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THE GENERAL φ-HERMITIAN SOLUTION TO MIXED PAIRS

OF QUATERNION MATRIX SYLVESTER EQUATIONS∗
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Abstract. Let Hm×n be the space of m×n matrices over H, where H is the real quaternion algebra. Let Aφ be the n×m
matrix obtained by applying φ entrywise to the transposed matrix AT , where A ∈ Hm×n and φ is a nonstandard involution of H.

In this paper, some properties of the Moore-Penrose inverse of the quaternion matrix Aφ are given. Two systems of mixed pairs

of quaternion matrix Sylvester equations A1X − Y B1 = C1, A2Z − Y B2 = C2 and A1X − Y B1 = C1, A2Y − ZB2 = C2 are

considered, where Z is φ-Hermitian. Some practical necessary and sufficient conditions for the existence of a solution (X,Y, Z)

to those systems in terms of the ranks and Moore-Penrose inverses of the given coefficient matrices are presented. Moreover,

the general solutions to these systems are explicitly given when they are solvable. Some numerical examples are provided to

illustrate the main results.
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1. Introduction. Quaternions and quaternion matrices have wide applications in many fields such as

signal and color image processing, control theory, orbital mechanics, computer science, and etc (e.g. [1], [23],

[25], [32]–[34], [46]). Linear control equations over quaternion algebra have been studied in [25] and [26].

There are various types of linear control equations over quaternion algebra. Sylvester-type equation is one

of the important equations in system and control theory and has a huge amount of practical applications

in neural network [47], robust control [36], output feedback control [31], the almost noninteracting control

([37], [42]), graph theory [6], and so on. There have been many papers discussing the Sylvester-type matrix

equations over a field and quaternion algebra H (e.g. [2]–[11], [18]–[20], [22], [28]–[30], [39]–[43], [48]).

Rodman [27] considered the standard Sylvester matrix equation AX−XB = C over quaternion algebra.

Futorny et al. [8] derived some solvability conditions for the generalized Sylvester equations AX − X̂B = C

and X−AX̂B = C over H. He et al. [9] gave some solvability conditions and general solution to the system

of two-sided coupled generalized Sylvester quaternion matrix equations with four unknowns

AiXiBi + CiXi+1Di = Ei, i = 1, 2, 3,

where Ai, Bi, Ci, Di, Ei (i = 1, 2, 3) are given quaternion matrices, and X1, . . . , X4 are unknowns. Very re-

cently, Dmytryshyn et al. [7] gave some solvability conditions for the system of quaternion matrix generalized

Sylvester equations

AiX
εi
i′
Mi −NiXδi

i′′
Bi = Ci, i

′
, i

′′
∈ {1, . . . , t}, i = 1, . . . , s,

where εi, δi ∈ {1, ∗} and X∗ is the quaternion adjoint matrix. There are two forms of mixed pairs of matrix
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Sylvester equations with three variables: {
A1X − Y B1 = C1,

A2Z − Y B2 = C2,
(1.1)

and {
A1X − Y B1 = C1,

A2Y − ZB2 = C2,
(1.2)

where Ai, Bi and Ci (i = 1, 2) are given matrices and X,Y, Z are unknowns. Lee and Vu [21] presented

a solvability condition for the mixed pairs of matrix Sylvester equations (1.1) through the corresponding

equivalence relations of the block matrices. Wang and He [39] gave some new computable necessary and

sufficient solvability conditions for the system (1.1), and presented the general solution when (1.1) is solvable.

He and Wang [16] derived necessary and sufficient solvability conditions and gave the general solution to

(1.2).

