °     p,q

or else  s(K      ) + g(K.    ) — 1.  The latter value is attained if and only if both°      771,71 °      p,q '

K and K        are critical in the sense that the deletion of any edge results
771,71 p,q '        °

in a graph whose genus is one less than the genus of the original graph.

I. Throughout this paper graphs will be finite simplicial 1-complexes. The

genus g(G) of a connected graph G is the minimum genus of any closed orientable

2-manifold in which G can be imbedded.

If T is a subgraph both of G and of //, then a new graph G VT H may be

formed by identifying a copy of T contained in G with a copy óf T contained in

H. This new graph is called an amalgamation of G and H along T, and in gen-

eral depends on the choice of copies of T.

The aim of this paper is to determine the genera of all graphs of the form

K        V„    fC    . This is achieved in Theorem 1.3. Note that, due to the symmetry
771,72       z<2        P,q ' '

of complete bigraphs, the amalgamation K V„    K       is independent of which

edges  K2 one amalgamates along. To simplify notation, an amalgamation

G   VK    H shall be written simply as G V H.

Using different methods, Ringel [3] and Schanuel [4] have determined the

genera of all complete bigraphs, as follows.

Theorem I. 1. For all integers m and n greater than or equal to 2,

g(Km>n)=IU-2)(72-2)/4!,

where \r\ denotes the least integer greater than or equal to any real number r.
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240 S. R. ALPERT

A graph G is said to be critical if, for each edge e of G, g(G ~e) = g(G) — 1.

Ringel's proof of Theorem 1.1 also yields a determination of which complete bigraphs

are critical.

Theorem 1.2.  The complete bigraph K        is critical if and only if m and n

are greater than 1 and either m m 72 = 1 (mod 4) or m = n = 3 (mod A).

The major result of this paper is the following theorem.

Theorem 1.3. (1) For all positive integers m, n, p, and q, g(K        V K     ) is

either g(KmJ + ¿Kp¿ or giKmJ + giKpJ - 1.

(2) «(K77,,7, V Kp J « g(Km>„) + giKptq) - 1 if and only if both K^ and

/C       are critical.
P,1

Note that in combination with Theorems 1.1 and 1.2, this yields a determination

of the genera of all amalgamations of complete bigraphs along an edge.

In §11 the machinery to be used in the proof of Theorem 1.3 is set up and part

(1) is established. The fact that giK       V K.    ) = giK      ) + g(/C    ) - 1 implies
°      m ,n P ,Q m ,n        °     p ,q r

that K        and K.      ate critical is demonstrated in §111 and the converse proposi-771,72 p, q ° r    *

tion is proven in §IV.

Similar results determining the genera of graphs of the form K     VR    K , 2 <

p < 5, in many cases, have been obtained in Alpert [l].

II.  This section is devoted to setting up the machinery to be used in the proof

of Theorem 1.3 and to proving its first assertion.

If /: G —»M is an imbedding of a graph G in a surface M then the image of

/ is also called G, and the components of M ~ G are called faces of the imbed-

ding.   If all the faces are open 2-cells the imbedding is called a 2-cell imbedding.

It is well known that any imbedding of a graph in a surface of minimal genus has

this property. Of course, the Euler formula applies to any 2-cell imbedding.

The boundary of any face of a 2-cell imbedding of a graph G is a closed walk

of G. It is most convenient to refer to this closed walk rather than the face itself.

Its edges will be called sides of the face.

Because all closed walks of a bigraph are of even length, any face of a 2-cell

imbedding of a bigraph must have an even number of sides, and this number must

be at least 4. This observation leads to the following definition, in analogy to

the triangulation deficiency used in Alpert [l].

The quadrilateral deficiency g(G; g) of a bigraph G for a genus g is defined

by the equation

q(G; g) = 8g - 8 + AV(G) - 2E(G).

In case g = g(G), one simply refers to the quadrilateral deficiency of G and

writes q(G) instead of q(G; g(G)).
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EDGE AMALGAMATIONS OF COMPLETE BIGRAPHS 241

If there is a 2-cell imbedding of G in a surface of genus g with F faces,

then an elementary manipulation of the Euler formula shows that q(G; g) = 2E(G)

-4F.

