THE GENERAL IKEHATA THEOREM FOR H-SEPARABLE CROSSED PRODUCTS

GEORGE SZETO and LIANYONG XUE

(Received 26 March 1999)

Abstract

Let B be a ring with $1, C$ the center of B, G an automorphism group of B of order n for some integer n, C^{G} the set of elements in C fixed under $G, \Delta=\Delta(B, G, f)$ a crossed product over B where f is a factor set from $G \times G$ to $U\left(C^{G}\right)$. It is shown that Δ is an H-separable extension of B and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$.

Keywords and phrases. Crossed products, Galois extensions, H-separable extensions.
2000 Mathematics Subject Classification. Primary 16S35; Secondary 16W20.

1. Introduction. Let B be a ring with $1, \rho$ an automorphism of B of order $n, B[x ; \rho]$ a skew polynomial ring with a basis $\left\{1, x, x^{2}, \ldots, x^{n-1}\right\}$ and $x^{n}=v \in U\left(B^{\rho}\right)$ for some integer n, where B^{ρ} is the set of elements in B fixed under ρ and $U\left(B^{\rho}\right)$ is the set of units of B^{ρ}.
In [4] it was shown that any skew polynomial ring $B[x ; \rho]$ of prime degree n is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\left\langle\left.\rho\right|_{C}\right\rangle$ generated by $\left.\rho\right|_{C}$ of order n. This theorem was extended to any degree n [5, Theorem 1]. Recently, the theorem was completely generalized by the present authors in [8], that is, let $B[x ; \rho]$ be a skew polynomial ring of degree n for some integer n. Then, $B[x ; \rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\left\langle\left.\rho\right|_{C}\right\rangle \cong\langle\rho\rangle$. The purpose of the present paper is to generalize the above Ikehata theorem to an automorphism group of B (not necessarily cyclic) and f is an factor set from $G \times G$ to $U\left(C^{G}\right)$. We show that Δ is an H-separable extension of B and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$.
2. Preliminaries and basic definitions. Throughout this paper, B represents a ring with $1, C$ the center of B, G an automorphism group of B of order n for some integer n, B^{G} the set of elements in B fixed under $G, \Delta=\Delta(B, G, f)$ a crossed product with a free basis $\left\{U_{g} \mid g \in G\right.$ and $\left.U_{1}=1\right\}$ over B and the multiplications are given by $U_{g} b=g(b) U_{g}$ and $U_{g} U_{h}=f(g, h) U_{g h}$ for $b \in B$ and $g, h \in G$ where f is a map from $G \times G$ to $U\left(C^{G}\right)$ such that $f(g, h) f(g h, k)=f(h, k) f(g, h k), Z$ the center of Δ, \bar{G} the inner automorphism group of Δ induced by G, that is, $\bar{g}(x)=U_{g} x U_{g}^{-1}$ for each $x \in \Delta$ and $g \in G$. We note that $f(g, 1)=f(1, g)=f(1,1)=1$ for all $g \in G$ and \bar{G} restricted to B is G.
Let A be a subring of a ring S with the same identity 1 . We denote $V_{s}(A)$ the
commutator subring of A in S. A ring S is called a G-Galois extension of S^{G} if there exist elements $\left\{a_{i}, b_{i} \in S, i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$. The set $\left\{a_{i}, b_{i}\right\}$ is called a G-Galois system for S. S is called an H-separable extension of A if there exists an H-separable system $\left\{x_{i} \in V_{S}(A), y_{i} \in V_{S \otimes_{A} S}(S) \mid i=1,2, \ldots, m\right\}$ for S over A for some integer m such that $\sum_{i=1}^{m} x_{i} y_{i}=1 \otimes_{A} 1$.
3. The Ikehata theorem. In this section, we show that Δ is an H-separable extension of B and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$. We begin with a lemma.

