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THE GENERAL MOMENT PROBLEM, A GEOMETRIC APPROACH!

By J. H. B. KEMPERMAN
Unive%si'iy of Rochester

0. Summary. Let g1, ---, ¢g» and k be given real-valued Borel measurable
functions on a fixed measurable space T = (T, @). We shall be interested in
methods for determining the best upper and lower bound on the integral

w(h) = [rh(t)u(ds),

given that u is a probability measure on T with known moments p(g;) = y;,

j=1, -, ,n.
More precisely, denote by 9n" = aw*(T) the collection of all probability
measures on T such that u(lg]) < « (j =1, ---, n) and p(|h]) < «.For

eachy = (1, -+, Yn) € R", consider the bounds
L(y) = L(y|h) = infu(k),  U(y) = U(y|h) = sup u(h),
where p is restricted by
peI(T);  wlg) = v1, -+, wl(ga) = Yn-

If there is no such measure x we put L(y) = 4+, U(y) = — . In many
applications, A is the characteristic function (indicator function) 2 = Is of a
given measurable subset S of 7. In that case we usually write instead L(y | Is)
= Lg(y), U(y | Is) = Us(y). Thus, Ls(y) < p(8) £ Us(y) are the best possible
bounds on the probability mass p(S) contained in S, given that pe It and
that u(g) = y. Here, g denotes the mapping ¢g: 7 — R” defined by g(¢) = (g:(¢),
<o+, ga(1)). By go we shall denote the function on 7 with go(¢) = 1 forallte T.

The following tentative method for finding L(y | k) may be said to go back
to Markov [8] and Riesz [13], see [7]. Choose an (n + 1)-tuple d* = (do, dy,
-+, d,) of real numbers such that

do + duga(2) + -+ + duga(t) = B(¢) for all teT,
and define
B(d*) = {ze R": 2 = g(t) for some t ¢ T with D7 dgi(t) = h(t)}.

Then
Ly |k) = do 4 D rudjy; foreach yeconv B(d¥),

(conv = convex hull).
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The main purpose of the present paper is to investigate the merits of this
method and certain more general methods.

It turns out (Theorem 5) that for almost all y ¢ B” there exists at most one
admissible d* with y & conv B(d*). Moreover, provided y ¢ int (V) where
V = conv g(T), there exists at least one such d* if and only if there exists a
measure u £ M with u(g) = y and w(h) = L(y | h).

A sufficient condition for the lattér would be that 7' has a compact topology
with respect to which ¢ is continuous and h is lower semi-continuous.

More interesting is a related method for finding L(y|h), see Theorem 6,
which will work for each y £ int (V) as soon as g is bounded.

The situation where y 2 int (V') is discussed in Section 4. It appears that the
assumption y ¢int(V) is a rather natural one.

We have chosen to develop the important special ease h = Ig in a partly
independent manner, see the Sections 5, 6 and 7. In this case, the (n + 1)-tuple
d* must satisfy

do+ 2 3adz; <1 forall zeg(T),
<0 forall zeg(8').

Here, 8’ denotes the complement of S in 7. Assuming that dy, - -, d» are not
all zero, let us associate to d* the pair of hyperplanes H and H' with equations

Z;;l dej =1—4dy and Z;';l d,-z,- = '—do,

respectively. This pair is such that H, H' are distinct parallel hyperplanes with
g(8') and H on opposite sides of H and g(T) and H' on the same side of H;
such a pair H, H' will be said to be admissible. Observe that

B(d%) = (9(8) nH) u (¢(8") n H'),

with H, H' as the admissible pair determined by d*.

The present (n + 1)-tuple d* is useful, for determining Ls(y) = L(y|Is)
for at least some points y, only when both g(8) n H 5 0 and ¢(8") n H' < 0.
That is, H should not only support the set g(S') but even “intersect” it;
similarly, H and ¢(S). Fortunately, one can usually replace “intersect”’ by
“touch”. More precisely (Corollary 13), if H and H' form an admissible pair
as above then Ls(y) = do + D5 dsy; for each point y such that both

yeint(V),  yeconvl{H nconvg(S8)} u{H nconvg(SH}],

a bar denoting closure.

Provided ¢ is bounded the latter generalization will yield the value Lgs(y)
for all relevant y, see Theorem 7. Whether or not g is bounded, we have for almost
all y that there can be at most one admissible pair of hyperplanes H and H’
yielding Lg(y) in the above manner.

A detailed discussion of the method on hand may be found in Section 6.
The present method is geometrical in the following sense: (i) one only needs to
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know the sets g(8) and g(8’) in R"; (ii) afterwards, one considers all the pairs
H and H' of parallel hyperplanes touching g(8) and ¢(S’) in the above manner.
Each such pair yields Ls(y) for certain values y; varying the pair H, H' one often
obtains the value Ls(y) for all relevant y ¢ R".

Usually, there are many different regions in y-space, each with its oun analytic
Sformula for Lg(y). Nevertheless, all these different formulae are derived from one
and the same geometrical principle.

A number of specific illustrations, all with n = 2, are presented in Section 7.
They indicate that it is often quite easy to solve the following problem in a
geometric manner. Let X be a random variable taking its values in a measurable
space T, such that

E(g(X)) =, E(g(X)) = 42,

with ¢g; and g» as known real-valued Borel measurable functions on 7. The
problem is to determine the best possible lower bound Ls(y) on Pr(X e8)
where S is a given Borel measurable subset of 7.

1. Measures of finite support. Let 7' = (T, @) be a given measurable space.
By a measure on T of finite support we mean a measure of the special form

(1.1) p(A) = 2 1eapi,
thus,
(1.2) p(h) = 2 Faph(ts).

Here, A is an arbitrary subset of T, h an arbitrary function on 7. Further,
{t., -+, 1t} is a finite subset of 7, while the p; are real numbers (depending on u).
Note that u is 2 measure on the o-field of all subsets of 7.

For each subset S of T, let M*(S) denote the collection of all probability
measures on 7 whose support is finite and contained in S. The following Theorem
1 implies that the quantities L(y | ) and U(y | k) may also be defined as

(L.3) L(y|h) = inf {p(h): pe MT(T), u(g) = y}
and
(1.4) U(y|h) = sup {u(h): pe MT(T), u(g) = }.

It was found independently by Richter {12], p. 151, and Rogosinsky [14],
p- 4, see also Mulholland and Rogers [10]. The proof proceeds by a straightfor-
ward induction with respect to N.

TrroreMm 1. Let fi, - -+, fx be given real-valued Borel measurable functions on a
measurable space Q, (such as g, + -, g, and h on T'). Let u be a probability measure
on Q such that each f; 1s integrable with respect to u. Then there exists a probability
measure p’ of finite support on Q satisfying

W) = w(fy) forall j=1,.-- N.

One can even attain that the support of i’ has at most N -+ 1 points.
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2. Restating the problem. From now on, unless otherwise stated, when we
speak of a measure we shall always mean one having a finite support. Therefore
the o-field @ associated with T' may as well be taken as the collection of all sub-
sets of T to the effect that every function on T is measurable.

Our problem may now be restated as follows. Let T be a given non-empty set
and let g:7 — R" and h:T — R be given (arbitrary) functions on T,

(2.1) g(®) = (g:(2), ==+, gn(1)).

We shall be interested in the quantities L(y | 2) and U(y | k) defined by (1.3)
and (1.4), that is, in the best upper and lower bounds

(2.:2) L(y|h) £ [, M(u(dt) < Uy|h),

given that u is a probability measure on T satisfying u(g) = .

Sometimes one is interested in several functions k;: T — R at the same time.
Consider the corresponding function ¢ = (hy, ---, k) taking values in R*
and further the convex set V(y) of all possible values u(¢) when u is restricted
by we MT(T) and u(g) = y. Then the closure of V(y) is completely determined
by all the hyperplanes supporting V(y) as well as possible. These in turn may
be read off from the different values L(y |k) where A runs through all linear
combinations & = aihy + -+ + ahs ; see [6], p. 573. From now on, h will again
be a fixed real-valued function on 7.

An important role will be played by the set

(2.3) V = conv g(T).
It may be helpful to think of the range
g(T) = {zeR": 2 = g(t) forsome teT}

of g as a curve in n-space (if T is a one-dimensional interval) or a two-dimensional
surface in n-space (if 7' is a square). The following lemma is rather obvious, see
(1.2).

LEMMA 2. Given y & R" the condition y e V is necessary and sufficient in order
that there exists a measure ¢ MT(T) having a moment u(g) = y.

