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Abstract—The general Gaussian multiple-access wiretap
channel (GGMAC-WT) and the Gaussian two-way wiretap
channel (GTW-WT) are considered. In the GGMAC-WT, mul-
tiple users communicate with an intended receiver in the presence
of an eavesdropper who receives their signals through another
GMAC. In the GTW-WT, two users communicate with each
other over a common Gaussian channel, with an eavesdropper
listening through a GMAC. A secrecy measure that is suitable
for this multiterminal environment is defined, and achievable
secrecy rate regions are found for both channels. For both cases,
the power allocations maximizing the achievable secrecy sum rate
are determined. It is seen that the optimum policy may prevent
some terminals from transmission in order to preserve the secrecy
of the system. Inspired by this construct, a new scheme cooper-
ative jamming is proposed, where users who are prevented from
transmitting according to the secrecy sum rate maximizing power
allocation policy “jam” the eavesdropper, thereby helping the
remaining users. This scheme is shown to increase the achievable
secrecy sum rate. Overall, our results show that in multiple-access
scenarios, users can help each other to collectively achieve positive
secrecy rates. In other words, cooperation among users can be
invaluable for achieving secrecy for the system.

Index Terms—Confidential messages, Gaussian multiple-access
channel (GMAC), Gaussian two-way channel, secrecy capacity,
wiretap channel.

I. INTRODUCTION

GAUSSIAN multiple-access channels and two-way chan-
nels are two of the earliest channels that were considered

in the literature. The multiple-access channel capacity region
was determined in [1] and [2]. The two-way channel was ini-
tially examined by Shannon [3], where he found inner and outer
bounds for the general two-way channel and determined the ca-
pacity region for some special cases. In [4], it was shown that
the inner bound found by Shannon was not tight in general. The
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capacity region of the Gaussian two-way channel was found by
Han [5]. A related, somewhat more general case called two-user
channels was studied in [6] and [7]. For a comprehensive review
of these channels, the reader is referred to [8].

A rigorous analysis of information theoretic secrecy was first
given by Shannon in [9]. In this work, Shannon showed that to
achieve perfect secrecy in communications, which is equivalent
to providing no information to an enemy cryptanalyst, the con-
ditional probability of the cryptogram given a message must be
independent of the actual transmitted message. In other words,
the a posteriori probability of a message must be equivalent to
its a priori probability.

In [10], Wyner applied this concept to the discrete memory-
less channel. He defined the wiretap channel, where there is a
wire tapper who has access to a degraded version of the intended
receiver’s signal. Using the normalized conditional entropy
of the transmitted message given the received signal at the wire
tapper as the secrecy measure, he found the region of all pos-
sible pairs, and the existence of a secrecy capacity, ,
the rate up to which it is possible to limit the rate of information
transmitted to the wire tapper to arbitrarily small values.

In [11], it was shown that for Wyner’s wiretap channel, it is
possible to send several low-rate messages, each completely
protected from the wire tapper individually, and use the channel
at close to capacity. However, if any of the messages are
available to the wire tapper, the secrecy of the rest may also be
compromised. Leung-Yan-Cheong and Hellman [12] extended
Wyner’s results in [10] and Carleial and Hellman’s results in
[11] to Gaussian channels. The seminal work by Csiszár and
Körner [13] generalized Wyner’s results to “less noisy” and
“more capable” channels. Furthermore, it examined sending
common information to both the receiver and the wire tapper,
while maintaining the secrecy of some private information that
is communicated to the intended receiver only. Maurer and
Wolf [14] suggested that the secrecy constraint developed by
Wyner needed to be strengthened, since it constrains the rate
of information leaked to the wire tapper, rather than the total
information, and the information of interest might be in this
small amount. It was then shown that the results of [10] and
[11] can be extended to “strong” secrecy constraints for discrete
channels, where the limit is on the total leaked information
rather than just the rate, with no loss in achievable rates [14].

In the past two decades, common randomness has emerged as
a valuable resource for secret key generation [15], [16]. In [15],
it was shown that the existence of a “public” feedback channel
can enable the two parties to be able to generate a secret key even
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when the wiretap capacity is zero. Ahslwede and Csiszár [17],
[18] examined the secret key capacity and common randomness
capacity, for several channels. These results also benefit from
[14] to provide “strong” secret key capacities. Maurer also ex-
amined the case of active adversaries, where the wire tapper has
read/write access to the channel in [19]–[21]. The secret key
generation problem was investigated from a multiparty point of
view in [22] and [23]. Notably, Csiszár and Narayan considered
the case of multiple terminals where a number of terminals try
to distill a secret key and a subset of these terminals can act as
helper terminals to the rest in [24] and [25].

Recently, several new models have emerged, examining se-
crecy for parallel channels [26], [27], relay channels [28], and
fading channels [29], [30]. Fading and parallel channels were
examined together in [31] and [32]. Broadcast and interference
channels with confidential messages were considered in [33].
Liang and Poor [34] and Liu et al. [35] examined the multiple-
access channel with confidential messages where two transmit-
ters try to keep their messages secret from each other while
communicating with a common receiver. In [34], an achiev-
able region was found in general, and the capacity region was
found for some special cases. Multiple-input–multiple-output
(MIMO) channels were considered in [36] and [37].

In [38]–[41], we investigated multiple-access channels where
transmitters communicate with an intended receiver in the pres-
ence of an external wire tapper from whom the messages must
be kept confidential. In [38]–[40], we considered the case where
the wire tapper gets a degraded version of a GMAC signal, and
defined two separate secrecy measures extending Wyner’s mea-
sure to multiuser channels to reflect the level of trust the network
may have in each node. Achievable rate regions were found
for different secrecy constraints, and it was shown that the se-
crecy sum capacity can be achieved using Gaussian inputs and
stochastic encoders. In addition, time-division multiple access
(TDMA) was shown to also achieve the secrecy sum capacity.
Gaussian and binary additive two-way wiretap channels were
examined in [42].