Lemma 3.1. (a) $V_{\Delta}(B)=\sum_{g \in G} J_{g} U_{g}$ where $J_{g}=\{b \in B \mid a b=b g(a)$ for all $a \in B\}$.
(b) $V_{\Delta \otimes_{B} \Delta}(\Delta)=\left\{\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} U_{h} \mid b(g, h) \in J_{g h}\right.$ and $k\left(b_{\left(k^{-1} g, h\right)}\right) f(k$, $\left.k^{-1} g\right)=b_{\left(g, h k^{-1}\right)} f\left(h k^{-1}, k\right)$ for all $\left.g, k \in G\right\}$.
(c) If $\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes U_{h} \in V_{\Delta \otimes_{B} \Delta}(\Delta)$, then $b_{(g, h)} U_{g h} \in V_{\Delta}(B)$.
(d) If $\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes U_{h} \in V_{\Delta \otimes_{B} \Delta}(\Delta)$, then $b_{\left(g, g^{-1}\right)}=g\left(b_{1,1}\right)\left(f\left(g^{-1}, g\right)\right)^{-1}$ for all $g \in G$.

Proof. (a) Let $b \in J_{g}$. Then $a\left(b U_{g}\right)=(a b) U_{g}=b g(a) U_{g}=\left(b U_{g}\right) a$ for all $a \in$ B. Hence $J_{g} U_{g} \subset V_{\Delta}(B)$. Therefore, $\sum_{g \in G} J_{g} U_{g} \subset V_{\Delta}(B)$. Conversely, let $\sum_{g \in G} b_{g} U_{g} \in$ $V_{\Delta}(B)$. Then $a \sum_{g \in G} b_{g} U_{g}=\sum_{g \in G} b_{g} U_{g} a=\sum_{g \in G} b_{g} g(a) U_{g}$ for all $a \in B$, and so $a b_{g}=$ $b_{g} g(a)$ for all $a \in B$ and $g \in G$, that is, $b_{g} \in J_{g}$ for all $g \in G$. Thus $V_{\Delta}(B) \subset \sum_{g \in G} J_{g} U_{g}$.
(b) $x=\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} U_{h} \in V_{\Delta \otimes_{B} \Delta}(\Delta)$ if and only if $b x=x b$ and $U_{k} x=x U_{k}$ for all $a \in B$ and $k \in G$. But

$$
\begin{align*}
b x & =\sum_{g \in G} \sum_{h \in G} b b_{(g, h)} U_{g} \otimes_{B} U_{h}, \\
x b & =\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} U_{h} b=\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} h(b) U_{h} \tag{3.1}\\
& =\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} h(b) \otimes_{B} U_{h}=\sum_{g \in G} \sum_{h \in G} b_{(g, h)}(g h)(b) U_{g} \otimes_{B} U_{h},
\end{align*}
$$

so $b x=x b$ if and only if $b b_{(g, h)}=b_{(g, h)}((g h)(b))$ for all $b \in B$ and $g, h \in G$, that is, $b_{(g, h)} \in J_{g h}$ by noting that $\left\{U_{g} \otimes_{B} U_{h} \mid g, h \in G\right\}$ is a basis for Δ over B. Moreover,

$$
\begin{align*}
U_{k} x & =U_{k} \sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} U_{h}=\sum_{g \in G} \sum_{h \in G} k\left(b_{(g, h)}\right) U_{k} U_{g} \otimes_{B} U_{h} \\
& =\sum_{g \in G} \sum_{h \in G} k\left(b_{(g, h)}\right) f(k, g) U_{k g} \otimes_{B} U_{h} \\
& =\sum_{g \in G} \sum_{h \in G} k\left(b_{\left(k^{-1}(k g), h\right)}\right) f\left(k, k^{-1}(k g)\right) U_{(k g)} \otimes_{B} U_{h} \tag{3.2}\\
& =\sum_{l \in G} \sum_{h \in G} k\left(b_{\left(k^{-1} l, h\right)}\right) f\left(k, k^{-1} l\right) U_{l} \otimes_{B} U_{h} \\
& =\sum_{g \in G} \sum_{h \in G} k\left(b_{\left(k^{-1} g, h\right)} f\left(k, k^{-1} g\right)\right) U_{g} \otimes_{B} U_{h}
\end{align*}
$$