The following proposition offers some clarification of this terminology.

Proposition ILL Let G be a bigraph.

(1) // there is a 2-cell imbedding of G in a surface of genus g and if P.   is

the number of k-sided faces, then

qiG; «)=£(*- 4)Fk.
«24

(2) // q(G; g) > 0, then Vi qiG; g) edges must be added to a 2-cell imbedding

of G in a surface of germs g in order to make all ¡aces quadrilaterals.

(3) // qiG; g) < 0, then G cannot be imbedded in a surface of genus g, and

at least V^qiG; g)\ edges must be removed from G in order to make such an imbedding

possible (although this may not always work).

Proof.  (1) Note that in any 2-cell imbedding of G,  2E(G) = S kF,. Thus

qiG; g) = 2E(G) - 4F = £ kFk - 4 Z Fk = Z (* - 4)Ffc.

Moreover, because G is a bigraph there are no faces with fewer than 4 sides, so

the sum may be taken over all k > 4.

(2) By (1), if there exists a 2-cell imbedding of G in a surface of genus g,

then qiG; g) = 2, >.ik - 4)F,. Hence if qiG; g) > 0, there is at least one 72-sided

face P with »2 > 6. A new edge (possibly multiple) can be drawn across P so as

to subdivide it into a 4-sided face and an (n — 2)-sided face. Clearly, if the result-

ing graph is G , then  qiG ; g) = qiG; g) — 2. Iteration of this procedure gives the

desired result. (Of course, qiG; g) > 0 does not guarantee the existence of an

imbedding of G in a surface of genus g.)

(3) By (1), if qiG; g) < 0, there is no 2-cell imbedding, and so no imbedding

at all, of G in a surface of genus g. It Vi\qiG; g)\  edges are removed from G, the

resulting graph G' has qiG'; g) = 0. Thus it may be possible to imbed G' in a

' surface of genus g.

As a corollary to Proposition II. 1, one obtains a standard lower bound for the

genus of an arbitrary bigraph G.

Corollary II.2. For any bigraph G, giG) > |E(G)/4 - V(G)/2 + ll.

Proof. By definition of q(G) and by Proposition II. 1  q(G)>0. That is,

8g(G) - 8 + 4V(G) - 2E(G) > 0. The conclusion is an easy consequence of the

above inequality.

Proposition II.3.  For all bigraphs G, H, and T,

qiG  Vr  H; giG) + giH) - giT) + x) = qiG) + «(//) - qiT) + 8x.
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242 S. R. ALPERT

Consequently,

giG vT H) > giG) + giH) + giT) + \iqiT) - qiG) - qiH))/8\.

Proof. Obviously, VÍG   VT H) = V(G) + VÍH) - VÍT) and EiG   Vr //) - EÍG) +

E(//) - EÍT). Thus the first equation is an immediate consequence of the defining

equation for qiG, g).

As for the second equation, observe that there exists an integer x such that

g(G    r //) = giG) + giH) - giT) + x.

Since g(G  Vr H) > 0, it follows from the first equation that

x>Ka(T)-a(G)-a(//))/8!,

which completes the proof.

Proposition II.4.  For all m, n > 2,

qiK     ) = 8(IU - 2)in - 2)/4l -im- 2)in - 2)/4).
71 717,71

Proof. By Theorem 1.1 and definition of q(G),

qiK      ) = 8i(m - 2)(?z - 2)/4l - 8 + 4ttz + 4« - 277zn

= 8i\im - 2)in - 2)/4] -im- 2)in - 2)/4).