Quaternion matrix equation and its general solution, especially Hermitian solutions, are important

in systems and control theory [27]. φ-Hermitian quaternion matrix was first presented by Rodman [27,

Definition 2.4] in 2014. To our best knowledge, there has been little information on the φ-Hermitian solutions

to quaternion matrix Sylvester-type equations. Motivated by the wide application of quaternion matrix

equations and Sylvester-type matrix equations and in order to improve the theoretical development of the

φ-Hermitian solutions to quaternion matrix equations, we consider the mixed pairs of quaternion matrix

Sylvester equations (1.1) and (1.2), where Z is φ-Hermitian. More specifically,{
A1X − Y B1 = C1,

A2Z − Y B2 = C2,
Z = Zφ,(1.3)

and {
A1X − Y B1 = C1,

A2Y − ZB2 = C2,
Z = Zφ.(1.4)

The remainder of the paper is organized as follows. In Section 2, we review some definitions of non-

standard involution φ, quaternion matrix Aφ and the φ-Hermitian quaternion matrix. We also give some

numerical examples to illustrate these definitions. In Section 3, we derive some properties of the Moore-

Penrose inverse of the quaternion matrix Aφ. In Sections 4 and 5, we provide some necessary and sufficient

conditions for the existence of a solution (X,Y, Z) to the mixed pairs of quaternion matrix Sylvester equa-

tions (1.3) and (1.4), respectively. Furthermore, we present the general solutions to (1.3) and (1.4) when

they are solvable.

2. Definition of φ-Hermitian quaternion matrix and examples. Let R and Hm×n stand, respec-

tively, for the real field and the space of all m× n matrices over the real quaternion algebra

H =
{
a0 + a1i + a2j + a3k

∣∣ i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R
}
.

It is well known that the quaternion algebra is an associative and noncommutative division algebra. Denoted

by r(A) and A∗ the rank of a given real quaternion matrix A and its conjugate transpose A∗, respectively.

I and 0 are the identity matrix and zero matrix with appropriate sizes, respectively.

The definitions of the nonstandard involution φ, quaternion matrix Aφ, and the φ-Hermitian quaternion

matrix were first presented by Rodman [27]. At first, we give the definition of an involution.
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Definition 2.1 (Involution). [27] A map φ: H −→ H is called an anti-endomorphism if φ(xy) =

φ(y)φ(x) for all x, y ∈ H, and φ(x+ y) = φ(x) + φ(y) for all x, y ∈ H. An anti-endomorphism φ is called an

involution if φ2 is the identity map.

Involutions have matrix representation as given in the following lemma.

Lemma 2.2. [27] Let φ be an anti-endomorphism of H. Assume that φ does not map H into zero. Then

φ is bijective; thus, φ is in fact an anti-automorphism. Moreover, φ is real linear, and represents φ as a 4× 4

real matrix with respect to the basis {1, i, j,k} and φ is an involution if and only if

φ =

(
1 0

0 T

)
,(2.5)

where either T = −I3 or T is a 3× 3 real orthogonal symmetric matrix with eigenvalues 1, 1,−1.

Based on Lemma 2.2, the involutions can be classified into two classes:

• standard involution φ =

(
1 0

0 −I3

)
;

• nonstandard involution φ =

(
1 0

0 T

)
, where T is a 3 × 3 real orthogonal symmetric matrix with

eigenvalues 1, 1,−1.

For A ∈ Hm×n, we denote by Aφ [27] the n × m matrix obtained by applying φ entrywise to the

transposed matrix AT , where φ is a nonstandard involution. Here are some examples of Aφ, where φ is a

nonstandard involution.

Example 2.3. The map φ : Hm×n → Hn×m, where φ(A) = Aη∗ = −ηA∗η and η ∈ {i, j,k}, is a

nonstandard involution. Some properties of this nonstandard involution can be found in [12], [15], [17] and

[35]. If η = i, we have φ(i) = −i, φ(j) = j, φ(k) = k, and

(
1 −i + j −i + k

1 + k 2− j 2 + i

)
φ

=

 1 1 + k

i + j 2− j

i + k 2− i

 .