and

$$
\begin{align*}
x U_{k} & =\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} U_{h} U_{k}=\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes_{B} f(h, k) U_{h k} \\
& =\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} f(h, k) \otimes_{B} U_{h k}=\sum_{g \in G} \sum_{h \in G} b_{(g, h)} f(h, k) U_{g} \otimes_{B} U_{h k} \\
& =\sum_{g \in G} \sum_{h \in G} b_{\left(g,(h k) k^{-1}\right)} f\left((h k) k^{-1}, k\right) U_{g} \otimes_{B} U_{h k} \tag{3.3}\\
& =\sum_{g \in G} \sum_{h \in G} b_{\left(g, l k^{-1}\right)} f\left(l k^{-1}, k\right) U_{g} \otimes_{B} U_{l}=\sum_{g \in G} \sum_{h \in G} b_{\left(g, h k^{-1}\right)} f\left(h k^{-1}, k\right) U_{g} \otimes_{B} U_{h} .
\end{align*}
$$

Hence, $U_{k} x=x U_{k}$ if and only if $k\left(b_{\left(k^{-1} g, h\right)}\right) f\left(k, k^{-1} g\right)=b_{\left(g, h k^{-1}\right)} f\left(h k^{-1}, k\right)$ for all $g, h, k \in G$.
(c) If $\sum_{g \in G} \sum_{h \in G} b_{g, h} U_{g} \otimes U_{h} \in V_{\Delta \otimes_{B} \Delta}(\Delta)$, then $b_{(g, h)} \in J_{g h}$ by (b); and so $b_{(g, h)} U_{g h} \in$ $V_{\Delta}(\mathrm{B})$ by (a).
(d) If $\sum_{g \in G} \sum_{h \in G} b_{(g, h)} U_{g} \otimes U_{h} \in V_{\Delta \otimes B \Delta}(\Delta)$, then $k\left(b_{\left(k^{-1} g, h\right)}\right) f\left(k, k^{-1} g\right)=b_{\left(g, h k^{-1}\right)} f$ ($h k^{-1}, k$) for all $g, h, k \in G$ by (b). Let $k=g$ and $h=1$. Then $b_{\left(g, g^{-1}\right)} f\left(g^{-1}, g\right)=$ $g\left(b_{1,1}\right) f(g, 1)=g\left(b_{1,1}\right)$ for all $g \in G$. This implies that $b_{\left(g, g^{-1}\right)}=g\left(b_{1,1}\right)\left(f\left(g^{-1}, g\right)\right)^{-1}$ for all $g \in G$.

Theorem 3.2. Δ is an H-separable extension of B and $V_{\Delta}(B)$ is a commutative subring of Δ if and only if C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{c} \cong G$.

Proof. (\Rightarrow) Since Δ is an H-separable extension of B and B is a direct summand of Δ as a left B-module, $V_{\Delta}\left(V_{\Delta}(B)\right)=B$ [7, Proposition 1.2]. But $V_{\Delta}(B)$ is commutative, so $V_{\Delta}(B) \subset V_{\Delta}\left(V_{\Delta}(B)\right)=B$. Thus $V_{\Delta}(B)=C$.
Since Δ is an H-separable extension of B again, there exists an H-separable system $\left\{x_{i} \in V_{\Delta}(B), y_{i} \in V_{\Delta \otimes B \Delta}(\Delta) \mid i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} x_{i} y_{i}=$ $1 \otimes_{B} 1$. Let $y_{i}=\sum_{g \in G} \sum_{h \in G} b_{(g, h)}^{(i)} U_{g} \otimes_{B} U_{h}$. We claim that $\left\{a_{i}=x_{i}, b_{i}=b_{(1,1)}^{(i)} \mid i=\right.$ $1,2, \ldots, m\}$ is a G-Galois system for C. In fact, $a_{i}=x_{i} \in V_{\Delta}(B)=C$ and by Lemma 3.1(b), $b_{i}=b_{(1,1)}^{(i)} \in J_{1}=C$. Moreover, since $y_{i}=\sum_{g \in G} \sum_{h \in G} b_{(g, h)}^{(i)} U_{g} \otimes_{B} U_{h} \in V_{\Delta \otimes_{B} \Delta}(\Delta), b_{(g, h)}^{(i)}$ $U_{g h} \in V_{\Delta}(B)$ by Lemma 3.1(c). But $V_{\Delta}(B)=C$, so $b_{(g, h)}^{(i)}=0$ when $g h \neq 1$. Thus, $y_{i}=$ $\sum_{g \in G} b_{\left(g, g^{-1}\right)}^{(i)} U_{g} \otimes_{B} U_{g^{-1}}$. By Lemma 3.1(d), $b_{\left(g, g^{-1}\right)}^{(i)}=g\left(b_{(1,1)}^{(i)}\right)\left(f\left(g^{-1}, g\right)\right)^{-1}=g\left(b_{i}\right)(f$ $\left.\left(g^{-1}, g\right)\right)^{-1}$, so $y_{i}=\sum_{g \in G} g\left(b_{i}\right)\left(f\left(g^{-1}, g\right)\right)^{-1} U_{g} \otimes_{B} U_{g^{-1}}$. Therefore,