Using the formula obtained in Proposition II.4 one may express qiKm b) as a

function of the residue classes of m and n modulo 4. These values are tabulated

in Table 1.
TABLE 1

qiK     ) as a function of m and n mod 4
1     m,n

Observe that qiK     ) attains exactly 4 different values. Using the formula obtained
771,71 * ^

in Proposition ÏÏ..3, one may compute the value of a(Km n V Kpq\ d^m „) + S^^p ^ ~ l)

as a function of qiK      ) and qiK„   ), as is shown in Table 2.
4    m ,7i P,q
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EDGE AMALGAMATIONS OF COMPLETE BIGRAPHS 243

TABLE 2

*<*«. ,Vla; «(*    J + giK» J -1) as a function of q(K     ) and q(K     )

A r)

*kpJ

-A

-2

-A

-2

-2

Note that for an arbitrary edge amalgamation G V H, the genus is at most the

sum of the genera of G and //. To see this, take minimal imbeddings of G and H

in surfaces M and N, respectively. The edge e along which G and H ate to be

amalgamated must be the side of some face P of the imbedding of G and also some face

P' of the imbedding of //. If an open disk whose boundary intersects the boundary of P

only in e is excised from P and a similar disk is excised from P , one may form

the connected sum of M and N by identifying the boundaries in such a way so

that the 2 copies of e match up. This gives an imbedding of G V H in a surface

of genus g(G) + g(H), thereby proving

Proposition II.5. For all graphs G and H, giG V H) < giG) + g(H).

Now observe that a consequence of Table 2 and Propositions II. 1 and II.3 is

that for all m, n, p, and q,

g(K       V fC    )> g(K      ) + e(/C    )-l.5        771,72 p,q    — °        771,71 °        p ,q

Hence in any case, g(K       V K     ) is either g(K      ) + g(/C    ) or g(K      ) +' '   °        771 ,72 p ,q °        771,72 P ,Q °        771,71

g(K.    ) - 1, which establishes (1) of Theorem 1.3.

III. The rest of the proof of Theorem 1.3 is by cases according to the value

of ^Km,n V Kp,q' S^mJ * ¿Kp,J " x)- BV Proposition II.l, if a(G; g) < 0,

then G cannot be imbedded in a surface of genus g. Moreover, it follows from

Theorem 1.2 and Table 1 that K        is critical if and only if AK      ) » 6. Now
771,71 ' *        771,72

consulting Table 2, one sees that in order to prove (2) of Theorem 1.3, it suffices

to prove the following:

(D  ¿Km„   V  Kp,q' ^KmJ + S(KoJ " l   imPlies that
P,9

AK-       V K_   ; e(K1        771,71 p,5'   O^     7i ; + l»^-l)"

(2) If K        and K„     are critical, thenV   ' 771.71 p.« »
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244 S. R. ALPERT

„(K        VK     ) = g(K      ) + g(K     )-l.
°V      771,71 P,q 771,71 °        P.«

In this section (1) will be proven by showing that K      V fC      cannot be imbedded in

a surface of genus giK^) + ¿(K^) - 1 when «¿K^ V tfjV ¿jf^) + g(Kp(?) _ l)< 6.

The proof of Theorem 1.3 is completed in the next section by constructing an

imbedding of K        V Kp     in a surface of genus giKm „) + «(^.   ) - 1 in the case

when K        and K^     ate both critical.
771 ,71 p,q

Before proceeding, it is necessary to recall some basic terminology about

imbeddings of graphs in orientable surfaces. For details, see Alpert [l].

Let x be a vertex of a graph G imbedded in a surface M. The orientation on

M induces a cyclic ordering of the vertices adjacent to x called the adjacency

tour at x and written in the form x) a, A, c, •. •, d, e. Recall that an imbedding of

G in an orientable surface is equivalent to a list of adjacency tours. It is assumed

that the reader is familiar with this equivalence, which is explained in §1 of

Alpert [l].

Faces of an imbedding of a graph in an orientable surface are denoted by the

cyclic sequence of vertices of the face written in the reverse order to that induced

by the orientation and enclosed by square brackets. If P = [a, A, c, • • « ] is a face

of some imbedding, then aAc is called an angle of P with endpoints a and c and

center b.

Note that the vertices of C V H = G  V„   H ate naturally partitioned into the

sets G ~ K2, H ~ K.  and  K2. Standard procedure here will be to denote the

vertices of G ~ K2 by g y, g2, • - •, those of H ~ K2 by h y, h2, • • •   and those of

K2 by x and y. An amalgamating angle of an imbedding of G V H in an orientable

surface is defined to be an angle with center x or y and one endpoint from G ~ K-

and the other from H ~ K_. When writing the adjacency tours at vertices of G V H,

a sequence g .,•••, g 2 or A,,-.., A- will consist entirely of vertices of G ~ K7

or H ~ K2, respectively. The possibility that the sequence g ,,••«, g2 is of

length 1 is allowed.