In this paper, we consider the general Gaussian multiple-ac-
cess wiretap channel (GGMAC-WT) and the Gaussian two-way
wiretap channel (GTW-WT), both of which are of interest in
wireless communications as they correspond to the case where
a single physical channel is utilized by multiple transmitters,
such as in an ad hoc network. We consider an external eaves-
dropper1 that receives the transmitters’ signals through a general
Gaussian multiple-access channel (GGMAC) in both system
models. We utilize a suitable secrecy constraint that is the nor-
malized conditional entropy of the transmitted secret messages
given the eavesdropper’s signal, corresponding to the “collec-
tive secrecy” constraints used in [40]. We show that satisfying
this constraint implies the secrecy of the messages for all users.
In both scenarios, transmitters are assumed to have one secret
and one open message to transmit. This is different from [40]
in that the secrecy rates are not constrained to be at least a
fixed portion of the overall rates. We find an achievable secrecy
rate region, where users can communicate with arbitrarily small

1Even though we faithfully follow Wyner’s terminology in naming the chan-
nels, admittedly in wireless system models, eavesdropper is a more appropriate
term for the adversary.

probability of error with the intended receiver under perfect se-
crecy from the eavesdropper, which corresponds to the result
of [40] for the degraded case. We note that, in accordance with
the recent literature, when we use the term perfect secrecy, we
are referring to “weak” secrecy, where the rate of information
leaked to the adversary is limited. As such, this can be thought
of as “almost perfect secrecy.” We also find the sum-rate max-
imizing power allocations for the general case, which is more
interesting from a practical point of view. It is seen that as
long as the users are not single-user decodable at the eaves-
dropper, a secrecy-rate tradeoff is possible between the users.
Next, we show that a nontransmitting user can help increase
the secrecy capacity for a transmitting user by effectively “jam-
ming” the eavesdropper, and even enable secret communica-
tions that would not be possible in a single-user scenario. We
term this new scheme cooperative jamming. The GTW-WT is
shown to be especially useful for secret communications, as the
multiple-access nature of the channel hurts the eavesdropper
without affecting the communication rate. This is because the
transmitted messages of each user essentially help hide the other
user’s secret messages, and reduce the extra randomness needed
in wiretap channels to confuse the eavesdropper.

The rest of this paper is organized as follows. Section II de-
scribes the system model for the GGMAC-WT and GTW-WT
and the problem statement. Section III describes the general
achievable rates for the GGMAC-WT and the GTW-WT. Sec-
tions IV and V give the secrecy sum rate maximizing power
allocations, and the achievable rates with cooperative jamming.
Section VI gives our numerical results followed by our conclu-
sions and future work in Section VII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider users communicating in the presence of
an eavesdropper who has the same capabilities. Each trans-
mitter has two messages, which
is secret and which is open,2 from two sets of equally
likely messages , .
Let , , ,

, and . The messages
are encoded using codes into , where

. The
encoded messages are then transmitted. We
assume the channel parameters are universally known, and that
the eavesdropper also has knowledge of the codebooks and the
coding scheme. In other words, there is no shared secret. The
two channels we consider in this paper are described next.

A. GGMAC-WT

This is a scenario where the users communicate with a
common base station in the presence of an eavesdropper,
where both channels are modeled as Gaussian multiple-access
channels as shown in Fig. 1. The intended receiver and the
wire tapper receive and , respectively.
The receiver decodes to get an estimate of the transmitted
messages . We would like to communicate with the

2We would like to stress that open is not the same as public, i.e., we do not
impose a decodability constraint for the open messages at the eavesdropper.
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Fig. 1. Standardized GMAC-WT system model.

receiver with arbitrarily low probability of error, while keeping
the wire tapper (eavesdropper) ignorant of the secret messages

. The signals at the intended receiver and the wire tapper
are given by

(1a)

(1b)

where and are the additive white Gaussian noise
(AWGN), is the transmitted codeword of user , and
and are the channel gains of user to the intended receiver
(main channel ), and the eavesdropper (wiretap channel

), respectively. Each component of and
. We also assume the following transmit

power constraints:

(2)

Similar to the scaling transformation to obtain the standard
form of the interference channel [43], we can represent any
GMAC-WT by an equivalent standard form [40]

(3a)

(3b)

where, for each , we have the following:

• the codewords are scaled to get ;

• the new power constraints are ;

• the wiretapper’s new channel gains are ;

• the noises are normalized to get and

.

We can show that the eavesdropper gets a stochastically de-
graded version of the receiver’s signal if

. We considered this special case in [39] and [40].

B. GTW-WT

In this scenario, two transmitter/receiver pairs communicate
with each other over a common channel. Each receiver
gets and the eavesdropper gets . Receiver
decodes to get an estimate of the transmitted messages of the
other user. The users would like to communicate the open and
secret messages with arbitrarily low probability of error, while
maintaining secrecy of the secret messages. The signals at the
intended receiver and the wiretapper are given by

(4a)

(4b)

(4c)

where and . We also as-
sume the same power constraints given in (2) (with ), and
again use an equivalent standard form as illustrated in Fig. 2

(5a)

(5b)

(5c)

where we have the following:

• the codewords are scaled to get and

;

• the maximum powers are scaled to get and

;
• the transmitters’ new channel gains are given by

and ;
• the wiretapper’s new channel gains are given by

and ;



2738 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 6, JUNE 2008

Fig. 2. Standardized GTW-WT system model.