$$
\begin{align*}
1 \otimes_{B} 1 & =\sum_{i=1}^{m} x_{i} y_{i}=\sum_{i=1}^{m} a_{i} \sum_{g \in G} g\left(b_{i}\right)\left(f\left(g^{-1}, g\right)\right)^{-1} U_{g} \otimes_{B} U_{g^{-1}} \tag{3.4}\\
& =\sum_{g \in G} \sum_{i=1}^{m} a_{i} g\left(b_{i}\right)\left(f\left(g^{-1}, g\right)\right)^{-1} U_{g} \otimes_{B} U_{g^{-1}} .
\end{align*}
$$

This implies that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)\left(f\left(g^{-1}, g\right)\right)^{-1}=\delta_{1, g}$, so $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$, that is $\left\{a_{i}, b_{i} \mid i=1,2, \ldots, m\right\}$ is a G-Galois system for C. Therefore, C is a Galois algebra over C_{G} with Galois group $\left.G\right|_{C} \cong G$.
(\Longleftarrow) Since C is a Galois algebra over C^{G} with Galois group with $\left.G\right|_{C} \cong G$, there exists a G-Galois system $\left\{a_{i}, b_{i} \in C \mid i=1,2, \ldots, m\right\}$ for some integer m such that $\sum_{i=1}^{m} a_{i} g\left(b_{i}\right)=\delta_{1, g}$. Let $x_{i}=a_{i}$ and $y_{i}=\sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1}$. We claim that $\left\{x_{i} \in\right.$
$\left.V_{\Delta}(B), y_{i} \in V_{\Delta \otimes_{B} \Delta}(\Delta) \mid i=1,2, \ldots, m\right\}$ is an H-separable system for Δ over B. In fact, $x_{i}=a_{i} \in C \subset V_{\Delta}(B)$. Noting that $U_{g}^{-1}=f\left(g, g^{-1}\right)^{-1} U_{g^{-1}}$, we have $U_{g}^{-1} b=f\left(g, g^{-1}\right)^{-1}$ $U_{g^{-1}} b=f\left(g, g^{-1}\right)^{-1} g^{-1}(b) U_{g^{-1}}=g^{-1}(b) f\left(g, g^{-1}\right)^{-1} U_{g^{-1}}=g^{-1}(b) U_{g}^{-1}$ for any $b \in B$. Hence

$$
\begin{align*}
b y_{i} & =b \sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1}=\sum_{g \in G} g\left(b_{i}\right) b U_{g} \otimes_{B} U_{g}^{-1} \\
& =\sum_{g \in G} g\left(b_{i}\right) U_{g} g^{-1}(b) \otimes_{B} U_{g}^{-1}=\sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} g^{-1}(b) U_{g}^{-1} \tag{3.5}\\
& =\sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1} b=y_{i} b .
\end{align*}
$$