Using these conventions note that any juxtaposition of a g. and h. in the

adjacency tour at * or y yields an amalgamating angle on some face P of the

imbedding. Because no g. is adjacent to an A., there must be at least one more

occurrence of a vertex of K2 on P. Moreover, if G and H ate bipartite, then

because x and y are adjacent in G and //, it follows that P must be at least

6-sided. Since there must be at least one juxtaposition of a g. and an A. in the

adjacency tour at x for any imbedding of G V //, it follows that q(G V //) > 2 for

all bipartite G and H. This proves the following

Proposition III. 1. // G V H can be imbedded in a surface of genus g, then

qiG V H; g) > 2.
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Theorem III. 2. (1) // G V H can be imbedded in a surface of genus g(G) +

g(H) - 1, then each vertex of «2 /s the center of at least two amalgamating angles.

(2) Consequently, q(G V H; g(G) + g(H) - 1) > 4.

Proof. (1) Let x be a vertex of K2. Because there must be at least one

juxtaposition of a g. with an h. in the adjacency tour at x, x is the center of at

least one amalgamating angle. If x is the center of exactly one amalgamating

angle, then the adjacency tour at x has the form x) y, gj, • • •, g2, h2, • • •, h^

where y is the other vertex of K2. It is now possible to "split" the vertex x in

such a way so as to obtain an imbedding of G   V„    // in the same surface. To do

this, replace x by Xj in every adjacency tour at a g., replace x by x2 in every

adjacency tour at an h., and replace the adjacency tour at x by the adjacency tours

*l)y»2?i» ••■»2?2'       x2)y,h2,..-,hy

Finally, in the adjacency tour at y, replace x by Xj, x2.

This clearly gives a scheme for G   VK    H. The only change in faces from

the original imbedding is that the face P with amalgamating angle g2xh    is

expanded from

P = [g2, x, h2 •••]    to    P = [g2, Xj, y, x2, h2, •••].

Thus the number of faces is the same as in the original imbedding. Moreover, the

numbers of edges and vertices have each increased by 1, so the Euler characteris-

tic is unaffected by these changes. This means that G   VK    H is imbedded in a

surface of genus g(G) + g(H) - 1 contradicting a theorem of Battle, Harary, Kodama,

and Youngs [2].

Hence x is the center of at least 2 amalgamating angles.

(2) An amalgamating angle must lie on a face with 6 or more sides. Moreover,

it is impossible to have a repeated vertex on a 6-sided face of an imbedding of a

bigraph. Hence x  lies on at least 2 faces with 6 sides or else on at least one

face with 8 or more sides. In either case it must be true that î/(G V H; g(G) + g(//) -1) > 4.

Theorem III.3.  If G y H can be imbedded in a surface of genus A^) + g(//) - 1,

then q(G V H; giG) + g(H) - 1) > 6.

Proof. Suppose G V H is embedded in a surface of genus g(G) + g(H) — 1.

The previous theorem shows that q(G V H; giG) + g(//) - l) > 4 and that if

qiG V H; giG) + giH) - l) = 4, then one of the vertices x of K2 must lie on exactly

two amalgamating angles. The adjacency tours at x and y therefore look like

*)y> z?i» •••,g2, b2,..., ¿3,g3, •••

y) x> g6> * " " ' Sy b^, ..., hA, g4, - •..
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Once again, the procedure is to "split" x so as to obtain an imbedding of G VK   H

in the same surface, contradicting the theorem of Battle, Harary, Kodama, and

Youngs [2].