Example 2.4. The map φ : Hm×n → Hn×m, where φ(A) = Aξ∗ = −ξA∗ξ and ξ ∈
{√

2
2 (i + j),

√
2
2 (i + k),

√
2
2 (j + k)

}
, is a nonstandard involution. In particular,

• when a = a0 + a1i + a2j + a3k ∈ H,

a
√

2
2 (i+j)∗ = a0 − a2i− a1j + a3k, if ξ =

√
2

2
(i + j),

a
√

2
2 (i+k)∗ = a0 − a3i + a2j− a1k, if ξ =

√
2

2
(i + k),

a
√

2
2 (j+k)∗ = a0 + a1i− a3j− a2k, if ξ =

√
2

2
(j + k).
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• when ξ =
√
2
2 (j + k), nonstandard involution φ is φ(i) = i, φ(j) = −k, φ(k) = −j, and

(
1 + i− j + 2k i + 2j i + k

1 2j− 3k k

)
φ

=

1 + i− 2j + k 1

i− 2k 3j− 2k

i− j −j

 .

Now we recall the definition of the φ-Hermitian matrix.

Definition 2.5 (φ-Hermitian Matrix). [27] A ∈ Hn×n is said to be φ-Hermitian if A = Aφ, where φ is

a nonstandard involution.

Remark 2.6. To have a good understanding of φ-Hermitian matrix, we introduce two examples.

• For η ∈ {i, j,k}, a square real quaternion matrix A is said to be η-Hermitian if A = Aη∗, where

Aη∗ = −ηA∗η. For example,

(
1 + i + k i + j

i− j i

)
is a j-Hermitian matrix. η-Hermitian matrix was

first proposed in [35], and further discussed in [17]. The η-Hermitian matrices arise in statistical

signal processing and widely linear modelling ([32]–[35]).

• For ξ ∈
{√

2
2 (i + j),

√
2
2 (i + k),

√
2
2 (j + k)

}
, a square real quaternion matrix A is said to be ξ-

Hermitian if A = Aξ∗, where Aξ∗ = −ξA∗ξ. For example,

(
1 + i− j + k 2i + j− k

−i− 2j− k 2i− 2j

)
is a

√
2
2 (i+ j)-

Hermitian matrix.

3. Properties of the Moore-Penrose inverse of Aφ. In order to solve (1.3) and (1.4), we will make

use of Moore-Penrose inverse so we are going to study the properties of the Moore-Penrose inverse of Aφ.

We first give the algebraic properties of quaternion matrix nonstandard involution.

Property 3.1. [27] Let φ be a nonstandard involution. Then, the following hold:

(1) (αA+ βB)φ = Aφφ(α) +Bφφ(β), α, β ∈ H, A,B ∈ Hm×n.

(2) (Aα+Bβ)φ = φ(α)Aφ + φ(β)Bφ, α, β ∈ H, A,B ∈ Hm×n.

(3) (AB)φ = BφAφ, A ∈ Hm×n, B ∈ Hn×p.

(4) (Aφ)φ = A, A ∈ Hm×n.

(5) If A ∈ Hn×n is invertible, then (Aφ)−1 = (A−1)φ.

(6) r(A) = r(Aφ), A ∈ Hm×n.

(7) Iφ = I, 0φ = 0.

The Moore-Penrose inverse A† of a quaternion matrix A, is defined to be the unique matrix A†, such

that

(i) AA†A = A, (ii) A†AA† = A†, (iii) (AA†)∗ = AA†, (iv) (A†A)∗ = A†A.(3.6)

Furthermore, LA and RA stand for the projectors LA = I − A†A and RA = I − AA† induced by A,

respectively. It is known that LA = L∗A and RA = R∗A.

Property 3.1 helps us to derive properties of the Moore-Penrose inverse of the quaternion matrix A.
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Theorem 3.2. Let A ∈ Hm×n be given. Then, the following hold:

(1) (Aφ)† = (A†)φ.

(2) (LA)φ = RAφ , (RA)φ = LAφ .

Proof. (1) It follows from Property 3.1 that

Aφ(A†)φAφ = (AA†A)φ = Aφ and (A†)φAφ(A†)φ = (A†AA†)φ = (A†)φ.