Hence, by (1.3),

(2.4) L(y|h) < 4+« ifandonlyif yeV.
Obviously, L(y) = L(y | A) is a eonvex funetion on V, in the sense that
(2.5) LW + (1= Ny") SALE) + 1 — ML)

whenever 0 < A < landy eV, y" e V.

By a flat in R" we shall mean a translate of some linear subspace of R". Let
F denote the minimal flat containing V. If the system of functions {go, g1,
+++, ga} on T has rank k then F is of dimensionk — 1 (1 = k = n 4 1).

By intv(V) we shall mean the set of points y ¢ V which are interior to V
relative to the flat F. Equivalently, y ¢ intv(V) precisely when to each point
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y e V with ¢’ # y there corresponds at least one point y” ¢ V such that y itself
is an (interior) point of the open line segment (3, ¥”). If L(y) > — « for some
point y ¢ intv (V) then L(y) > — « for all y ¢ V. In other words, if L(y) = —
for some point y ¢ V then L(y) = — o for all y & intv(V).

It is well-known, [2], p. 19, that the convex function L(y) is automatically
continuous throughout intv (V') as soon as it is finite there. Therefore,

(2.6) limy oy yrev L(y | h) = L(y| k) provided v einty (V),
(even if L(y) = — « throughout intv (V)). Analogous results hold for
(2.7) U(y) = U(y|k) = —L(y| —h).

In particular, U(y) is a concave function on V.

The following three properties are clearly equivalent: (i) The set V as defined
by (2.3) has a non-empty interior; (ii) The range g(T) is not the subset of any
hyperplane in R"; (iii) The n + 1 functions go, -+, g (go = 1) are linearly
independent on 7.

Suppose that instead the system {go, g1, - - - , g»} were of rank & < n. Rearrang-

ing the indices of g1, -- -, g» we may assume that go, g1, + -, gr—1 are linearly
independent. Define ¢g*:T — R*™ by ¢*(¢) = (gu(8), -++, gea(2)) and put
V* = conv g*(T). Further, fory = (y1, -+, yn) e R* let 4™ = (w1, -+, Yea).

It is easily seen that: (i) If u e M(T') then the condition u(g) = y is equivalent
to the condition u(g*) = ¥*; (ii) y € V if and only if y* ¢ V*; (iii) y e intv (V)
if and only if ¥™ ¢ int (V). These remarks show that it would be no real loss
of generality to assume that go, g1, - - -, g» are linearly independent.

Suppose this is the case so that int (V') is non-empty. Now consider the convex
subset of R"** defined by

(2.8) Q= =1{(y,v):yeV,vy = L(y| )},

with v as a real number. Clearly, @ has a non-empty interior relative to R"*.
Assuming that L(y | h) > — « in V, we have that each point

(2.9) Py = (y, L(y | b)), (yeV),

is a boundary point of . Hence, [18], p. 27, there passes through Py, at least one
hyperplane H, supporting the convex body Q. Provided y ¢ int (V'), this hyper-
plane is always ‘“non-vertical”” in the sense that it admits a (unique) equation
of the form

(2.10) H={(z2,v)izeR" v = do + 2 jadws.

We also want to make special notice of the fact that, by a theorem of Reide-
meister [11], the set of points y € int (V'), such that through P, there passes
more than one hyperplane H, of support to @, must be of (n-dimensional Lebesgue)
measure 2ero.

Using (1.2) and (1.3), the following are easily seen to be equivalent: (i)
The hyperplane in R™*' defined by (2.10) is a hyperplane of support to Q; (ii)
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We have

(2.11) I(z|h) = do + D tadz; forall zeV.

Thirdly,

(212) w(h) Z do+ Xladiu(gy) forall weMH(T).

Finally,

(2.13) h(t) = do + 2_jdigi(t) forall teT.

Let D* denote the collection of all (n + 1)-tuples of real numbers d* = (dy,
dy, -+, dn) satisfying (2.13). The above considerations yield the following

result, essentially as discovered independently by Richter [12], p. 156, in 1957
and by Isii and Karlin in 1960, see [5], p. 472. A generahzatlon of Theorem 3
may be found in [6], p. 574.

TraroreM 3. We have for each y ¢ int (V) that

(2.14) L(ylh) sup {do + Z]=1djy1 = (do, -, dn)eD*}-

Provided L(y | k) > — o, the supremum in (2.14) is even assumed by some d* ¢ D™,
Finally, if L(y | k) s finite in int (V') then for almost all y ¢ int (V') the supremum
in (2.14) is assumed by a unique d* ¢ D*.

As a corollary, we have that L(y | k) is finite in int (V') if and only if D™ is
non-empty; (if D* is empty then L(y |h) = — « for all y e int (V)).

In applying Theorem 3 to a given point y ¢ R” one first needs to know whether
yeint (V). As is easily seen and well-known ([4], p. 5 and {6], p. 573), this is
the case if and only if dy + D71 djy; > O for each choice of the real constants
d; not all zero such that do + D11 dig;(t) = O for all ¢ ¢ T. Here, we are still
assuming that gs, g1, - - - , gn are linearly independent.

Observe that the (n + 1)-tuple d* e D*, where the supremum (2.14) is
assumed, has an interest of its own. Namely, it determines a hyperplane through
P, supporting @ and thus would describe the local behavior of L(y | ) under small
perturbations of ¥, at least when d* is unique.

3. Main results. For convenience, we shall assume from now on that the
n + 1 functions go, g1, «- -, g» are linearly independent and further that D* is
non-empty, that is, (2.13) holds for at least one (n + 1)-tuple d*. In the im-
portant special ease that h is bounded the latter is automatically true.

THEOREM 4. Let d* ¢ D* be given and define

(3.1) B(d*) = {2 = g(t): do + 2 digi(t) = h(1), te T}.
Then for each point
(3.2) y € conv B(d™)

the quantity L(y|h) may be obtained as follows. Write
(33) y = tapg(t) with g(ts) e B(d®),
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and pi = 0, 2 p: = 1; (there is at least one such representation of y). Then

(34) L(y|k) = 2 Tapil(t) = do + 2 tady;.

Proor. Obvious.

TeroreM 5. Let y ¢ int (V') be given. Then the following are equivalent.

(i) The infimum (1.3) is assumed. That is, there exists a measure ue M*(T)
satisfying p(g) = y and p(h) = L(y|h).

(il) There exists d* ¢ D* satisfying (3.2).

We further assert that for almost all y € int (V') there exists at most one d* e D*
satisfying (3.2).

ReMARK. A sufficient condition for (i) would be that T can be given a Haus-
dorff topology making 7' compact, ¢ continuous and h at least semi-continuous;
if h = I, then S must be open; compare [3].

The proof is easy. One considers a sequence {u,} in M*+(T) such that p,(g) = y
and p (k) — L{y|h). One may assume (Theorem 1) that u, is supported by a
set of n + 2 points {tn, - - -, frns2}. Denote the corresponding weights by pri,
(pri = 0, 2 ipsi = 1). Now draw a subsequence such that all the sequences
{7} and {prs} converge. Here, we are tacitly assuming that the topology for T
has a countable base; if not one could draw subnets instead of subsequences.

Proor. That (ii) implies (i) is clear, compare (3.4). Conversely, let u ¢ M*+(T)
satisfy w(g) = y and w(h) = L(y|h). By Theorem 3, there existsd® e D*
achieving the supremum in (2.14). In view of (2.12) and (2.13), the measure
must be supported by B(d*), hence, (3.2) holds.

The uniqueness assertion of Theorem 5 follows by combining Theorem 3 and
Theorem 4, compare (3.4).

In many applications, the infimum (1.3) is not assumed so that Theorem 4
is not applicable. The following Theorem 6 has a much wider range of applica-
tions. Here, n denotes the function on the closure g(T) of g(T),defined by

(3.5) 7(z) = limssoinf, {h(¢): te T, |g(t) — 2| < &}.
Observe that, for each fixed t e T,
7(2) = hW(t) when 2z = g(i).
Further, 4 is lower semi-continuous in the sense that
limgs n(2") = n(e), (2,2 ¢ g(T))-

Recall that D* is defined by (2.13). Equivalently, an (n -+ 1)-tuple d* = (d,,
.++, dy) is in D* if and only if

(8.6) do + X jadz; < n(z) forall zeg(T).

If e = 0 and d* ¢ D*, we define

(8.7) CLd*) = {2eg(T): 0 = n(2) — 2i=odsz; < ¢}, (% = 1)
.and

(3.8) G(d*) = 1¥= conv Cyn(d™).
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It is easily seen that the sets C.(d*) and G(d*) are closed and further that
B(d*) < Co(d*) < C.(d¥), where B(d™) is defined by (3.1).

