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ABSTRACT. In this note we shall prove for two types of regular

rings A that every element of GL
r
(A[X ]) is a product

of an element of E
r
(AIX...,X

n
])(the group of elementary matrices

and an element of GL
r
(A), for r > 3 and n arbitrary. This is a

kind of GL -analogue of results of Lindel and Mohan-Kumar and is

an extension of a result of Suslin.
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1. Introduction.

In this note we consider rings of the type A[T i,...,Tn] with

A a commutative regular noetherian ring. Suslin ([9]) has proved

thatifkisafieldandr> 3 everYelementofni(k[T
1 '• •

T
n])

is an element of E
r
(k[T ,T

n
])(the group of elementary

matrices over k[T ,T
n
]). This can be seen as a GL -analogue

of the famous Serre problem, which was solved by Quillen ([7])

and Suslin ([8]). An extension of the Serre problem is the

following question, which was first raised by Bass ([1]). Take

A as above and let P be a finitely generated projective

A[T 1,...,T
n
]-module. Does there exist a finitely generated projec-

tive A-module P' such that P P' 
A 

A[T ,...,Tn]? If such a P'
== 

exists we call P an extended module. The answer to this question

is positive in the following two cases for all projective

APT T ]-modules.

(i) A is a complete regular equicharacteristic local ring. (See

Lindel and Lakebohmert ([3]) and Mohan Kumar ([6])).



(ii) A is regular and essentially of finite type over a perfect

field k. (See Lindel ([5])).

There are a few more cases for which the answer is known to be

positive but these are essentially trivial consequences of the

first case. (See also remark 2.2). Mohan Kumar has pointed out

that one doesn't need the assumption that k is perfect i (ii).

The GL -analogue of the question of Bass is the following.

Is every element of GIA[T1,...,Tn]) a product of an element

of GL
r
(A) and an element of E(A[T1,...,Tn])? Since the answer

is negative if A is a field, r = 2 and n> 2 (see [9]), we

take r > 3. In this note we shall show that the answer is

positive if A is of one of the two types described above.

We also don't need the assumption that k is perfect in (ii).

For the proofs we shall need an extension of a lemma of Suslin.

In section two we shall start with two lemmas which we

will need for the proofs given in section three.

2. Two lemmas.

In this section A will be a commutative ring. Let S c A

be a multiplicatively closed set. If a E GLr(A)(resp.

a(T 1,...,Tn) E GLr(A[T 1,...,Tn])) we shall mean by as

(resp. 
a,(Tl' 

...,T
n' 
)) the image of the element a (resp.

in GL (SA) (resp. GL (S
-I
A[T...,T

n
]) under

the canonical mapping. We shall use the same notations for

elements of A or A[T1,...,Tn]. If h E A is not a nilpotent

we shall mean by Ah the ring S A where S = and write a
n > o



instead of a in the notation above. The next lemma is in fact the

unstable version of ([10], theorem 1.1.(i)). The proof is essentially

the same as in the stable case.

2.1. Lemma. Let S c:A be a multiplicatively closed set.

If GyA[T1,...,Tn]) = GLr(A).Er(A[T ,...,Tn]) then also

-1 -1
GLIJS A[T 1,...,T yn]) = GS A).Er( A[T1,...,Tn]).

Proof. Let a(T ,T)... E GL (SA[T ,T]) We We may assume that
n r

= I. Let f(T...,T ) = det(a(T ...,T )
-1
). Since also

n n (1,

f(0,...,0)= 1 there exist a g
1 
E S, an r x r matrix

with coefficients in A[T 1,.. .,T
n 

and an (T 1,...,T) E A T I

such that

a(g T ,...,g iTn) =

f(giT ,...,giTn) =

= I and N0,...,0) =

Since det(a(g T gI I"

g E S such that

det a(g2

f(giT i,....g
n

, • • • , g2Tn)).(g

Hence a(g 21,...,g2Tn) E GL
r 
A[T

ot(gT , • •

]

.,g T )= y II e. . (f (T

n k=1 10k L̀

) = 1 there exist a

Tn) = 1

and therefore we have

•

with y E GL(A) and fk(T 1,...,Tn) E A[T ,...,Tn] for all

1 <k < m. So

a (T ) =
' n

T
1 

T
n 

ei (fk( ) ).

k=1 - g1g2 glg2

q.e.d.