Hence, (A†)φ satisfies the first and second equations in (3.6). Now we want to prove that (A†)φ satisfies

the third and fourth equations in (3.6). It follows from Lemma 2.2 that the map A→ A∗ and nonstandard

involution φ correspond to the real matrices

Q1 =

(
1 0

0 −I3

)
and Q2 =

(
1 0

0 T

)
,

where the matrix T in Q2 is a 3 × 3 real orthogonal symmetric matrix with eigenvalues 1, 1,−1. Note that

Q1Q2 = Q2Q1. Hence, we have

(A∗)φ = (Aφ)∗.(3.7)

It follows from (3.7) that(
Aφ(A†)φ

)∗
=
(
(A†)φ

)∗
(Aφ)∗ =

(
(A†)∗

)
φ

(A∗)φ =
(
A∗(A†)∗

)
φ

=
(
(A†A)∗

)
φ

= (A†A)φ = Aφ(A†)φ,

(
(A†)φAφ

)∗
= (Aφ)∗

(
(A†)φ

)∗
= (A∗)φ

(
(A†)∗

)
φ

=
(
(A†)∗A∗

)
φ

=
(
(AA†)∗

)
φ

= (AA†)φ = (A†)φAφ.

(2) By the definitions of LA, RA and the properties of Moore-Penrose inverse of Aφ, it follows that

(LA)φ = (I −A†A)φ = Iφ − (A†A)φ = I −Aφ(A†)φ = I −Aφ(Aφ)† = RAφ ,

(RA)φ = (I −AA†)φ = Iφ − (AA†)φ = I − (A†)φAφ = I − (Aφ)†Aφ = LAφ ,

establishing (LA)φ = RAφ and (RA)φ = LAφ .

4. The solution to system (1.3). In this section, using the ranks and generalized inverses of matrices,

we give some solvability conditions and the general solution to the mixed pairs of quaternion matrix Sylvester

equations (1.3). At first, we review some results which will be used in this paper. The following lemma gives

the solvability conditions and general solution to the mixed Sylvester matrix equations{
A1X1 −X2B1 = C1,

A2X3 −X2B2 = C2
(4.8)

over H.
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Lemma 4.1. [39] Let Ai, Bi, and Ci (i = 1, 2) be given matrices over H. Set

D1 = RB1
B2, A = RA2

A1, B = B2LD1
, C = RA2

(RA1
C1B

†
1B2 − C2)LD1

.

Then, the following statements are equivalent:

(1) The mixed Sylvester real quaternion matrix equations (4.8) has a solution.

(2) RA1C1LB1 = 0, RAC = 0, CLB = 0.

(3)

r

(
C1 A1

B1 0

)
= r(A1) + r(B1),

r

(
C2 A2

B2 0

)
= r(A2) + r(B2),

r

(
B2 B1 0 0

C2 C1 A1 A2

)
= r(A1, A2) + r(B1, B2).

In this case, the general solution to (4.8) can be expressed as

X1 = A†1C1 + U1B1 + LA1
W1,

X2 = −RA1C1B
†
1 +A1U1 + V1RB1 ,

X3 = A†2(C2 −RA1
C1B

†
1B2 +A1U1B2) +W4D1 + LA2

W6,

where

U1 = A†CB† + LAW2 +W3RB ,

V1 = −RA2
(C2 −RA1

C1B
†
1B2 +A1U1B2)D†1 +A2W4 +W5RD1

,

and W1, . . . ,W6 are arbitrary matrices over H with appropriate sizes.

By applying the Lemma 4.8 with conjugation, we can solve the following system of quaternion matrix

equations

A1X − Y B1 = C1, A2X − ZB2 = C2.(4.9)

More specifically,

Lemma 4.2. Let Ai, Bi, and Ci(i = 1, 2) be given matrices over H. Set

A11 = R(A2LA1
)A2, B11 = B1LB2 , C11 = R(A2LA1

)(C2 −A2A
†
1C1)LB2 .