• the noises are normalized by , and

.

C. Preliminary Definitions

In this section, we present some useful preliminary definitions
including the secrecy constraint we will use. In particular, the
secrecy constraint we used is the “collective secrecy constraint”
we defined in [38] and [40], and it is suitable for the multiaccess
nature of the systems of interest.

Definition 1 (Collective Secrecy Constraint): We use the nor-
malized joint conditional entropy of the transmitted messages
given the eavesdropper’s received signal as our secrecy con-
straint, i.e.,

(6)

for any set of users. For perfect secrecy of all transmitted
secret messages, we would like

(7)

Assume for some arbitrarily small as required.
Then

(8)

(9)

(10)

(11)

where as . If , then
we define . Thus, the perfect secrecy of the system
implies the perfect secrecy of any group of users, guaranteeing
that when the system is secure, so is each individual user.

Definition 2 (Achievable Rates): Let . The
rate vector is said to be achievable if for

any given there exists a code of sufficient length such
that

(12a)

(12b)

and

sent

(12c)
is the average probability of error. In addition, we need

(12d)

where denotes our secrecy constraint and is defined in (7).
We will call the set of all achievable rates, the secrecy-capacity
region, and denote it for the GGMAC-WT, and for
the GTW-WT, respectively.

Before we state our results, we also define the following no-
tation, which will be used extensively in the rest of this paper:

(13)

(14)

(15)

(16)

(17)

(18)

Last, we informally call the th user strong if , and
weak if . This is a way of indicating whether the in-
tended receiver or the wiretapper is at a more of an advan-
tage concerning that user, and is equivalent to stating whether
the single-user secrecy capacity of that user is positive or zero.
We later extend this concept to refer to users who can achieve
positive secrecy rates and those who cannot. In addition, we
will say that a user is single-user decodable if its rate is such
that it can be decoded by treating the other user as noise. A
user group is single-user decodable by the eavesdropper if
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. Our achievable rates cannot guarantee se-
crecy for such a group of users.

III. ACHIEVABLE SECRECY RATE REGIONS

A. GGMAC-WT

In this section, we present our main results for the
GGMAC-WT. We first define two separate regions and
then give an achievable region.

Definition 3 (GGMAC-WT Superposition Region): Let
for all . Then, the superposition region

is given by

(19)

which can be written as

(20)

Definition 4 (GGMAC-WT TDMA Region): Let be such
that for all and . Let

for all . Then, the TDMA region
is given by

(21)

which is equivalent to

(22)

Remark 1: The superposition and TDMA regions can also be
written as follows:

(23)

(24)

in accordance with the definitions in (14)–(16).

Theorem 1: The rate region given below is achievable for the
GGMAC-WT

convex closure of

(25)

Proof: We first show that the superposition encoding
rate region given in (20) for a fixed power allocation is
achievable. Consider the following coding scheme for rates

for some .

Superposition Encoding Scheme: For each user , consider
the following scheme.

1) Generate three codebooks , , and . con-
sists of codewords, each component of which is
drawn from . Codebook has
codewords with each component randomly drawn from

and has codewords with each
component randomly drawn from where

is an arbitrarily small number to ensure that the power
constraints on the codewords are satisfied with high prob-
ability and . Define
and .
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2) To transmit message , user
finds the two codewords corresponding to components

of and also uniformly chooses a codeword from
. User then adds all these codewords and transmits the

resulting codeword , so that it actually transmits one of
codewords. Let .

Note that since all codewords are chosen uniformly, user
essentially transmits one of codewords at random
for each message , and its overall rate of transmission
is .

Specifically, we choose the rates to satisfy

(26)

with equality if (27)

(28)

which we can also write as

(29)

with equality if (30)

(31)

Note that if (31) is zero for a group of users, we cannot
achieve secrecy for those users. When , if the sum ca-
pacity of the main channel is less than that of the eavesdropper
channel, i.e., , secrecy is not possible for the system.
Assume this quantity is positive. To ensure that we can mutually
satisfy both (30) and (31), we can reclassify some open mes-
sages as secret. Clearly, if we can guarantee secrecy for a larger
set of messages, secrecy is achieved for the original messages.
From the first set of conditions in (25) and the GMAC coding
theorem [44] with high probability the receiver can decode the
codewords with low probability of error. To show the secrecy
condition in (12), first note that the coding scheme described is
equivalent to each user selecting one of messages, and
sending a uniformly chosen codeword from among
codewords for each. Define , and we have

(32)

(33)

(34)

(35)

where we used , and thus we have
to get (35). We will consider

the two terms individually. First, we have the trivial bound due
to channel capacity

(36)

Now write

(37)

Since user independently sends one of codewords
equally likely for each secret message

(38)

(39)

(40)

We can also write

(41)

where as since, with high probability, the
eavesdropper can decode given due to (30) and code
generation. Using(36), (37), (40), and (41) in (35), we get

(42)

(43)

Now, let us consider the TDMA region given in (22). This re-
gion is obtained when users who can achieve single-user secrecy
use a single-user wiretap code as in [12] in a TDMA schedule,
where the time share of each user is given by
and . A transmitter who can achieve secrecy,
i.e., having , transmits for portion of the time when
all other users are silent, using power, satisfying its average
power constraint over the TDMA time frame. This approach
was used in [40] to achieve secrecy sum capacity for individual
constraints. When the channel is degraded, i.e., for
all , then for collective constraints the TDMA region is
seen to be a subset of the superposition region. However, this is
not necessarily true for the general case, and by time sharing
between the two schemes, we can generally achieve a larger
achievable region, given in (25).