for any $h \in G$,

$$
\begin{align*}
U_{h} y_{i} & =U_{h} \sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1}=\sum_{g \in G}(h g)\left(b_{i}\right) U_{h} U_{g} \otimes_{B} U_{g}^{-1} \\
& =\sum_{g \in G}(h g)\left(b_{i}\right) f(h, g) U_{h g} \otimes_{B} U_{g}^{-1}=\sum_{g \in G}(h g)\left(b_{i}\right) U_{h g} \otimes_{B} f(h, g) U_{g}^{-1} \\
& =\sum_{g \in G}(h g)\left(b_{i}\right) U_{h g} \otimes_{B} U_{h g}^{-1} U_{h g} f(h, g) U_{g}^{-1} \tag{3.6}\\
& =\sum_{g \in G}(h g)\left(b_{i}\right) U_{h g} \otimes_{B} U_{h g}^{-1} U_{h} U_{g} U_{g}^{-1}=\sum_{g \in G}(h g)\left(b_{i}\right) U_{h g} \otimes_{B} U_{h g}^{-1} U_{h} \\
& =\sum_{k \in G} k\left(b_{i}\right) U_{k} \otimes_{B} U_{k}^{-1} U_{h}=y_{i} U_{h} .
\end{align*}
$$

Thus $y_{i} \in V_{\Delta \otimes_{B} \Delta}(\Delta)$. Moreover, $\sum_{i=1}^{m} x_{i} y_{i}=\sum_{i=1}^{m} a_{i} \sum_{g \in G} g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1}=\sum_{g \in G} \sum_{i=1}^{m} a_{i}$ $g\left(b_{i}\right) U_{g} \otimes_{B} U_{g}^{-1}=\sum_{g \in G} \delta_{1, g} U_{g} \otimes_{B} U_{g}^{-1}=1 \otimes 1$. This implies that $\left\{x_{i} \in V_{\Delta}(B), y_{i} \in\right.$ $\left.V_{\Delta \otimes_{B} \Delta}(\Delta) \mid i=1,2, \ldots, m\right\}$ is an H-separable system for Δ over B. Thus, Δ is an H separable extension of B. Moreover, B is a direct summand of Δ as a left B-module, so $V_{\Delta}\left(V_{\Delta}(B)\right)=B\left[7\right.$, Proposition 1.2]. But then, the center of $\Delta, Z \subset B$; and so $Z=C^{G}$. Clearly, $V_{\Delta}(B)^{\bar{G}}=Z=C^{G}$ and $C \subset V_{\Delta}(B)$, so $V_{\Delta}(B)$ is a G-Galois algebra over C^{G} with the same Galois system as C. Therefore, $V_{\Delta}(B)=C$ which is commutative. The proof is completed.

The Ikehata theorem is an immediate consequence of Theorem 3.2 by the fact that any Galois algebra with a cyclic Galois group is a commutative ring [1, Theorem 11].

Corollary 3.3 (the Ikehata theorem). Let ρ be an automorphism of B of order n and $B[x ; \rho]$ a skew polynomial ring of degree n with $x^{n}=v \in U\left(B^{\rho}\right)$ for some integer n. Then, $B[x ; \rho]$ is an H-separable extension of B if and only if C is a Galois algebra over C^{ρ} with Galois group $\langle\rho \mid c\rangle \cong\langle\rho\rangle$.

Proof. It is easy to check that if ρ has order n, then $x^{n}=v \in U\left(C^{\rho}\right)$. Let $B[x ; \rho]$ be an H-separable extension of B. Then $V_{B[x ; \rho]}(B)$ is a Galois algebra over C^{ρ} with cyclic Galois algebra group $\langle\bar{\rho}\rangle$ generated by $\bar{\rho}\left[6\right.$, Theorem 3.2]; and so $V_{B[x ; \rho]}(B)$ is a commutative ring by $[1$, Theorem 11]. On the other hand, $B[x ; \rho]$ is a crossed product $\Delta(B,\langle\rho\rangle, f)$ where $f:\langle\rho\rangle \times\langle\rho\rangle \rightarrow U\left(C^{\rho}\right)$ by $f\left(\rho^{i}, \rho^{j}\right)=1$ if $i+j<n, f\left(\rho^{i}, \rho^{j}\right)=v$ if $i+j \geq n$, and $U_{\rho^{i}}=x^{i}$ for $i=0,1,2, \ldots, n-1$. Thus the corollary is immediate from Theorem 3.2.