2.2. Remark. An analogue of lemma 2.1 also holds in the projective

module case. By this we mean that if every finitely generated

projective A[T 1,...,Tn] - module is extended from a finitely

generated projective A-module then also every finitely generated

projective S
_1
A[T...,T

n
1-module is extended from a finitely

generated projective S 'A-module. The stable version

(K -version) of this theorem has been proved in [10] theorem 1.1

(i). One can give the same kind of proof for the unstable case,

with which we are concerned here. This shows that Satz 1,1' and 2

of [3] are all easy consequences of the same theorems for rings

of the type BE X1, ...,Xm]] with B a regular ring of dimension

< 2.

Lemma 2.4 is a generalisation of ([9], lemma 3.7). But for the

proof we state first another lemma of Suslin.

2.3. Lemma. (Suslin ([9], lemma 3.3)). Let h E A be a non-

(Z.06-1,
kl

nilpotent and 6 E GLr(Ah)(r > 3) Let a(Z) =

where k 1 and f E Ah[Z]. Then there exist a natural number m

and a matrix T E E
r
(A[Z],ZA[Z]) such that ( ) =

2.4. Lemma. Let B c:A be a subring, h E B not a nilpotent and

r > 3.

(i) If Ah + B = A then there exist for every a E Er(Ah)

a E Er(Bh) and y E Er(A) such that a =

(ii) If moreover Ah n B =Bh and h is not a zero-divisor in A

then there exist for every a E GL,(A) with ah E Er Ah

a IS E GL(B) and y E Er(A) such that a =



Proof. i) Assume that a = II e.

k=1 lkik

P-1
Define G = II e.

k=1 1 J
k
)0 

—
< < m) .

) with c A.

By lemma 2.3 there exist a natural numbers and matrices

= T (Z) E E (A[Z], ZA[Z]) such that

T(Z)  = G e. . Z)a
p j

P P

From the assumption it follows that Ahn + B = A for all n. Hence

for all 1 < k < m we can find a E A,

ink such that

b
k 

a h
s

hmk

E B and a natural number

b
s 

k
So we have a = e. . 

h 
e. ( ) =

k=1 1k3k 
j nt
kkh k

II a e.

k=m 
k

kJk

1

Now take y = )EE A and

k=m

k 
II e. . .

k=1 10k hiak

in bk

13 = 11 e4 (  E E ) and we are done,
k=1 1kk hmk

(ii) From the assumptions it follows that Ah n B = h for all n.

Hence B n A = B. Using (i) we can write a
h 

y 
h13

 with

y E Er(A) and 13 E Er(Bh). Now { 1a E GLr(A) and 13. E GLr(Bh)

-and moreover (y a)h = 13 But this implies that y
1 
a E GLr(B)

, -
Hence a = y(y la) E E (A)GLIJ



2.5. Remark. The conditions in 2.4 (ii) are equivalent to the

conditions that h is not a zero-divisor and

lim B/hnB = lim A/hnA.

3. GL
r f

or polynomial rings over regular rings.

In this section all rings will be commutative and r > 3.

We shall prove that CL A[T 1,...,Tn]) = ar(A)Er(A[T 1 ,...,Tn])

for two types of regular rings. By [9], theorem 3.1 we know that

it is enough to study local rings.

3.1. Theorem. If A is an equicharacteristic regular complete

local ring and a(T1,...,Tn) E GLr(A[T 1,...,T ]) is such that

a(0,...,0) = I then a(T1,...,T) E Er(A[T 1,...,Tn])( > 3).

Proof. By Cohen's structure theorem we know that

A kKX 1, where k is the residue class field of A.== m

We shall prove the theorem by induction on m. The case m = 0

has been proved by Suslin ([9], corollary 6.7). If n = 0 there

is nothing to prove. So we may assume m > 1 and n > 1.

Since det(a(T...,T
n
)) = 1 and invertible matrices with

determinant one over a field are elementary, there exists a

non-zero f E kEX1,...,MEr1,...,Tn] such that

E Er(kliXi, • • • ,XmillT i , • • • ,Tn]f)

Now there exists a transformation of the variables

T
n 

such that f gets the following form:

f = hT
s 
+ f T

s-1
+ . . + f

os-1 n



with fi E 14[X 1,...,XmDIT i,...,T and h E klEX 1,

Since the leading coefficient of f is a unit in

k[fX we have (lo.,57[9], corollary 5.7)

a
h
(T ,...,Tn) E ErNEX

By the Weierstrass preparation theorem ([2],§3.8) we know

that h is the product of a unit u and a distinguished

polynomial (i.e. h = u (Xr+a Xr-1+ +ad with
m r-1 m

ai E for all 0 < i < r-1).