THEOREM 6. Let y ¢ int (V') be given.

(i) Let d* ¢ D™ be such that y € G(d*). Then

(3.9) L(y]h) = d0+d1y1+ T "l"dnyn-

(ii) Suppose that the function g is bounded. Then there always exists al least one
d* ¢ D* satisfying

y € conv Co(d¥) C Q(d¥),

allowing us to obtain L(y | k) from (3.9).

(iii) We further assert that in any case, whether or not g is bounded, we have for
almost all y ¢ int (V') that there exists at most one d* ¢ D* satisfying y € G(d™).

Proor. Observe that (iii) follows from (i) and Theorem 3. It will be con-
venient to use the notation

d*y = D tady; = do + 2iady;, (yeR", 9 = 1).

Proof of (i). Let d* ¢ D* and y eint (V). By (2.11), we have L(y | h) = d*y
It suffices to show that L(y | k) £ d*y + ¢, assuming that

(3.10) y € conv C.(d™).
We first assert that the function
Li(u) = limau L(z| h), (2eV,ueV),
satisfies
(3.11) Li(u) £ n(u) foreach wueg(T).

For, let u € g(T) be given. We may assume that n(u) < . Let {¢,} converge
decreasingly to n(u) and let ¢, & T be such that h(t,) = ¢, and 2" — %] < 1/7,
where 2" = g({.), compare (3.5). In particular, {z"} converges to u. Considering
the probability measure carried by {¢,} we see that L(z" | k) £ h(¢,) £ ¢, . This
proves (3.11).

By (3.7) and (3.11), we have Ly(u) = ¢ + d*u for each u & C.(d*). But the
function Ly(-) is clearly convex and lower semi-continuous, hence, Li(u) = ¢
+ d*u holds throughout the set conv C.(d*). Noting that, by (2.6), we have
L(y|h) = Ly(y) for all y eint (V), (3.10) implies the stated assertion.

Proof of (ii). We now assume that g is bounded, hence g(T) is compact.
Let further y € int (V). Then by Theorem 3 there exists d* ¢ D* with L(y | h)

= d*y. We will show that y £ conv Co(d™).

Let'{u,} be a sequence in M(T') such that p(g) = y and p,(h) | L(y|h).
We may assume that g, has a support consisting of n + 2 points t,; e T
(z = 1, ,n + 2), see Theorem 1. Let the corresponding weights be denoted
by pri, 80 that y = 2 iprg(t) and Sipeh(ty) L L(y|h). Drawmg a sub-
sequence, we may assume that, as r — ©, p,; — p; and g(f:) — 2'¢ 9(D),
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(i =1, -+-, n + 2). In particular, y = > p* and
Zpa(z) £ Xpilime Mts) = Xlim, ph(t:) £ lim, 2iprh(t).
Here, the latter right hand side is equal to
L(y| k) = d%y = 2:pid™2)) £ 2ipa(2?),

by (3.6). Hence, all the above inequalities are in fact equalities, thus, z° ¢ Co(d*)
for all ¢ with ps > 0, hence, y & conv Co(d™).

From now on, we restrict ourselves to the important special case that b = Ig is
the indicator funetion of a given subset S of 7. By 8’ we shall denote the com-

plement of S in 7. We shall assume that both S and 8’ are non-empty. Consider
further the convex sets

(3.12) Vg = conv g(S), Vs = conv g(8'), *V = convg(T)
and their closures
(3.13) Ws = conv ¢(8), Ws = conv g(S"), W = conv g(T).

One may interpret L{y|Is) = Ls(y) as the smallest possible mass in S for a
probability distribution x on T with p(g) = y. Obviously, Lg(y) = Oify e Vg .
Hence, by (2.6),

(3.14) L(y) =0 if yeWg, y eint (V).
Therefore, we only need to consider the case that
(3.15) yeint (V) = int (W); yeWe.

Presently, the function » defined by (3.5) reduces to
9(z) =0 if zeg(s),
=1 if ze¢8), =2zg(S).

Thus » may be regarded as the indicator function of the interior of g(S) taken
relative to the space g(T). Further, the condition (3.6) for d* £ D* becomes

do+ X rade; =1 forall z e g(T), hence for all ze W,

<0 forall zeg(S), henceforze Ws .

(3.16)

(3.17)

Assuming for the moment that dy, -- -, d, are not all zero, let us introduce the
distinet parallel hyperplanes in R" defined by

(3.18) H = H(d*) = {2:d*2=1}; H = H'(d*) = {z: d* = 0}.

Condition (3.17) says that H supports all of W (that is, all of ¢(T)), while
H' supports all of W , on the same side as H supports W (so that H " is in between
H and Wy ). Let us call such a pair of destinct hyperplanes H, H " an admissible
pair. Given such a pair there is a unique (n 4+ 1)-tuple d* with d;, - -+, d. not
"aE zero such that H, H are given by (3.18). Moreover, (3.17) holds, that is,
d"eD”.
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Tueorem 7. (i) Be given an admissible pair of hyperplanes H = H(d*) and
H' = H'(d%). Put

(3.19) G[d*] = conv [(HnWs)u (H' n Wg)].
Then for each y & G[d*] with y e int (V) we have
(3.20) Ls(y) = d*y = A(y)/A.

Here, A(y) denotes the distance from y to H', while A denotes the distance between
the parallel planes H and H'.

(ii) For almost all y eint (V') there exists at most one admissible pair H(d*),
H'(d*) such that y ¢ Gld™].

(iii) Suppose that g is bounded. Then (3.19) can also be written as

(3.21) Gld*] = conv [(H n 3(8)) u (H' n g(3))].

Moreover, in this case we have for each y satisfying (3.15) that there exists of least
one admissible pair H(d™), H'(d*) such that y & Gld™], (allowing us to find Ls(y)
from (3.20)).

Proor. If H = H(d*), H = H'(d*) is an admissible pair then d* ¢ D* so0
that (ii) would follow from (3.20) and Theorem 3.

Proof of (i). The second equality sign (3.20) is clear from (3.18). In view of
(2.11), it remains to show that Ls(y) < A(y)/A assoon asy ¢ int (V), y ¢ G[d™).
The proof is elementary, see Corollary 13 in Section 5.

Proof of (iii). Suppose that g is bounded. Then ¢(S) and ¢(§’) are compact
and (3.19) implies (3.21), see (3.13).

Let y satisfy (3.15). By assertion (ii) of Theorem 6 there exists d* ¢ D* with
yeconv Co(d*). If dy = -+ = d, = O then, by (3.17), dy < 0; in order that
Co(d*) be non-empty we must have dy = 0 so that Co(d*) = g8 and y e W ,
contradicting (3.15); here, we used (3.7) and (3.16).

Hence, y ¢ conv Co(d*) withd* e D*and d; , - - - , d,, not all zero. In particular,
(3.18) defines an admissible pair of hyperplanes H and H'. Finally, from (3.7)
and (3.16),

Co(d*) = (H n ¢(8)) u (H n g(F)),
hence, y ¢ conv Co(d¥) = Q[d*].

4. Non-interior points. Most results obtained so far require that g, g2,
-+, g are linearly independent and that y ¢ int (V). By the remarks following
(2.7), we can also handle the situation that ¢, ---, g. are arbitrary and
y ¢ intv (V). One purpose of the present section is to show that the latter assump-
tion is a rather natural one.

Levma 8. Let K be a given non-empty convex subset of some Euclidean space. £
and let y be a given point in £. Then each of the following three properties defines one
and the same set K, .

(1) If y is an extreme point of K then K, = {y}. Otherwise, K, 1s the union of
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all closed line segments [y, y"] which are entirely contained in K and have y as an
intertor poind.

(ii) Ky 1s the set of those points z ¢ K which occur in some representation of y of
the form

(4.1) Y=+ (1 =N\ with 2,/ eK and 0<\ < 1.
(iii) Ky s the largest convex subset of K satisfying

(4.2) y ¢ intv (Ky).
Proor. Easy.

Following Karlin and Shapley [4] (who take K as a closed convex set) one may
call K, the reduced contact set of K at y. Observe that the set K, is non-empty
precisely when y ¢ K. Further, by (iii), .

(4.3) K, = K if and only if y ¢ intv (K).

On the other hand, K, is a strictly lower dimensional subset of K when y ¢ K,
y £ intv (K). In this case, y is a boundary point of K and K, is contained in
every hyperplane passing through y which supports K. An example in [4], p. 9,
shows that K, may be strictly smaller than the intersection of K and all such
hyperplanes.