We remark that it is possible to further divide the “open” mes-
sages to get more sets of “private” messages, which are also per-
fectly secret, i.e., if we let , , then as long as
we impose the same restrictions on as , we can achieve
perfect secrecy of , as in [12]. However, this does not mean
that we have perfect secrecy at channel capacity, as the secrecy
subcodes carry information about each other.

Observe that even for users, a rate point in this region
is four dimensional, and hence cannot be accurately drawn. We
can instead focus on the secrecy rate region, the region of all
achievable . The subregions and are
shown for different channel gains in Fig. 3 for fixed transmit
powers, and users. Fig. 4 represents how these regions
change with different transmit powers when the channel gains
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Fig. 3. GGMAC-WT achievable regions for different channel parameters
G (P = 4; P = 2).

Fig. 4. GGMAC-WT achievable secrecy region when �P = 4, �P = 4, h =
0:1, and h = 0:3.

are fixed. For the case shown, we need the convex hull opera-
tion, as the achievable region is a combination of different su-
perposition and TDMA regions. Note also that the main extra
condition for the superposition region is on the total extra ran-
domness added. As a result, it is possible for “stronger” users to
help “weak” users by contributing more to the necessary extra
number of codewords, which is the sum capacity of the eaves-
dropper. Such a weak user only has to make sure that it is not
single-user decodable, provided the stronger users are willing to
sacrifice some of their own rate and generate more superfluous
codewords. In other words, we see that users in a set are fur-
ther protected from the eavesdropper by the fact that users in
set are also undecodable, compared to the single-user case.
The TDMA region, on the other hand, does not allow users to
help each other this way. As such, only users whose channel
gains allow them to achieve secrecy on their own are allowed to
transmit.

For the special degraded case of ,
the perfect secrecy rate region for becomes the region given
by [40, Th. 1] for . We also observe that even though there
is a limit on the secrecy sum rate achieved by our scheme, it is
possible to send open messages to the intended receiver at rates
such that the sum of the secrecy rate and open rate for all users is
in the capacity region of the MAC to the intended receiver. Even
though we cannot send at capacity with secrecy, the codewords
used to confuse the eavesdropper may be used to communicate
meaningful information to the intended receiver.

B. GTW-WT

In this section, we present an achievable region for the
GTW-WT using a superposition coding similar to that used to
achieve the region for the GGMAC-WT. We first
define the following.

Definition 5 (GTW-WT Superposition Region ): Let
. Then, the GTW-WT superposition region

is given by

(44)

which can be written as

(45)

Remark 2: We can also write this region more compactly as
the following:

(46)
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Theorem 2: The rate region given below is achievable for the
GTW-WT

convex closure of (47)

Proof: The proof is very similar to the proof of Theorem
1. We use the same coding scheme as Theorem 1, but the main
difference is that we choose the rates to satisfy

(48)

with equality if (49)

(50)

or equivalently

(51)

with equality if (52)

(53)

assuming (53) is positive. The decodability of from and
comes from (51) and the capacity region of the Gaussian

two-way channel [5]. This gives the first set of terms in the
achievable region. The key here is that since each transmitter
knows its own codeword, it can subtract its self-interference
from the received signal and get a clear channel. Therefore, the
Gaussian two-way channel decomposes into two parallel chan-
nels.

The second group of terms in (45), resulting from the secrecy
constraint, can be shown the same way as the proof of Theorem
1, since has the same form for both channels. In other words,
as far as the eavesdropper is concerned, the channel is still a
GMAC with users. As such, we need to send extra
codewords in total, which need to be shared by the two terminals
provided they are not single-user decodable.

For different channel gains, the region of all satisfying
(45) is shown in Fig. 5. Since we require four dimensions for an
accurate depiction of the complete rate region, we only focus on
our main interest, i.e., the secrecy rate region. Fig. 6 shows the
achievable secrecy rate region as a function of transmit powers.
We note that higher powers always result in a larger region.
We indicate the constraint on the overall rates, corresponding
to the capacity region of the Gaussian two-way channel, by the
dotted line. Note that the secrecy region has a structure similar
to the GGMAC-WT with . As far as the eavesdropper
is concerned, there is no difference between the two channels.
However, since the main channel between users decomposes
into two parallel channels, higher rates can be achieved between

Fig. 5. GTW-WT achievable regions for different channel parameters
G (P = 4; P = 2).

Fig. 6. GTW-WT achievable secrecy region when �P = 4, �P = 2,h = 0:3,
and h = 0:7.

the legitimate terminals (users). Thus, in effect, each user’s
transmitted codewords act as a secret key for the other user’s
transmitted codewords, requiring fewer extraneous codewords
overall to confuse the eavesdropper, and a larger secrecy re-
gion. We note that a user may either achieve secrecy or not,
depending on whether it is single-user decodable. As a result,
TDMA does not enlarge the region, since each user can at least
achieve their single-user secrecy rates. To see this, note that the
constraint on the secrecy sum rate can be written as

(54)

(55)

so that transmitting in the two-way channel always provides an
advantage over the single-user channels.
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IV. MAXIMIZATION OF SUM RATE

The achievable regions given in Theorems 1 and 2 depend
on the transmit powers. We are, thus, naturally interested in
the power allocation that would maximize the total secrecy
sum rate. Recall that the standardized channel gain for user
is , and that the higher is, the better the corre-
sponding eavesdropper channel. Without loss of generality, as-
sume that users are ordered in terms of increasing standardized
eavesdropper channel gains, i.e., . Note that we
only need to concern ourselves with the case ,
since we can combine users with the same channel gains into
one superuser. We can then split the resulting optimum power
allocation for a superuser among the actual constituting users
in any way we choose, since they would all result in the same
sum rate. In addition, from a physical point of view, assuming
that the channel parameters are drawn according to a continuous
distribution and then fixed, the probability that two users would
have the same exact standardized channel gain is zero.