Next we prove more characterizations of the ring B as given in Theorem 3.2.
Theorem 3.4. Assume Δ is an H-separable extension of B. Then the following statements are equivalent:
(1) $V_{\Delta}(B)$ is a commutative subring of Δ.
(2) $V_{\Delta}(B)=C$.
(3) $V_{\Delta}(C)=B$.
(4) $J_{g}=\{0\}$ for each $g \neq 1$ where $J_{g}=\{b \in B \mid a b=b g(a)$ for all $a \in B\}$.
(5) $I_{g}=\{0\}$ for each $g \neq 1$ where $I_{g}=\{b \in B \mid c b=b g(c)$ for all $c \in C\}$.

Proof. We prove $(1) \Longrightarrow(2) \Longrightarrow(3) \Longrightarrow(4) \Longrightarrow(5) \Longrightarrow(1)$.
$(1) \Rightarrow(2)$. This was given in the proof of the necessity of Theorem 3.2.
$(2) \Longrightarrow$ (3). Clearly, $B \subseteq V_{\Delta}(C)$. Conversely, for each $\sum_{g \in G} b_{g} U_{g}$ in $V_{\Delta}(C)$, we have $c\left(\sum_{g \in G} b_{g} U_{g}\right)=\left(\sum_{g \in G} b_{g} U_{g}\right) c$ for each c in C, so $c b_{g}=b_{g} g(c)$, that is $b_{g}(c-g(c))=$ 0 for each $g \in G$ and $c \in C$. But C is a commutative G-Galois extension of C^{G}, so the ideal of C generated by $\{c-g(c) \mid c \in C\}$ is C when $g \neq 1$ [2, Proposition 1.2(5)]. Hence $b_{g}=0$ for each $g \neq 1$. But then $\sum_{g \in G} b_{g} U_{g}=b_{1} \in B$. Thus $V_{\Delta}(C) \subseteq B$, and so $V_{\Delta}(C)=B$.
$(3) \Longrightarrow(4)$. By hypothesis, $V_{\Delta}(C)=B$ so $V_{\Delta}(B) \subset V_{\Delta}(C)=B$. But $V_{\Delta}(B)=\sum_{g \in G} J_{g} U_{g}$ by Lemma 3.1(a), so $\sum_{g \in G} J_{g} U_{g}=V_{\Delta}(B) \subset B$. Thus $J_{g}=\{0\}$ for each $g \neq 1$.
$(4) \Longrightarrow(5)$. By Lemma 3.1(a) again, $V_{\Delta}(B)=\sum_{g \in G} J_{g} U_{g}$, and by hypothesis, $J_{g}=\{0\}$ for each $g \neq 1$, so $V_{\Delta}(B)=J_{1}=C$. Hence part (2) holds; and so $V_{\Delta}(C)=B$ by (2) $\Rightarrow(3)$. Clearly, $V_{\Delta}(C)=\sum_{g \in G} I_{g} U_{g}$, so $\sum_{g \in G} I_{g} U_{g}=B$. Thus $I_{g}=\{0\}$ for each $g \neq 1$.
$(5) \Rightarrow(1)$. Since $C \subset B, J_{g} \subset I_{g}$ for all $g \in G$. Hence $I_{g}=\{0\}$ implies $J_{g}=\{0\}$. But then $V_{\Delta}(B)=\sum_{g \in G} J_{g} U_{g}=J_{1}=C$ which is commutative.

Corollary 3.5. C is a Galois algebra over C^{G} with Galois group $\left.G\right|_{c} \cong G$ if and only if Δ is an H-separable extension of B and anyone of the equivalent conditions in Theorem 3.4 holds.

We conclude the present paper with two examples of crossed products Δ to demonstrate our results:
(1) Δ is an H-separable extension of B, but $V_{\Delta}(B)$ is not commutative,
(2) $V_{\Delta}(B)$ is commutative, but Δ is not an H-separable extension of B.