Define a partial ordering among the elements of K as follows. When y, 2 ¢ K
we put z < y precisely when z occurs in a representation (4.1) of y. Obviously,
y < ywhileu < 2 < y imply that u < y. Moreover,

Ky={zeK:z <y}
if y e K, (otherwise, K, is empty). Hence,
(4.4) K,C K, ifandonlyif zeK,.
Similarly, K, = K, if and only if both z < y and y < 2, if and only if there is
some open line segment entirely inside K and containing both y and 2. Further,
by property (iii),
(4.5) K.=K, ifandonlyif zeintv(K,);
(starting with (4.4), the assertions all assume that y, 2 ¢ K).

In the following Theorem 9, we take T again as a measurable space and ¢ as
a measurable function from T into B". We further use the notations

(4.6) T =g(Vy), T'=g(T)nV,.

Here, V, is defined as in Lemma 8, but with K replaced by V.

TuEOREM 9. Let y e V be fixed, (V = conv g(T)). We assert that each prob-
ability measure u € ST(T) such that u(g) € Vy is entirely concentrated on the meas-
urable subset T of T; the converse is obvious. We further assert that

4.7) Vy = conv I,
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ReMark. The implications of Theorem 9 are as follows. Let S T and ye V
be given. Then Ls(y) is defined as inf u(.S), where u ranges over the probability
measures on T with the property that u(g) exists and is equal to y. But y € V s0
that by Theorem 9 all such measures are necessarily concentrated on T*. Here,
T is a proper subset of T' precisely when y 2 intv (V).

As far as y is concerned, one should replace the function g on T by its re-
striction g, to T”. Clearly, the range of g, is precisely equal to I'Y. Consequently,
by (4.7), the role of ¥V = conv g(T) is now taken over by V,. From (4.2),y¢
intv (V,), hence, we are back to the desired situation but now with T replaced by
T = ¢~(V,), g replaced by g, and V replaced by V.

Proor oF TueorEM 9. Let y ¢ V and p e 9 (T) be given such that

y = u(g) = [rg(t)u(di).

As to the first assertion, it suffices to prove that u is carried by the set T". For,
afterwards, consider p £ MY(T) such that u(g) = ze V,. It then follows that
u is carried by T” and hence by T? since 7° < TYif z ¢ V, , compare (4.4).

Let 7" denote the complement of 7% in T and suppose that, on the contrary,

a=u(T) >0.

From Theorem 1, applied with T replaced by T”, there exist finitely many points
t;¢ T' and positive weights p; (7 = 1, - -+ , r) such that

[ g(tu(dt) = 2iapg(ts) and Diips = a
Doing the same with 7 replaced by 7%, one arrives at a representation
y= Z;’;l pig(ti)7 where pi > O; Z;'Ll P = 1:

whilet;e T (s=1,-+-,7),t:e T' (i =r + 1, --- , m). It follows from property
(ii) of Vy (see Lemma 8) that g(¢;) ¢ V, for all 4, that is, ¢; ¢ g (Vy) = T for
all . However, for 1 < 7 £ r this would lead to a contradiction.

It remains to prove (4.7). On the one hand, I¥ C V, where V, is convex so
that convI?Y C V,. Next, let 2e V,. By V, € V = convg(T) there exist
finitely many points z; £ g(T) and weights p; > 0 such that 2 = piz; + -+ Pr2n
and D p; = 1. In the notation preceding (4.4) (with K replaced by V') we have
2: < 2 < y, hence z;¢ Vy = {ue Viu < y}. Therefore, z;c g(T)n V, = T? for
all? = 1, -+« m, proving that z £ conv I'".

b. An important special case. Let S be a given subset of T’ and let
Ls(y) = inf {u(8): we MT(T), ulg) = y}.

In most applications, one does not really need the full power of Theorem 7 in
order to find Lg(y). Assertion (i) will usually be sufficient and, moreover, is
quite elementary as we shall see. The main use of the existence part (iii) of
Theorem 7 is to assure us that the method in (i) will very often work. In par-
tiular cases, it is often easy to verify directly the existence (iii) and the unique-
ness (ii).
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We assume that S and 8’ (the complement of S in 7') are non-empty. More-
over, go, g1, '-, gn are assumed to be linearly independent so that
V = conv g(T') has a non- empty 1nter10r We further define Vs, Wg, --- asin
(3.12) and (3.13).

Let y ¢ R" be given and consider a measure p e M (T) satisfying u(g) = ¥
(this requires that y £ V). Separating the points £; in the support of u according
tot;e S ori;e 8, we obtain a representation

(5.1) y =M+ (1 =N
with
(5.2) ueVs, ueVy, 0= =1

In fact, N is precisely equal to u(S). Conversely, each representation (5.1) of y
satisfying (5.2) arises in this way from at least one u & M (T satisfying u(g) = y
and u(8S) = A

If both (5.1) and (5.2) hold, we shall say that y hasa )\ representation and we
call (u, u’, \) a V-representation of y. We shall call (v, %', \) a W-representation
of yif it satlsﬁes (5.1) and

(5.3) ueWs, weWs, 0=ZN=ZL

In the following Lemma 10, y £ R" is given. Further, inf, A and inf(y) X range
over those \ for which one can find a triplet (u, «’, \) which is a W-representation
of y or a V-representation of y, respectively.

LemMa 10. One always has

(54) limyroy Ls(y') £ infm X £ infiry A = Ls(y).

Moreover, if g is bounded then the first equality sign holds. If y e int (V') then all
equality signs hold. Similarly for

(5.5) Us(y) = supem A < supem N < limyry Us(y').

Proor. The equality sign in (5.4) is an immedia te consequence of the remark
following (5.2). As to the ﬁrst inequality (5.4), let (u, u \) be a W-representa-
tion of y. Replacing % and ' by nearby points v and v in Vs and Vg , respec-
tively, it follows that arbltrarlly close to y there are points y' having a V -repre-
sentation (v, v’, \), thus, Ls(y’) < \. This proves (5.4). By (2.6), all equality
signs hold in (5.4) when y e int (V).

Finally, consider the case that g is bounded so that Ws and Wy are compact
Let v denote the left hand side of (5.4) and let {y,} be a sequence converging to
y such that Ls(y,) — +. There ex1st V -representations y, = M, + (1 — A)u,
such that A, — v, (u, e Vs and %, e V). Drawmg a subsequence, we have that
ur— ueWsand u, — u ¢ Wy . Clearly, (u, v/, v) is a W-representation of ¥,
thus, infmy A £ ¥.

" Limmma 11. A sufficient condition for Ls(y) = Odsthaty e Vs ory e Wy nint (V).
Conversely, provided g is bounded, y ¢ W is a necessary condition for Ls(y) = 0.
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Similarly for Us(y) = 1 — Lg(y). Thus, if g s bounded, y eint (V) then
Us(y) = 1if and only y e Ws . Finally,

(5.6) 0= Ls(y) < Us(y) £1 foreach yeint (V),

unless g(8) and g(S’) are located in distinct parallel hyperplanes.

Proor. All but (5.6) are easy, compare (2.6). As to (5.6), suppose that
Ly(ys) = Us(yo) holds for some y, ¢ int (V). Since f(y) = Us(y) — Ls(y) is
non-negative and concave, it follows that f(y) = 0 for all y ¢ V. Therefore
Ls(y) = Us(y) is both convex and conecave and thus lénear (up to an additive
constant). For different «, the sets V., = {yeV:Ls(y) = v} are located in
distinet parallel hyperplanes. Clearly, ¢g(8') < Voand g(8) < V;.

Norarions. Let C be a non-empty subset of R" and d ¢ R". Put

(5.7) ¢a(C) = supyec > tadys .
and
(5.8) Hy(C) = {xeR™ X tyda; = ¢a(C)}.

If d £ 0 and ¢4(C) < o« then Ha(C) is the hyperplane supporting C in the di-
rection d as well as possible. If d = 0 then Ha(C) = R";if ¢pa(C) = « then Ha(C)
is empty.

Note that Hi(C) remains unchanged on replacing d by A d with A as a positive
scalar. Moreover, ¢4(C) and Hi(C) remain unchanged on replacing C by C,
or by conv C, or by conv C, respectively. For brevity, we shall put ¢a = ¢a( W),
¢d = ¢a' (Ws) and

(5.9) Hd = Hd(Ws), Hd’ = Hd(Ws').

Thus, Hs = {zeR":D_~ida; = ¢4} is the hyperplane supporting Wy in the
direction d as well as possibly (hence, also g(S) and V). Similarly, Hy' is the
hyperplane which supports each of the sets g(8'), Vs and W as well as possible
in the direction d.