A. GGMAC-WT

We first examine the superposition region given in (20). The
secrecy sum rate achievable with superposition coding for the
GGMAC-WT was given in Theorem 1 as

-

(56)
and we would like to find the power allocation that maximizes
this quantity. Stated formally, we are interested in the transmit
powers that solve the following optimization problem:

(57)

(58)

where

(59)

and yields (58). In obtaining (58), we simply used the
monotonicity of the function. The solution to this problem
is given below.

Theorem 3: The secrecy sum-rate maximizing power alloca-
tion for satisfies if and is

where is some limiting user satisfying

(60)

and we define and . Note that this allocation
shows that only a subset of the strong users must be transmitting.

Proof: We start with writing the Lagrangian to be mini-
mized

(61)

Equating the derivative of the Lagrangian to zero, we get

(62)

where we define

(63)

for any set .
It is easy to see that if , then , and we

have . If , then we similarly find that
. Finally, if , then we also have

(64)

and does not depend on , so we can set
with no effect on the secrecy sum rate. Thus, we have
if , and if . Then,

the optimal set of transmitters is of the form
since if a user is transmitting, all users such that
must also be transmitting. We also note that .
Let be the last user satisfying this property, i.e.,
and . Note that

(65)

(66)

In other words, all sets for also sat-
isfy this property and are viable candidates for the optimal set
of transmitting users. Therefore, we can claim that is the op-
timum set of transmitting users, since from above we can itera-
tively see that for all .

Note that, for the special case of users, the optimum
power allocation is

if ,

if ,
otherwise.

(67)

We also need to consider the TDMA region. In this case, the
maximum achievable secrecy sum rate is

(68)

This is a simple complex optimization problem that can easily
be solved numerically. For the degraded case, we can obtain a
closed form solution: as in [40]. In general, we

cannot obtain such a solution. However, it is trivial to note that
users with should not be transmitting in this scheme. The
secrecy sum rate is then the maximum of the solutions given by
the superposition and TDMA regions.
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B. GTW-WT

Now, we will examine the power allocation that maximizes
the secrecy sum rate given in Theorem 2 as

(69)
This problem is formally stated below

(70)

where

(71)

and yields (70). The optimum power allocation is stated
below.

Theorem 4: The secrecy sum-rate maximizing power alloca-
tion for the GTW-WT is given by

if
if
otherwise.

(72)
Proof: The Lagrangian is

(73)

Equating the derivative of the Lagrangian to zero for user ,
we get

(74)

where

(75)

An argument similar to the one for the GGMAC-WT estab-
lishes that if , or equiva-
lently, if , then . When equality

is satisfied, then regardless of , and as such
can be seen to not depend on . To conserve power,

we again set in this case. On the other hand, if
, then .

Consider user 1. If , and , this implies that
. Since , we cannot have . As a

consequence of this contradiction, we see that whenever
. Assume , and consider the two alternatives

for . We will have if ; and
if . These cases correspond to and

, respectively. Thus, we have (72) as the secrecy
sum-rate maximizing power allocation.

Remark 3: Observe that the solution in Theorem 4 has a
structure similar to that in Theorem 3. In summary, it is seen
that as long as a user is not single-user decodable, it should
be transmitting with maximum power. Hence, when both users

can be made to be nonsingle-user decodable, then the maximum
powers will provide the largest secrecy sum rate. If this is not the
case, then the user who is single-user decodable cannot transmit
with nonzero secrecy and will just make the secrecy sum-rate
constraint tighter for the remaining user by transmitting open
messages.

Comparing (72) to (67), we see that the same form of solu-
tions is found, but the range of channel gains where transmission
is possible is larger, showing that GTW-WT allows secrecy even
when the eavesdropper’s channel is not very weak.

V. SECRECY THROUGH COOPERATIVE JAMMING

In Section IV, we found the secrecy sum-rate maxi-
mizing power allocations. For both the GGMAC-WT and
the GTW-WT, if the eavesdropper is not “disadvantaged
enough” for some users, then these users’ transmit powers are
set to zero. We posit that such a user may be able to “help” a
transmitting user, since it can cause more harm to the eaves-
dropper than to the intended receiver. We only consider the
superposition region, since in the TDMA region a user has
a dedicated time slot, and hence does not affect the others.
We will next show that this type of cooperative behavior is
indeed useful, notably exploiting the fact that the established
achievable secrecy sum rate is a difference of the sum-capacity
expressions for the intended channel(s) and the eavesdropper’s
channel. As a result, reducing the latter more than the former
actually results in an increase in the achievable secrecy sum
rate.

Formally, the scheme we are considering implies partitioning
the set of users into a set of transmitting users and a set
of jamming users . If a user is jamming, then it
transmits instead of codewords. In this case,
we can show that we can achieve higher secrecy rates when the
“weaker” users are jamming. We also show that the GTW-WT
has an additional advantage compared to the GGMAC-WT; that
is the fact that the receiver already knows the jamming sequence.
As such, this scheme only harms the eavesdropper and not the
intended receivers, achieving an even higher secrecy sum rate.
Once again, without loss of generality, we consider

. In addition, we will assume that a user can either take the
action of transmitting its information or jamming the eaves-
dropper, but not both. It is readily shown in Section V-A that
we do not lose any generality by doing so, and that splitting the
power of a user between the two actions is suboptimal from the
secrecy sum-rate maximization point of view.