So we may assume that h is a distinguished polynomial and

hence every g E 
1' 
...,X

m
I] can be uniquely written as g = qh + r

with q E kEX1,...,XJ and r E kffX1,...,Xm_ lIXm] a polynomial

in X of degree < r-1 (see [2],§3.8 proposition 5).

Hence if one takes B = klEX ,X T and
l'''' m-1 m' n

q[x
.,XmIT1,...,Tn one has A'h + B = A', A'h n B = Bh

and h is not a zero-divisor in A'. So by lemma 2.4 we have

a(T 1,...,T
n

with y(T .,Tn) E E

13(X
' 
0,,

m

=1 T ,T T
n m n

A') and n) E GLr(B). Since

) = y(0,...,0) E Er(kiEX

E E (14IX ,X ...,T D. Now
r m n

= y(T

..,X TO also (3,(X ,0,...,0)-1E

13(Xm,t1,...,Tn)) E Er04[X1,...,XupTi,...,Tnn since

(Xm,0,. ,0)-113(Xm,T1,...,Tn) E Er(kaX1,...,Xm_01[Xm ,...,Tn])

by the induction hypothesis. q.e.d.



Let k be a field. Recall that we call A of essentially

finite type over k if A = S IC with S a multiplicatively

closed subset of C and C = k[X1,... ,X
m
]/I , a quotient ring

of a polynomial ring over k. For the proof of the next theorem

we need a proposition of Lindel ([5], propositions 2 and 3)

3.2. Proposition (Lindel). Let A be a regular local ring of

essentially finite type over a perfect field k. Then there

exists a subring B of A with an element h E B such that

(i) B = k[X1,...,Xp]p, whereil is a prime ideal of k[X ,...,Xp]

(ii) Ah +B = A and Ah n B = Bh.

We are now ready for the next theorem.

3.3. Theorem. Let A be a regular ring of essentially finite

type over a field k. If a(T 1,...,Tn) E GL GAZT T ]) isI I"

such that a(0,...,0) = I then a(T ,...,Tn) E Er(A[T ])

(r> 3).

Proof. We first consider the case in which k is a perfect field.

The proof goes by induction on dim A. By [9] theorem 3.1 it is

in each step enough to prove the theorem for local rings. If

dim A = 0 we have a field and we 'areagain in Suslin's case

([9], corollary 6.7). Hence we assume dim A > I.

Take a ring B and an h E B as in proposition 3.2. Since

dim Ah < dim A we have that ah(T1,...,Tn) E Er(Ah[Ti,

by the induction hypothesis. Since A is local and regular we

know that h is not a zero-divisor in A[ T 1, ...,T ] and we can
n

apply lemma 2.4 (ii) to a(T ). So



(T•..,Tn) =

with 13(T 1,...,Tn) E GLr(B[T 1,.•.,Tni) and '

y(T 1,...,Tn) E

Hence we have

-1 1a(T
n
) =

where the first two factors are contained in E
r
(AIT1'• ,T I•

Since the theorem is true for a polynomial ring ([9],

corollary 6.7) and B is a localisation of a polynomial ring,

the theorem is also true for B by lemma 2.1. Hence

Ps(T
n

E E B1T1,...,T cE
r 
AN' • .,Tn11).

The case in which k is not a perfect field can be reduced to

the perfect field case as follows. We may assume that

A = (k[X„...,X
m 
]/I)

p 
with p a prime ideal of k[X1,...,x.]/I

and a(T1,...,Tn) E GLr(A[T 1,...,Tn]). If Char(k) = p one can

find a ,a E k such that a set of generators of I already

exists in A' =IFp a
l'
...,a

s
][x ..,x ), a minimal set of

generators of p already exists in A' and

a(T1,...,Tn) E GLr((A'/I') ,[T
2. 1

,T J) where 1' is the

ideal generated in A' by the set of generators of I and where

is the ideal generated in A'/I'by the generators of p.

By adjoining a few more elements of k to A' and then a suitable

localisation one can construct a ring B c: A which is regular

and of essentially finite type over 1F such that

E GLr(B[T ]). Hence



) E Er B[T ]) E A[T ] since]F

is perfect.

3.4. Remark. If A = 
k{X1" 

.,X } is the ring of convergent
n

power series over a field with a valuation then theorem 3.1

also holds for this ring since one has again a Weierstrass

preparation theorem.
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