TrroREM 12. Be given y ¢ RB”. Suppose that d ¢ B* and v ¢ R are such that y ad-
mits a representation of the form

(5.10) y=yu+ (1 =7, 0svy=s1,
with

(5.11) ueHinVs and ' eHinVy.

Then

(5.12) v=Ls(y) o ¢ < ¢a < +o,

while

(5.13) v =Us(y) o ¢a<dd < +oo.

Provided y ¢ int (V'), the assertions (5.12) and (5.13) remain true when (5.11)
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ts replaced by the weaker condition that
(5.14) ueHinWs and v eHd o We.

ProoF. Put ¢a(Ws) = ¢a = ¢ and ¢pa(Ws) = ¢’ = ¢'. We have dz < ¢ when
& &€ Ws with equality when = ¢ Hs . We have dv < ¢’ when x &£ W with equality
when z ¢ Hy'.

Now suppose that both (5.10) and (5.11) hold. Using the same notations as in
Lemma 10, put

infry X = p, Sup(y A = o.

We must show that v = p when ¢ > ¢ are finite and further that v = ¢ when
¢ < ¢ are finite. Observe that p < v < ¢ since (u, :u', v) is a V-representation
o I?i;at (v, v, \) be some other V -representation of y. Then

dy = dw + (1 = 2)0] £ 2 + (1 — V)¢
Moreover, using (5.11),

dy = dlyu + (1 — v)u'] = vé + (1 — 7)¢".
It follows that v(¢ — ¢') = (¢ — ¢') if ¢, ¢’ are finite. If ¢ > ¢’ this implies
that v < p hence ¥ = p. Similarly, y = ¢ if ¢ < ¢’ are finite.

If (5.11) is replaced by (5.14) then exactly the same proof (but now with
W -representations) yields that

ifm N = if ¢>¢, supmr=1v if ¢ <9,

(¢ and ¢’ assumed finite). This in turn implies (5.12’) and (5.13), provided the
equality signs hold in (5.4) and (5.5) ; the latter is always true when y ¢ int (V),
by Lemma 10.

In the paragraph following (3.18) we defined the notion of an admissible pair
H, H' of hyperplanes in R™ (relative to the subset S of T'). Using the notations
(5.9), this is nothing but a pair

(515) H=H;=HoWs), H =H,=Hi(Ws) with ¢ < ¢a < + .

CorOLLARY 13. Let H, H' be an admissible pair of hyperplanes as in (5.15).
Then for each point y ¢ int (V') such that y £ Ga , with

(5.16) Gi = conv [(Hn Ws)u (H nWs)],
we have that
(5.17) Ls(y) = A(y)/A.

Here, A(y) denotes the distance from y to H' and A the distance between the
'parallel planes H and H'.
Proor. Since Ls(y) is continuous in int (V'), we need to establish (5.17) only
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for a point ¥ having a representation (5.10) with » and %’ as in (5.14). Clearly,
v = A(y)/A, hence, (5.12) implies (5.17).

ReMaRK. Let d ¢ R” be such that ¢4’ < ¢a < «; then H = H; and H =H/
form an admissible pair. They admit a representation (3.18), with
d* = (do*, dv*, --- , d.*) given by *

(518) di* =cd; (j=1,---,n); d = —cdd; ¢=1/(¢a — ¢J).
Moreover, d* ¢ D* (in the sense of (3.17)) and
(5.19) G: = Gld™],

compare (3.19). Consequently, Theorem 7 gives us considerable information
about the occurrence of y ¢ Gs with H, H' admissible.

Given y ¢ V let us consider the following five properties.

(i) For some pe M (T) we have u(g) = y and u(S) = Ls(y).

(ii) Among all V-representations (u, u’, A) of y there is one for which A is
minimal.

(iii) For some d ¢ R” we have ¢/ < ¢a < « and
(5.20) yeconv [(Han Vs)u (Hd nVs)l.

(iv) Among all W-representations (u, u’, A\) of y there is one for which \ is
minimal.
(v) For some d ¢ R" we have ¢4 < ¢a < « and

(5.21) yeconv [(Han Ws) u (Hd nWs)].

Observe that (in both cases (iii) and (v)) the pair of hyperplanes H, , HJ is
admissible; further, Ls(y) may be read off from either (5.12) or (5.17). By
Theorem 7, we have for almost all y that the pair H;, Hs in (v) (if it exists)
must be unique.

TueorEM 14. Let y satisfy

(5.22) yeint (V), yeWsy .

Then the above properties (1), (ii), (iii) are equivalent. A suffictent condition for each
of these would be that both V and Vg be compact.

Moreover, the above properties (iv) and (v) are equivalent. A sufficient condition
for each would be that ¢ be bounded.

Proor. That (i), (ii) are equivalent follows by the remark following (5.2).
That (iii) = (ii) and that (v) = (iv) is shown in the proof of Theorem 12. The
stated sufficiency conditions for (ii) and (iv), respectively, are easily verified.
It remains to show that (ii) = (iil) and that (iv) = (v). Let us prove these
simultaneously (though the first could also be deduced from Theorem 5).

The situation is as follows. We are given a pair of non-empty convex sets K
and K’ in R, (namely, either Vs and Vs , or Ws and Wy ). Consider further
Ko = conv (Ku K'), (namely, Ky = V or V < K, € W) and further a fixed
poifit ¥ ¢ R” such that
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y ¢ int (Ko), yeK'.

By a K-representation (of this fixed point %) we shall mean a triplet (u, u’, \)
satisfying

(523) y=Mm+ (1 —=Nu;  weK, 4eK; O0=2N=1

Clearly, there is at least one. We assume that among all such K-representations
there is at least one for x,;vhich N assumes its smallest value v (say). Let the cor-
responding triplet (uy, uo, v) be fixed. It suffices to prove that d ¢ B” exists such
that

(5.24) ¢a(K') < ¢pa(K) < w0;  weHi(K)nK, u eHy(K)nK'.
Without any real loss of generality, we may assume that y = 0, thus,
yiuo + (1 — y)us = 0; 0 ¢ int (Ky), ) 02K,

where ug € K, ug’ ¢ K’ hence ¥ > 0. By the minimality of v, we have that (5.23)
(with y = 0) implies that A = 4. Therefore,

px + ou' = 0; reKo, u eK'; p,o0 =20 imply p = v(p + ¢);

(after all, write z = aw + (1 — &)o' withv e K, v’ ¢ K').

Given v’ ¢ K’ we have, for 8 > 0 sufficiently small, that + = —&u’ & Ko thus
1 = (1 + 5) showing that v < 1. Put ¢ = (1 — v)/y (0 < ¢ < ») and
L= —¢gK = {—q" ' ¢K'}.

We assert that L and int (K,) are disjoint. If not then there would exist
elements z, ¢ int (Ko) and w’ ¢ K’ with 2, = —qu’. Further, if § > 0 is sufficiently
small we have x = (1 + 8)zoe Ko and (1 + 8) 'z + qu’ = 0. It would follow
that

It

A+ 21+ +ad=v0+8)"+ (1 —1),

a contradiction since v < 1.

By a well-known separation theorem ([18], p. 24) we can now conclude that
the convex sets Ko and L are separated by at least one non-zero linear functional
f on R”. That is, for some constant C' we have:

(a) f(z) < C for each x £ K, . Since 0 ¢ int (K,) this implies that C > 0.

(b), f(z) = C for each ¢ L = —gK'. Equivalently, f(z) £ —C/q for each
ze K.

(¢) The point ue = —quo is in both K and L, therefore, f(uy) = C and
f(uo,) = —C/q.

It follows from these remarks that the pair of hyperplanes

Hs = {zeR": f(z) = C} and HJ = {xeR™ f(z) = —C/q}

has all the properties required in (5.24). Here, d stands for a common normal
pointing from Hy' to Hg.

6. Comments. Let us describe the situation on hand in a somewhat heuristic
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manner. Let ' be a given (measurable) space and let u denote a given probability
measure on T with known moments u(g;), (j = 1, --- ,n). Here, g1, - - - , gn are
given functions on 7. Next, let S be a given subset of 7. We want to determine
the best lower bound Ls(y) and the best upper bound Us(y) on the probability
mass u(S) contained in S. Here; y = (41, -+, ¥a) with y; = p(g;). That is,
y = u(g) whereg = (g1, -+, g») maps T into R". Necessarily y ¢ V = conv g(7').