A. GGMAC-WT

The problem is formally presented below

(76)

(77)
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where we recall that is given by (59), such that

(78)

(79)

To see that a user should not be splitting its power among
jamming and transmitting, it is sufficient to note that regardless
of how a user splits its power, will be the same, and the
user only affects . Assume the optimum solution is such
that user splits its power, so and . Then, it is
easy to see that if , the sum rate is increased
when that user uses its jamming power to transmit, and when

, the sum rate is increased when the user uses its
transmit power to jam. When , then regardless
of how its power is split, the sum rate is the same, and we can
assume user either transmits or jams.

Note that we must have to have a nonzero
secrecy sum rate, and to have an advantage over
not jamming. This scheme can be shown to achieve the fol-
lowing secrecy sum rate.

Theorem 5: The secrecy sum rate using cooperative jamming
is

(80)

where is the set of transmitters and the optimum power allo-
cation is of the form

with

(81)

and

(82)

(83)

(84)

whenever the positive real root exists, and otherwise.

Proof: We first solve the subproblem of finding the optimal
power allocation for a set of given transmitters . The solution
to this will also give us insight into the structure of the optimal
set of transmitters . We start with writing the Lagrangian

(85)

The derivative of the Lagrangian depends on the user

if

if

(86)

since a user satisfies , it must have .
Consider a user . The same argument as in the sum-rate

maximization proof leads to if and
if . Now examine a user . We can

write (86) as

(87)

where

(88)

Let

(89)

Then, we have iff , and
iff . Thus, we again find that we must have

for all . Also, if , then
. Only if , can we have

. Now, since , we must have
. Thus, we find that

. Then, we know that for a given set of trans-
mitters , the solution is such that all users transmit with
power if . In the set of jammers , all users
have , and when this
inequality is not satisfied with equality, the jammers jam with
maximum power. If the equality is satisfied for some users ,
their jamming powers can be found from solving .
By rearranging terms in (88), we note that the optimum power
allocation for this user, call it user , is found by solving the
quadratic

(90)

the solution of which is given in (81).
Note that (90) defines an (upright) parabola. If the root given

in (90) exists and is positive, then . This comes
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from the fact that if , then for all
, and we must have . If, on the other hand,

(90) gives a complex or negative solution, then the parabola does
not intersect the axis, and is always positive. Hence,

, and does not belong to , i.e., .
The form of this solution is intuitively pleasing, since it makes

more sense for “weaker” users to jam as they harm the eaves-
dropper more than they do the intended receiver. What we see
is that all transmitting users , such that , transmit with
maximum power as long as their standardized channel gain is
less than some limit , and all jamming users must have

.
We claim that all users in must have and

all users in have . To make this argument,
we need to show that a such that there exists some
with and such that cannot be the op-
timum set. To see this, let be the optimum power allocation
for a set . Consider a new power allocation and set such that

, i.e., user is now jamming, and let ,
, and , for some small . We

then have

(91)

(92)

(93)

(94)

which is a lower value for the objective function, proving that
is not optimum. This shows that all users must

have for all users . Since the last user in has
, necessarily for all ,

and for all .
Summarizing, the optimum power allocation is such that

there is a set of transmitting users with for
, there is a set of silent users ,

and there is a set of jamming users with
for and is found from .
This is what is presented in the statement in Theorem 5.

Note that to find and , we can simply do an exhaustive
search as we have narrowed the number of possible optimal sets
to instead of and found the optimal power
allocations for each.

Two-user GGMAC-WT: For illustration purposes, let us
consider the familiar case with transmitters. In this
case, we know that either user 2 jams, or no user does. The
solution can be found from comparing the two cases. If, without
jamming, user 2 can transmit, then it is optimal for it to con-
tinue to transmit, and jamming will not improve the sum rate.
Otherwise, user 2 may be jamming to improve the secrecy rate
of user 1. The optimum power allocation for user 1 is equivalent
to if and if .
The power for user 2 is found from (81). For two users, we can
simply write (90) as

(95)

where

(96)

(97)

(98)

If , we automatically have . In addition,
we have , so we only need to concern ourselves with the
possibly positive root . We first find when . We see that

for all if , equivalent to having two
negative roots, or , equivalent to having
no real roots of . Now examine when .
This is possible if and only if . Since , this
happens only when or . However, if

, we are better off transmitting than jamming. The last
case to examine is when . This implies that ,
and it is satisfied when .

Assume . In this case, we are guaranteed
. If , then we must have since the secrecy

rate is . We would like to find when we can have .
Since , we must have , and

. This implies . It is easy to see
that if and
otherwise.

Thus, for users, the solution simplifies to (99) shown
at the bottom of the page, where

(100)

This solution can be checked to be in accordance with the
sum-rate maximizing power allocation of Theorem 3. We note
that in the case unaccounted for in (99), i.e., when and

, both users should be transmitting. In general,
the solution shows that the “weaker” user should jam if it is not

if ,

if

if ,

if ,

(99)
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single-user decodable, and if it has enough power to make the
other user “strong” in the new effective channel.

B. GTW-WT

Once again, we propose to maximize the secrecy sum rate
using cooperative jamming when useful. This problem is for-
mally stated as follows:

(101)

where we recall that is given by (71) and

(102)

(103)

Note that since there are only two terminals. A
similar argument to the GGMAC-WT case can easily be used
to establish that we can assume a user to be either transmitting
or jamming, but not both. Since the jamming user is also the
receiver that the other user is communicating with and knows
the transmitted signal, this scheme entails no loss of capacity as
far as the transmitting user is concerned. The optimum power
allocations are given as follows.

Theorem 6: The achievable secrecy sum rate for the collabo-
rative scheme described is

(104)
where is the set of transmitting users and the optimum power
allocations are given by (105) shown at the bottom of the page.