Because giG V H; giG) + g(//) - l) = 4 and since no g. is adjacent to an h.,

the only faces with more than 4 sides are hexagons

pi = tg2' *» h2>hvy> «4j   and   P2 = thy *» -§3' 8y y' h^'

Now we split x into 2 new vertices as follows:

In the adjacency tours at the g.'s change x to Xy, in those at the h.'s change

x to x2, in the adjacency tour at y, replace x by Xj and insert an x2 following

A., thus

y 1 xv #6' ' ' ' ' £5' *5' " ' ' ' *4' *2' S4» • • • •

Finally, replace the adjacency tour at x by adjacency tours

*j.)y» gj» •••, g2, gy •••       x2)y, A2, ..., A3.

The only change in faces from the original imbedding is that   P,  and P2 are now

consolidated into new faces

P'l = ^2' xv &y Sy y> ¿5> hy x2-> y, g4]    and    P2 = [y, x2, A2, h ¿.

Hence the Euler characteristic is unchanged and so the new scheme is for an

imbedding of G   VK    H in a surface of genus giG) + giH) - 1, a contradiction.

Hence qiG V H; giG) + giH) - l) > 6.

Corollary III.4. // giKmn V KpJ = g^ J + giKpq) - 1,   /Ae«

Proof. This is an immediate consequence of Theorem III.3 and Table 2.

IV. The proof of Theorem 1.3 is completed by the following theorem.

Theorem IV.l. // K       and K„     are critical then e(K       V K     ) =
'      rn,n p,q °     771,71 p,q

0       771,71 °       p,q

Proof. The theorem will be proved once an imbedding of K       VK.      in a

surface of genus giKm J + giK     ) - 1 has been constructed.

First note that if K        is critical then there is a minimal imbedding of K
m,n 6 771,71

for which the only face with more than four sides is 10-sided of the form [a, x, c,

w, A, x, a, z, c, y]. To see this, observe that m, n > 3 and that if K2 = (a, x),

Km     ~ K2 can be quadrilaterally imbedded in a surface of genus giK      ) -1.

Assume that one face of this imbedding is [a, z, c, y]. Then because a and x are

adjacent in Km n, x must be adjacent to c and so there is another face of the form

[x, c, w, b] (if m = 72 = 3, then w = 2). Now excise open disks from the interiors

of these 2 faces and identify the boundaries. It is now possible to add the edge
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EDGE AMALGAMATIONS OF COMPLETE BIGRAPHS 247

(x, a) and thereby obtain a minimal imbedding of K        of the desired type.

Similarly, there is a minimal imbedding of K       tot which the only face with

more than 4 sides is 10-sided of the form [x', a', y', c', z', a', x', b', w', c'].

We shall now amalgamate K        and K       along the edges (x, c) and (x', c').

Note that the adjacency tours at x, c, x', c' ate as follows:

x) b, a, c, ... x) c , a ,b , ...

c) x, w, •" , z, y, ...      c)y,z,...,w,x,....

Form new adjacency tours

x") c", ... ,b, a , a,b , ...
Il\    II i i i

c ) x , ... ,y ,w, ..., z, z , .-., w , y, ....

The remaining adjacency tours are appended, with x and c changed to x" and c",

respectively.

If all new juxtapositions of vertices in the new adjacency tours at x" and c*

are accounted for, we will obtain a list of the new faces. They are:

r,     «     i     i     n     i      r '     " "     'i     r       "   z.'      '     "    1
lb, x , a , y , c , w\,    [a , x , a, z, c , z \,    [a, x , b , w , c , y\.

If the imbedding of K        has F,  faces and that of fC      has F, faces, then° 771,72 1 p,q 2 '

the number of faces in the new imbedding is Fj + F2 + 1. The new scheme is for

an imbedding of K       VK       and since V(K       V K„   ) = V(K     ) + V(K     ) - 2
° m,n p,q m,n p ,q m,n p ,q

and E(K       VK     ) = E(K      ) + E(K   J «- 1, it follows from the Euler formula
m,n p,q m,n ptq

that the genus g of the new surface is

i - 1 - K(V(KMfI.) + V«p,q> - 2 - E«mJ - *KpJ ♦l + 'i + Fj + l)

= 1 - *<*W - E(K77,,n> ♦ Ft) + 1 - MM/C^) - E(/Cp>9) + F2) - 1

as desired.
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