Given g, it is natural to consider the induced probability measure » on g(T')
defined by »(B) = u(g 'B). If u has a finite support {t; , -+ - , ¢} < T with mass
p; at ¢; then » corresponds to mass distribution on the range g(T) C R having
a mass p; at the point g(¢;) on g(T').

We can now also describe Ug(y) as the largest possible mass (in the supremum
sense) contained in the set g(8) among all mass distributions on ¢g(T') of total
mass 1 having a preassigned center of gravity y.

Let 8’ denote the complement of S in 7. Observe that the sets g(S) and g(8")
need not be disjoint. If one is interested in the lower bound Lg(y) then a point 2
belonging to both g(8) and g(8’) may as well be regarded as belonging to g(S").
More precisely, 1 — Lg(y) = Ug(y) is equal to the largest possible mass in
g(S8") among all mass distributions on g(T') of total mass 1 having their center of
gravity at y.

We may assume (see the remarks after (2.7)) that go = 1, g1, --- , gn are
linearly independent. That is, g(7) is not located on any hyperplane, equiva-
lently, int (V') is non-empty. For the moment, consider the case that y ¢ V is on
the boundary of V. Then V is supported by at least one hyperplane H passing
through y. In order that a mass distribution on g(T) have y as its center of
gravity the latter distribution must be carried by H n g(T') so that the behavior of
the set g(T') outside the supporting hyperplane H would be totally irrelevant as
far as Lg(y) and Us(y) is concerned. For more details, see Section 4.

From now on we shall restrict ourselves to the case y ¢ int (V), so that both
Lg(-) and Us(-) are continuous in an entire neighborhood of y. This in turn
implies (Lemma 10) that Us(y) is also equal to the largest possible mass con-
tained in the closure g(S) among all mass distributions on g(T) of total mass 1
having y as its center of gravity. This statement remains valid when y(S) is re-
placed by Ws = conv ¢(S) and ¢(T) is replaced by W = convg(T) = V.

In the same way, 1 — Ls(y) = Us(y) would be equal to the largest possible
mass in g(§’) among all mass distributions of total mass 1 in g(T) having y as a
center of gravity. Similarly, when g(S’) is replaced by Ws = conv g(S’) and
g(T) by W. Since W and W are convex this means that Ls(y) is equal to the
smallest possible value 0 = A = 1 (in the infimum sense) among all possible
representations of ¥ asy = M + (1 — A)u' with w e W and «’ ¢ W . Clearly,
Lg(y) = 0 when y ¢ Wy . Otherwise, Lg(y) may be described as the smallest
possible value 0 < A = 1 for which the closed convex sets —g(Wg — y) and
(W — y) have a common point; here, ¢ = (1 — A)/A. If y ¢ W then Wg — ¥y
is located in some half space of the form {z: dz2 = ¢ > 0}. As A — 0 we have
g;-—-> + o and —g (Ws — y) recedes to infinity. Provided g and hence W is
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bounded, the above smallest value0 < A = 1 is assumed. It is characterized
by the property that the associated closed convex sets —g(Ws — ) and
(W — y) are “barely” touching each other; (clearly, this is the main idea
behind the proof of Theorem 14).

The main drawback of this method (for computing Ls(y)) is that it is usually
hard to visualize the geometry and relative positions of the convex sets W — y
and —g(Ws — y), for different values of ¢, especially when these sets are loca ted
in a Buclidean space of dimension n = 3.

Therefore, we now direct our attention to the hyperplane F which separates
W — y and —q¢(Wg — y) at the moment that they are barely touchmg each
other at a point u — y = —q(u’ — y) = w. In particular, w ¢ F, u & Ws and
u e W; in fact, u € Wg since M is minimal. Consider the parallel distinet hyper-
planes

H=y+F, H =y —q'F.

Thenu = y + weH, ' =y — ¢ weH and y = M + (1 — Mo with
A = (14 ¢)™" = Ls(y). Observe that H supports all of W while H " supports all of
W . Moreover, ue WnH = WsnH and u' ¢ We n H'. In this way, we are
led to the following procedure.

(StEP 1) Select a boundary point z of W and “draw’ through z a hyperplane H
of support to the convex set W.

(SteP 2) Next determine the hyperplane H' parallel to H which supports
W as well as possible, and on the same side as H supports W. We shall only be
interested in the case H # H' in which case H' is between H and Wy . Put

Asg=WnH =WsnH and Bs;= WenH'.

Here, d stands for the common normal to the parallel planes H and H ' pointing
from H' to H. Thus, in the notation (5.8), we have

(6.1) H=H;=HiW), H =H/=Hy(Ws)

and further ¢ < ¢g < .
(SteP 3) Provided indeed H' » H, put

(6.2) Ga = conv (Aau By).
We now conclude from Corollary 13 that
(6.3) Ls(y) = A(y)/A foreach yeint (V) suchthat yeGa.

Here, A(y) denotes the distance from y to H " while A denotes the distance be-
tween the distinet parallel hyperplanes H, H'.

Actually, the assertion (6.3) is rather transparent. Namely, if a mass distribu-
tion of total mass 1 has its center of gravity at a point y between H and H' (such
as a point y & Gy) then the mass in Wy could not possibly be any larger than
1 — (Ay)/A. Moreover, if y & Ga then one can attain this mass, namely, by
having a mass equal to 1 — A(y)/A in the subset B; of H' and a mass equal to



112 J. H. B. KEMPERMAN

A(y)/A in the subset A4 of H in such a way that the resulting center of gravity
is equal to ¥.

The importance of the above procedure can, for instance, be seen from the
fact that, for each y ¢ int (V) with y # W4 , and whenever g is bounded, there
always exists a pair H, H' as above with y ¢ Gz, (allowing us to find Ls(y) from
(6.3)). This fact is certainly suggested by the reasoning which leads up to the
above procedure. And it is a consequence of Theorem 7 and also of Theorem 14;
(note that the relevant part of Theorem 14 is proved by the same type of reason-
ing as the above). Theorem 7 further yields that for almost all ¢ there is at most
one admissible pair Hs , H with y ¢ G, .

As appears from certain special cases, see Section 7, it is usually easier to start
out with the collection of all admissible pairs Hq , Hy (Hq % HJ'). That is, one
first determines in what manner the part of int (V') notin W is partitioned into
classes G4 . Afterwards, one may see in which of these classes a preassigned value
y happens to fall. Knowing this class G; and the corresponding pair Hy, Hd of
hyperplanes, the desired value Lg(y) is found from (6.3).-

The procedure for finding Ug(y) = 1 — Lg(y) is completely analogous to the
procedure sketched above.

(SteP 1) Select a boundary point z of the closed convex set Ws and draw
through 2 a hyperplane H of support to Ws. Put Ag = Wsn H.

(SteP 2) Determine the hyperplane H' parallel to H which supports g(T')
and hence W as well as possible, and on the same side as H supports Wg. We
shall only be interested in the case that H'  H in which case H is between H’
and Ws.Put B = WnH' = Ws nH'. Let G be as in (6.2). Then

(6.4) Us(y) = A(y)/A foreach yeint (V) with yeGq,
assuming that H and H' are distinct. Here, A(y) and A have the same meaning
as in (6.3).

IfyeWs,yeint (V) then Us(y) = 1. If y 2 W5, y £ int (V) and, moreover,
g is bounded then there always exists a pair H, H' of the above kind such that
Us(y) can be obtained from (6.4). For almost all y this pair will be unique, thus,
the different regions G4 hardly overlap.

The question arises what to do when the function g on 7T is not bounded. One
way would be to use the formula Ls(y) = (1 4 ¢)" with ¢ = 0 as the largest
value (in the supremum sense) for which W — y and —g(Wgs — y) have a
common point, an analogous formula holding for Us(y).

Often a better way of treating the unbounded case is the following reduction to
the bounded case.

One can always represent the domain 7 of g as a denumerable union

(65) T = U:=1 Tx with Ty C TN+1,
such that ¢ is bounded on each Ty . Let {T»} be fixed, and put
Ls™(y) = inf {u(S): we MT(Tx), u(g) = y}.
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We have
(6.6) Ls™(y) | Ls(y) as N— o,
since each p e MT(T) has a finite support. This reduces the problem to a com-

putation of the values Ls*™(y). But ¢ is bounded on T, hence, the value
Ls™(y) can in principle be obtained from (6.3) (with T replaced by Tx),

provided
(6.7) yeint (VY),  yeWs" = convg(S n Tw),

where V¥ = conv g(Tx). As is easily seen, (6.7) will be true for N sufficiently
large, provided y £ int (V'), y # Ws . Recall that Ls(y) = 0 when y ¢ int (V),
ye Wsl .