Proof: Similar to the GGMAC-WT, we start with the sub-
problem of finding the optimal power allocation given a jam-
ming set. The Lagrangian is given by

(106)

Taking the derivative we have

if

if

(107)

since a user satisfies , it must have .

Consider user . We again argue that if

, then and if , then
. Now examine a user . It is easy to see that

since such a user only harms the jammer, the optimal jamming
strategy should have , i.e., the maximum power. This
can also be seen by noting that (107) for this case simplifies to

(108)

and hence we must have for all .
The jamming set will be one of , since there is no

point in jamming when there is no transmission. Also, if any
of the two users is jamming, by the argument above,

, . We can easily see that jamming by a user only
offers an advantage if , i.e., iff
for . Thus, when , both users should
be transmitting instead of jamming. However, when any user
has , jamming always does better than the case when
both users are transmitting. In this case, for
some user , and the objective function in (101) is minimized
when this user is jamming, and the other one is transmitting.
If, however, , then it will not transmit, and we
should not be jamming. Consolidating all of these results, we
come up with the power allocation in Theorem 6.

Remark 4: A sufficient, but not necessary condition for the
weaker user to be the jamming user is if ; this case
corresponds to having higher signal-to-noise ratio (SNR) at the
eavesdropper for the original, nonstandardized model. This can
be interpreted as “jam with maximum power if it is possible to
change user 1’s effective channel gain such that it is no longer
single-user decodable.” For the simple case of equal power con-
straints , it is easily seen that user 1 should never
be jamming. The optimal power allocation in that case reduces
to

both transmit if
transmits jams if

otherwise.
(109)

VI. NUMERICAL RESULTS

In this section, we present numerical results to illustrate the
achievable rates obtained, as well as the cooperative jamming
scheme and its effect on achievable secrecy sum rates.

As mentioned earlier in this paper, examples of achievable se-
crecy rate regions are given in Figs. 4 and 6 for the GGMAC-WT
with and GTW-WT, respectively. Comparing Figs. 4 and
6, we see that the GTW-WT achieves a larger secrecy rate region

both transmit if
transmits jams if
transmits jams if ,
transmits jams if ,

otherwise.

(105)
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Fig. 7. GGMAC-WT cooperative jamming secrecy sum rate as a function of
P with different h for �P = �P = 2 and h = 1:4. The circles indicate
optimum jamming power.

than the GGMAC-WT, and offers more protection to “weak”
users. In addition, TDMA does not enlarge the achievable re-
gion for GTW-WT since superposition coding always allows
users to achieve their single-user secrecy rates for any transmit
power.

Let us have a closer look at the secrecy advantage of the
two-way channel over the MAC with two users. For the
GGMAC-WT with , the achievable maximum secrecy
sum rate is limited by the channel parameters. It was
shown in [39] that for the degraded case , the secrecy
sum capacity is an increasing function of
the total sum power . However, it is limited
since as . For the
general case, where , Theorem 3 implies that the
sum rate is maximized when only user 1 transmits (assuming

), and is bounded similarly by . On the other
hand, for the GTW-WT, unlike the GGMAC-WT, it is possible
to increase the secrecy capacity by increasing the transmit
powers. This mainly stems from the fact that the users now
have the extra advantage over the eavesdropper that they know
their own transmitted codewords. In effect, each user helps
encrypt the other user’s transmission. To see this more clearly,
consider the symmetric case where
and , which makes all users receive a similarly
noisy version of the same sum message. The only disad-
vantage the eavesdropper has is that he does not know any
of the codewords whereas user knows . In this case,

is achievable, and this
rate approaches as . Thus, it is possible to
achieve a secrecy rate increase at the same rate as the increase
in channel capacity.

Next, we examine the secrecy sum-rate maximizing power
allocations and optimum powers for the cooperative jamming
scheme. Figs. 7 and 8 show the achievable secrecy rate improve-
ment for the cooperative jamming scheme for various channel
parameters for the GGMAC-WT with . The plots are the
secrecy rates for user 1 when user 2 is jamming with a given

Fig. 8. GGMAC-WT cooperative jamming secrecy sum rate as a function of
P with different h for �P = �P = 100 and h = 1:4. The circles indicate
optimum jamming power.

Fig. 9. GTW-WT cooperative jamming secrecy sum rate as a function of P
with different h for �P = �P = 2 and h = 4:2.

power, which correspond to user 1’s single-user secrecy ca-
pacity [12], since only one user is transmitting. When ,
the secrecy capacity is seen to be zero, unless user 2 has enough
power to convert user 1’s restandardized channel gain to less
than . For the GTW-WT, it is always optimal for user 2 to jam
as long as it enables user 1 to transmit, as seen in Fig. 9. The re-
sults show, as expected, that secrecy is achievable for both users
so long as we can keep the eavesdropper from single-user de-
coding the transmitted codewords by treating the remaining user
as noise.