Hence C is not a Galois algebra over C^{G} with $\left.G\right|_{C} \cong G$ in either example by Theorem 3.2.
Example 3.6. Let $B=Q[i, j, k]=Q+Q i+Q j+Q k$ be the quaternion algebra over the rational field $Q, G=\left\{g_{1}=1, g_{i}, g_{j}, g_{k} \mid g_{i}(x)=i x i^{-1}, g_{j}(x)=j x j^{-1}, g_{k}(x)=\right.$ $k x k^{-1}$ for all $\left.x \in B\right\}$, and $\Delta=\Delta(B, G, 1)$. Then
(1) The center of $\Delta, Z=Q=C$, the center of B.
(2) Δ is a separable extension of B and B is an Azumaya Q-algebra, so Δ is an Azumaya Q-algebra. Since Δ is a free left B-module, Δ is an H-separable extension of $B[3$, Theorem 1].
(3) $V_{\Delta}(B)=Q+Q i U_{g_{i}}+Q j U_{g_{j}}+Q k U_{g_{k}}$ which is not commutative, so C is not a Galois algebra over C^{G} with Galois group $\left.G\right|_{C} \cong G$ by Theorem 3.2.

ExAmple 3.7. Let $B=Q[i, j, k]=Q+Q i+Q j+Q k$ be the quaternion algebra over the rational field $Q, G=\left\{g_{1}=1, g_{i} \mid g_{i}(x)=i x i^{-1}\right.$ for all $\left.x \in B\right\}$, and $\Delta=\Delta(B, G, 1)$.

Then

(1) The center of $B, C=Q=C^{G}$.
(2) $V_{\Delta}(B)=Q+Q i U_{g_{i}}$ which is commutative.
(3) The center of $\Delta, Z=Q+Q i U_{g_{i}} \neq C^{G}$. On the other hand, assume that Δ is an H-separable extension of B. Since B is a direct summand of Δ as a left B-module, $V_{\Delta}\left(V_{\Delta}(B)\right)=B\left[7\right.$, Proposition 1.2]. This implies that the center of $\Delta, Z=C^{G}$, a contradiction. Thus Δ is not an H-separable extension of B. Therefore, C is not a G-Galois algebra over C^{G} with $\left.G\right|_{c} \cong G$ by Theorem 3.2.

ACKNOWLEDGEMENT. This paper was written under the support of a Caterpillar Fellowship at Bradley University. We would like to thank Caterpillar Inc. for the support.

REFERENCES

[1] F. R. DeMeyer, Some notes on the general Galois theory of rings, Osaka J. Math. 2 (1965), 117-127. MR 32\#128. Zbl 143.05602.
[2] F. R. DeMeyer and E. Ingraham, Separable Algebras over Commutative Rings, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, Berlin, Heidelberg, New York, 1971. MR 43\#6199. Zbl 215.36602.
[3] S. Ikehata, Note on Azumaya algebras and H-separable extensions, Math. J. Okayama Univ. 23 (1981), no. 1, 17-18. MR 82j:16012. Zbl 475.16003.
[4] , On H-separable polynomials of prime degree, Math. J. Okayama Univ. 33 (1991), 21-26. MR 93g:16043. Zbl 788.16022.
[5] S. Ikehata and G. Szeto, On H-separable polynomials in skew polynomial rings of automorphism type, Math. J. Okayama Univ. 34 (1992), 49-55 (1994). MR 95f:16033. Zbl 819.16028.
[6] , On H-skew polynomial rings and Galois extensions, Rings, Extensions, and Cohomology (Evanston, IL, 1993) (New York), Lecture Notes in Pure and Appl. Math., vol. 159, Dekker, 1994, pp. 113-121. MR 95j:16033. Zbl 815.16009.
[7] K. Sugano, Note on semisimple extensions and separable extensions, Osaka J. Math. 4 (1967), 265-270. MR 37\#1412. Zbl 199.0790.
[8] G. Szeto and L. Xue, On the Ikehata theorem for H-separable skew polynomial rings, Math. J. Okayama Univ., to appear.

Szeto: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: szeto@bradley.bradley.edu
Xue: Department of Mathematics, Bradley University, Peoria, Illinois 61625, USA
E-mail address: 1xue@bradley.brad1ey.edu