7. Specific applications. For the special case that n = 2 and 7 is a one-di-
mensional interval, we shall now give a number of applications of the methods
(in several steps) outlined in Section 6. Here, “hyperplane” is to be interpreted
as a straight line in R”.

Let g1, ge be given real-valued functions on the interval T such that go, g1, go
are linearly independent. Let further S be a given subset of 7. We shall be inter-
ested in computing the values Ls(y) and Us(y) which may be interpreted as the

best bounds in

(7.1) Ly(y) = P(X e8) = Us(y),
when X is a random variable taking values in 7' such that
(7.2) E(g(X)) =y, EB(g(X)) = p2,

where the expectations are assumed to exist.
(a) As our first application, we take 7' as the unit interval T' = [0, 1] and

further
(7.3) q(t) = ¢, g2(t) = sin 2, 0=ts1).

Thus g(T) is presently a part of the ordinary sine-curve. Its convex hull V is
compact (thus W = V) and is given by the planar region in Figure 1 bounded
by the curve 0;0.A BCO, . This boundary curve has two straight line segments on
it, namely, the parallel segments AB and 0,C which are tangent to the sine-curve
at A and C, respectively.

Let us further choose S as the interval

S = [07 71‘]7 thus: S, = (71'7 1]'

Then W is given by the shaded region in Figure 1; it is bounded by the curve
0:ABCDO0. . This boundary curve has two straight parts, namely, the line seg-
ment AB and further the line segment 0.D, the latter being tangent to the sine-
eurve at the point D.

The straight line 0,D clearly supports Ws . Moreover, a line through 0,
parallel to 0.D will support all of W, hence, these lines act as a pair H, J, Hs as
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needed in the computation of Lg(y). More precisely, A¢ = Wn Hy = Wsn Hg
consists of the single point 0y = g(0) while By = Ws n H, consists of the closed
line segment 0,D, so that Gz = conv (Asu By) is the closed triangle 0,0.D. For
each point ¥ in this triangle with y ¢ int (V') (thus the points 0; and 0. are ex-
cluded) the value Ls(y) is given by (6.3). Equivalently, we have for these points
y that

(7.4) Ls(y) = /0.

Here, yz denotes the Euclidean distance between the points y and z, similarly,

0:2. Further z denotes the point where the (straight) line O,y intersects the line
segments 0.D, (compare the points ¢, and 2; in Figure 1). As to the point 0y , here
(7.4) has no meaning but (0.3) happens to be true with Lg(0;) = 1. As to the
point Q. , here both (6.3) and (7.4) are false; namely, Lg(0.) = 1 because
0. =g(3)and 1 ¢8S.

For a point y £ int (V') above the line segment 0,0, we have

(7.5) Ls(y) = Ow/0z,

where 2 denotes the point where the straight line 0,y meets the sine-curve, (com-
pare the points ¥ and 2, in Figure 1). After all, take H as the fangent line at 2 to
the sine curve (which supports all of W) and take H, as the line through 0,
parallel to Ha (which supports the entire shaded region Ws).

For a point y below the line 0,.D, y ¢ int (V'), we again have formula (7.4) but
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now with z as the point where the line 0,y first intersects the sine-curve, (compare
the points y5 and z; in Figure 1). After all, take H, as the tangent line at z to the
sine-curve and take H' as a line through 0, parallel to H,'.

Finally, Ls(y) = O when y ¢ Wg , y € int (V). In this way we have subdivided
int (V) into four regions each with its own method (formula) for computing
Lg(y). Note that we strongly used the fact that S = {0, 1] is closed on the left.
If 0 would be removed (thus 0 ¢ §’) then 0, would belong to Ws and we would
have Lg(y) = 0 for any point y not above 0,0, (not of the type y1). On the other
hand, it hardly matters whether or not % ¢ S except that Lg(0:) would be reduced
to 0 when the point  would be assigned to S’ instead of S.

(b) Still assuming (7.3) and S = [0, %], the upper bound Us(y) can easily be
read off from Figure 2. Here, 0; denotes the point on the right at which the tangent
line to the sine-curve is parallel to the secant 0,0, . This tangent line supports all of
W while the parallel line 0,0, supports Wy, hence, these lines act as a pair Ha'
and Hg, respectively, as needed in the computation of Us(y). We have
As = Wgn H; equal to the line segment 0,0, and Ba = W n Hi = Wy HJ/
equal to the single point 03 , so that Gz = conv (Aau By) is equal to the closed
triangle 0,0.0; . For each point y ¢ int (V) belonging vo this triangle, the value
Us(y) is given by (6.4). Equivalently, we have for these points y that

(7.6) Us(y) = Osy/0cz,

where z denotes the point at which the line 0;y meets the line 0,0. , (compare the
points ys and 25 in Figure 2).
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From now on it will be tacitly assumed that y ¢ int (V). If y is below the line
0,0; then

(7.7) Us(y) = 92/0z,

where z denotes the point where the line Oy intersects the sine-curve for the
second time, (compare the points ¥4 and 2, in Figure 2). After all, take H/ as
the tangent line at z to the sine-curve (it supports all of W) and take H, as the
line through 0, parallel to H," (which supports the shaded region Ws).

If y is above the line 0,0; then

(7.8) Us(y) = v2/02,

where z denotes the point at which the straight line Oy intersects the boundary of
V = W. There are three different situations according to whether 2 is on the arc
0.4 of the sine-curve, on the line segment AB, or on the arc BO0; of the sine-curve,
respectively; (for the latter case, compare the points s and 25 in Figure 2). The
proof is easy: one merely applies (6.4) with Hy' as the line through z supporting
all of W and with H; as the line through 0, parallel to H.', (supporting all of
Ws). Here, Gy is precisely the line segment 0s2.

Finally, Us(y) = 1 if y e Wq, (that is, y above the chord 0,0;). In this way
we have subdivided int (V) into siz regions each with its own analytic formula
for computing Us(y). It would be difficult to describe the situation without using
pictures, while geometrically the situation is rather simple.

(¢) As a further example, take 7' = [0, 1] and

(7.9) g1(t) = cos 2xt, g2(t) = sin 2xt, (0=2t=1).

Here, g(T) is the unit circle in the plane and W = V = conv g(T') is the unit
disc. Take S = [a, b] where 0 < a < b < 1. In finding Ls(y) one must distinguish
between four different regions obtained by inscribing in the unit circle the
triangle with vertices g(a), g(b) and 0 . Here, 03 = ¢(#;) is the unique point with
@ < t; < b at which the tangent line to the unit circle is parallel with the chord
from g(a) to g(b).

The reader will have no difficulty reading off Ls(y) from the resulting figure,
namely, by means of (6.3). In a similar way one obtains Us(y) from (6.4),
except that now # £ [a, b]. The present example is not quite a special case of the
next example, because of the fact that sin 2x¢ has three zeros in [0, 1].

(d) From now on, we shall be concerned with the case that S and T' are one-
dimensional intervals and that {go, g1, g2} form a Tchebycheff system, see [5],
[7]; here go(t) = 1. In other words, we assume that gi(¢), go(¢) are real-valued
continuous functions on T such that the “polynomial”

(7.10) f(2) = do + duga() + daga(t)

cannot have more than two distinct zeros, unless all the (real) coefficients d; are
equal to zero.
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In the special case gi(t) = ¢, the above conditions imply that the function
g» is either strictly convex or strictly conecave. Essentially no more general is the
case where g;(¢) is monotone on T'; (for, introduce the new parameter ¢ = g,(¢)).

Let ¢ & T be given. Then ([5], p. 28, [7], p. 41) there exists a polynomial (7.10)
with f(f) = 0and f(t) > 0for ¢ £ #, ; however, if T is compact and ?, is an end-
point of T one must allow the (very real) possibility that f(¢) = 0 also at the other
endpoint of T'. Geometrically, this means that through the point g(#) there passes
at least one line supporting ¢(7") (and thus V') which meets ¢g(7') in at most one
other point. In particular, each point on g(T') is an extreme point of V. The con-
verse is obvious.

For a while, we shall only consider the case that 7 is a compact interval
T = [a, 8] with endpoints & and 8. Then W = V is a compact and convex region
in the plane bounded on one side by the “convex” are g(T') (which has no more
than two points in common with any straight line) and on the other side by the
straight line segment A passing through the endpoints 0; = g(«) and 0, = ¢(B8).
For definiteness, we shall assume in the following discussion that gi(a) < gi(8)
(05 is to the left of 0,) and further that the arc g(T') is below the chord A.