Since the coding schemes considered here assume knowledge
of eavesdropper’s channel gains, applications are limited. One
practical application could be securing of a physically protected
area such as inside a building, when the eavesdropper is known
to be outside. In such a case, we can design for the worst case
scenario. An example is given in Fig. 10 for the GGMAC-WT,
where we assume a simple path-loss model and fixed locations
for two transmitters and one receiver at the center. We
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Fig. 10. GGMAC-WT cooperative jamming example—darker shades correspond to higher values.

examine the transmit/jam powers for this area when the eaves-
dropper is known to be at using a fixed path-loss model
for the channel gains, and plot the transmit/jam powers and the
achieved secrecy sum rates as a function of the eavesdropper lo-
cation. It is readily seen that when the eavesdropper is close to
the BS, the secrecy sum rate falls to zero. Also, when the eaves-
dropper is in the vicinity of a transmitter, that transmitter cannot
transmit in secrecy. However, in this case, the transmitter can
jam the eavesdropper effectively and allow the other transmitter
to transmit and/or increase its secrecy rate with little jamming
power. The situation for the GTW-WT is similar and is shown
in Fig. 11. In this case, jamming is more useful as compared to
the GGMAC-WT, and we see that it is possible to provide se-
crecy for a much larger area where the eavesdropper is located,
as the jamming signal does not hurt the intended receiver.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have considered the Gaussian multiple-ac-
cess and two-way channels in the presence of an external eaves-
dropper who receives the transmitted signals through a mul-
tiple-access channel, and provided achievable secrecy rates. We
have shown that the multiple-access nature of the channels con-
sidered can be utilized to improve the secrecy of the system.
In particular, we have shown that the total extra randomness is
what matters mainly concerning the eavesdropper, rather than

the individual randomness in the codes. As such, it may be pos-
sible for users whose single-user wiretap capacity are zero, to
communicate with nonzero secrecy rate, as long as it is pos-
sible to put the eavesdropper at an overall disadvantage. This
is even clearer for two-way channels, where even though the
eavesdropper’s channel gain may be better than a terminal’s, the
extra knowledge of its own codeword by that terminal enables
communication in perfect secrecy as long as the eavesdropper’s
received signal is not strong enough to allow single-user de-
coding.

We found achievable secrecy rate regions for the
GGMAC-WT and the GTW-WT. We also showed that for
the GGMAC-WT the secrecy sum rate is maximized when
only users with “strong” channels to the intended receiver as
opposed to the eavesdropper transmit, and they do so using
all their available power. For the GTW-WT, the sum rate is
maximized when both terminals transmit with maximum power
as long as the eavesdropper’s channel is not good enough to
decode them using single-user decoding.

Finally, we proposed a scheme termed cooperative jamming,
where a disadvantaged user may help improve the secrecy rate
by jamming the eavesdropper. We found the optimum power
allocations for the transmitting and jamming users, and we
showed that significant rate gains may be achieved, especially
when the eavesdropper has much higher SNR than the receivers
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Fig. 11. GTW-WT cooperative jamming example—darker shades correspond to higher values.

and normal secret communications is not possible. The gains
can be significant for both the GGMAC-WT and the GTW-WT.
This cooperative behavior is useful when the maximum secrecy
sum rate is of interest. We have also contrasted the secrecy rates
of the two channels we considered, noting the benefit of the
two-way channels where the fact that each receiver has perfect
knowledge of its transmitted signal brings an advantage with
each user effectively encrypting the communications of the
other user.

In this paper, we only presented achievable secrecy rates
for the GGMAC-WT and the GTW-WT. The secrecy capacity
region for these channels are still open problems. In [45], we
also found an upper bound for the secrecy sum rate of the
GGMAC-WT and noted that the achievable secrecy sum rate
and the upper bound we found only coincide for the degraded
case, so that we have the secrecy sum capacity for the degraded
GMAC-WT. Even though there is a gap between the achievable
secrecy sum rates and upper bounds, cooperative jamming was
shown in [45] to give a secrecy sum rate that is close to the
upper bound in general.

Finally, we note that the results provided are of mainly the-
oretical interest, since as of yet there are no currently known
practical codes for multiple-access wiretap channels unlike the
single-user case where in some cases practical codes have been
shown to be useful for the wiretap channel [46], [47]. Further-
more, accurate estimates of the eavesdropper channel parame-

ters are required for code design for wiretap channels where the
channel model is quasi-static, as in our models considered in
this paper.
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[38] E. Tekin, S. Şerbetli, and A. Yener, “On secure signaling for the
Gaussian multiple access wire-tap channel,” in Proc. Asilomar Conf.
Signal Syst. Comput., Asilomar, CA, Nov. 1, 2005, pp. 1747–1751.

[39] E. Tekin and A. Yener, “The Gaussian multiple-access wire-tap
channel with collective secrecy constraints,” in Proc. IEEE Int. Symp.
Inf. Theory, Seattle, WA, Jul. 9–14, 2006, pp. 1164–1168.

[40] E. Tekin and A. Yener, “The Gaussian multiple-access wire-tap
channel,” IEEE Trans. Inf. Theory [Online]. Available: http://arxiv.
org/format/cs.IT/0605028, submitted for publication

[41] E. Tekin and A. Yener, “Achievable rates for the general Gaussian mul-
tiple access wire-tap channel with collective secrecy,” in Proc. Allerton
Conf. Commun. Control Comput., Monticello, IL, Sep. 27–29, 2006.

[42] E. Tekin and A. Yener, “Achievable rates for two-way wire-tap chan-
nels,” in Proc. IEEE Int. Symp. Inf. Theory, Nice, France, Jun. 24–29,
2007.

[43] A. B. Carleial, “Interference channels,” IEEE Trans. Inf. Theory, vol.
IT-24, no. 1, pp. 60–70, Jan. 1978.

[44] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: Wiley, 1991.

[45] E. Tekin and A. Yener, “Secrecy sum-rates for the multiple-access
wire-tap channel with ergodic block fading,” in Proc. Allerton Conf.
Commun. Control Comput., Monticello, IL, Sep. 26–28, 2007.

[46] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. McLaughlin, and J.-M.
Merolla, “Applications of LDPC codes to the wiretap channel,” IEEE
Trans. Inf. Theory, vol. 53, no. 8, pp. 2933–2945, Aug. 2007.

[47] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin,
“Wireless information-theoretic security—Part II: Practical imple-
mentation,” IEEE Trans. Inf. Theory, accepted for publication.