In the present case, Wg = conv g(S) is precisely the compact and convex
region cut off from W by the straight line segment [ passing through the points
0; = g(a) and 0. = g(b) corresponding to the endpoints of 8 = [a, b].

Finally, Ws = conv ¢g(S’) is the part of W between N and I, except for the
special case that 8’ is entirely at one side of T = [a, 8]. Namely, if a = a ¢S,
so that 8 = [a, b], 8’ = (b, 8], then W is the part of W cut off by the line seg-
ment 0,0, ; (the situation would be different if § = (o, b] where 8’ = {a} u (b, 8]).
Similarly, if b = 8 ¢ S we have that Wy is the part of W cut off by the line seg-
ment 0,05 .

.(d)" In Figure 3 it is indicated how to obtain Us(y) when \ and [ intersect
on the left; (if they would intersect on the right then not 0,04 but 0.0; would be a
dividing line). If y belongs to region I we have

(7.11) Us(y) = ?z/(fz,

with z as the point where the extended line O;y meets g(T'). After all, take Ha' as
the line through z supporting W and take H as the line through 0; parallel to H'.

Region IV is analogous to region I except that the role of 0y is taken over by
0.. Formula (7.11) also holds for ¥ in region II but now with z as the point
where the line Oy meets . After all, take H, as the line A and Hg as the line
through 0, parallel to A. If y is in region ITT we have

(7.12) Us(y) = 0w/0z,

with z as the point where Og meets I. After all, take Hg as the line 7 and H, a
the line through 0, parallel to l. Finally, Us(y) = Lif y e Ws.

(d)” Let us now consider the bounds Ls(y) and Us(y) in the special case that
8 and 8’ are entirely on one side of 7', that is, @ = aorb = 8. Infact, these cases
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(and certain more general cases) have already been treated in detail by Markov
[8] and others [1], [5], [7], [9] and [17]. The geometric approach of von Mises [9]
is most closely related to ours; in his approach, the moment vector y = (y1, ¥2) is
kept fixed while S = [a, D] varies.

The present one-sided case can be read off from Figure 3 as follows. In the first
place, one is allowed to take @ = a (in which case there are only the three regions
III, IV and Ws). In this manner, one obtains Us(y) when S = [«, b], hence,
Ls(y) when S = (b, 8].

One is not allowed to take immediately b = 8 since we assumed that A and !
intersect on the left. However, (interchanging the roles of @ and b, and the roles
of o and B), the situation is completely analogous. In the case b = B one has the
three regions I, IT and Wy . One obtains Us(y) when S = [a, 8] (hence Ls(y)
when 8 = [a, @), « < a < B) by projecting y from 0; onto g(T') when y is in
region I; from 0; onto I when y is in region II, (not from 0; onto \).

(e) Consider now the somewhat different case where 7' = [a, 8) is open on the
right, (—o < a < 8 £ + o, = + » in most applications). We further as-
sume that near 8 the behavior of the g; is such that

(7.13)  got) > + and  gi(8)/ga(8) TO as ¢ T B

This in turn implies that g; is strictly increasing.
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The computation of Ug(y) for this case is described in Figure 4. Observe that
Figure 4 is obtained from Figure 3 by letting 0, = g(8) recede to infinity in such
a way that all straight lines through 0, become vertical lines. That the correspond-
ing limiting procedure, (for computing Ug(y)), is still correct follows from the
discussion at the end of Section 6.

In region I of Figure 4 one again has formula (7.11), obtained by projecting
y from Oy onto g(7'). An analogous formula holds in region IV (where we project
y from 0. onto g(T)). For y in region Il the value Us(y) is determined by the
position of the point y relative to the two vertical boundary lines (through 0, and
03). That is, (6.4) holds with A(y) as the distance to X (which acts as Hy) and
A as the distance between the vertical boundary lines. Finally, Us(y) = 1 either
when ¥ is in region III or when y e W .

In Figure 4, it is allowed to takea = aorb = B, If a = a then Us(y) < 1 only
when ¥ is in region IV. This case may be reformulated as follows.

Let X be a random variable taking values in [a, 8), usually 8 = + «, and
satisfying (7.2). We assume that {go, g1, g2} is a Tchebycheff system on
[ee, B) such that (7.13) holds. Then for each number b satisfying « < b < 8 and
g1(b) < 11 we have the sharp upper bound

(7.14) P(X £b) = (a1 — y1) /(& — qu(D)),
where 2, denotes the first coordinate of the point z where the line from 0. = g(b)
to y intersects the curve ¢(7').
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As a special case, we have the well-known inequality
P(X £ —¢) £ a/ln — (—¢)] = 6%/(¢" + &) with & = o™/,
whenever E(X) = 0, E(X?) = o’ and ¢ > 0.

(f) Let us now drop the assumption (7.13) and go back to the situation of a
compact interval T = [a, 8] such that each polynomial (7.10) is continuous with
at most two zeros in T. Let further S = [a, b] be a subinterval of 7. In (d), we
already found the upper bound Us(y); moreover, for the special cases a = «
orb = B, also the lower bound Lg(y).

Tt remains to determine Lg(y) for the case « < a < b < B. The computation of
Ls(y) in this case is completely described by Figure 5. Here, 0; denotes the unique
point on ¢g(T) through which there passes a straight line parallel to ! which
supports g(T) from below.

If the point y is in region I (y ¢ int (V)) then

(7.15) Ls(y) = 0wy/0,

where z denotes the point where the line 0;y meets g( 7'). This follows immediately
from (6.3), taking there Hg as a straight line through 2z supporting g(7') and tak-
ing H4 as the line through 0, parallel to H, . For, then H, supports all of W while
H, supports W (the shaded region in Figure 5), each on the same side. If y is

g(B)
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in region IIT we have a formula analogous to (7.15) for Ls(y); here, we project y
onto g(7") from the point 0, = ¢(b).
If y is in region II (the triangle 0;0.05) we have

(7.16) Lsty) = y2/0g,

where z denotes the point where the lines Osy and ! intersect. After all, take H; as
the tangent line at 05 (so that As = {0s}) and take H, as the line I (so that By is
equal to the segment 0,0;). Finally, Ls(y) = 0 when y is above I, that is, y e W .

As is easily seen directly (or from the limiting procedure at the end of Section
6) the above method for computing Ls(y) remains valid if 7' is open on one or
both ends, possibly « = —® or 8 = + o, aslongasa < a < b < 8. In fact,
Lg(y) does not even depend on o or 8 as long as y € int (V).

It is easy to read off from Figure 5 certain measures u ¢ M*(T) with u(g) = ¥
and such that Ls(y) is attained; we assume here that S = (q, b) is open at both
ends so that a, be8". When y is in region II there is such a measure which is
carried by the 3-point set {a, b, i;} where & is defined by 0; = ¢(&). If ¥ is in
region I there is such a measure carried by the 2-point set {a, ¢} with { ¢ T such
that the three points g(a), ¥ and ¢(t) are on a straight line. Similarly, for y in
region II1.

Let us consider in some more detail the “classical” case

gl(t) = t’ gZ(t) = t2: T = (_w: +°°)-

The resulting lower bound Lg(y) determined below is due to Selberg [16]. In
terms of random variables, we have a real-valued random variable X with
E(X) = y and E(X*) = y,. We are interested in the best lower bound Ls(y)
on Pr (a < X < b). We may as well assume that B(X) = 0, B(X®) = o’ > 0,
a < 0 < b, Put —a = ¢ and assume for convenience that ¢ < b, (the casec > b
being analogous). Therefore, we are now interested in the best lower bound in

(7.17) P(—c¢c < X <b) = Ls(y), where y = (0,d),

when it is given that E(X) = 0, E(X*) = ¢* > 0. Further, b = ¢ > 0.

The curve g(T) is presently the parabola 4, = %,°. The line [ has its slope equal
to (b® — &) /(b + ¢) = b — ¢, hence, t; = (b — ¢)/2. The line ! intersectsthe
yz-axis in the point (0, be), hence, Ls(0, ¢°) = 0 when o = be (so that we are in
W ). The line 0,05 intersects the yz-axis in the point (0, tsc). Hence, if * £ fc we
are in region I. Using (7.15), (where 21 = ¢°/c), we obtain

Ls(0, %) = ¢/(c + o*/c) = /(S +o2) if o = te

It remains to consider the case that tc < ¢ < be, in which case the point
(0, ¢°) is in region II of Figure 5. The tangent line at 05 intersects the ye-axis at
the point (0, —#). Using (7.16), we find that

Ls(0,0") = (be — ¢*)/(be + &") = (be — ") (5(b + €))7,

whenever t; < o°/c < b.
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