Then, the following statements are equivalent:
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(1) The system of quaternion matrix equations (4.9) has a solution.

(2) RA1C1LB1 = 0, RA11C11 = 0, C11LB11 = 0.

(3)

r

(
C1 A1

B1 0

)
= r(A1) + r(B1),

r

(
C2 A2

B2 0

)
= r(A2) + r(B2),

r


C1 A1

C2 A2

B1 0

B2 0

 = r

(
A1

A2

)
+ r

(
B1

B2

)
.

In this case, the general solution to (4.9) can be expressed as

X = A†1C1 + V2B1 + LA1U2,

Y = −RA1
C1B

†
1 +A1V2 +W6RB1

,

Z = −R(A2LA1
)(C2 −A2A

†
1C1 −A2V2B1)B†2 +A2LA1

W1 +W3RB2
,

where

V2 = A†11C11B
†
11 + LA11

W4 +W5RB11
,

U2 = (A2LA1)†(C2 −A2A
†
1C1 −A2U1B1) +W1B2 + L(A2LA1

)W2,

and W1, . . . ,W6 are arbitrary matrices over H with appropriate sizes.

The following real quaternion matrix equation

A1X1 +X2B1 + C3X3D3 + C4X4D4 = E1(4.10)

is needed in solving the systems (1.3) and (1.4). The solution to (4.10) over any arbitrary division rings

with involutional anti-automorphisms are given in [14]. Note that quaternion algebra is a special case of an

arbitrary division ring. Hence, we can also give the solvability conditions and the general solution to real

quaternion matrix equation (4.10).

Lemma 4.3. [14, 38] Let A1, B1, C3, D3, C4, D4, and E1 be given matrices over H. Set

A = RA1C3, B = D3LB1 , C = RA1C4, D = D4LB1 ,

E = RA1
E1LB1

, M = RAC, N = DLB , S = CLM .
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Then the quaternion matrix equation (4.10) has a solution if and only if

RMRAE = 0, ELBLN = 0, RAELD = 0, RCELB = 0.

In this case, the general solution can be expressed as

X1 = A†1(E1 − C3X3D3 − C4X4D4)−A†1T7B1 + LA1
T6,

X2 = RA1(E1 − C3X3D3 − C4X4D4)B†1 +A1A
†
1T7 + T8RB1 ,

X3 = A†EB† −A†CM†EB† −A†SC†EN†DB† −A†ST2RNDB† + LAT4 + T5RB ,

X4 = M†ED† + S†SC†EN† + LMLST1 + LMT2RN + T3RD,

where T1, . . . , T8 are arbitrary matrices over H with appropriate sizes.

To simplify the solution of (1.3), we introduce the following lemma.

Lemma 4.4. [24] Given A ∈ Hm×n, B ∈ Hm×k, and C ∈ Hl×n, we have:

(1) r(A) + r(RAB) = r(B) + r(RBA) = r(A, B).

(2) r(A) + r(CLA) = r(C) + r(ALC) = r

(
A

C

)
.

In the following theorem, we will give two solvability conditions and the general solution to the mixed

pairs of quaternion matrix Sylvester equations (1.3). For simplicity, put

A11 = RB2B1, B11 = RA1A2, C11 = B1LA11 , D11 = RA1(RA2C2B
†
2B1 − C1)LA11 ,(4.11)

A22 = (LA2
,−(RC11

B2)φ), B22 =

(
RC11

B2

−(LA2
)φ

)
, D22 = [RA1

(−C1 + C2B
†
2B1)LA11

]φ,(4.12)

C22 = (A†2C2LB2)φ + (B2)φ(C†11)φD22(B†11)φ −A†2C2 −B†11D11C
†
11B2,(4.13)

A = RA22
LB11

, B = B2LB22
, C = −RA22

(B2)φ, D = (LB11
)φLB22

,(4.14)

E = RA22C22LB22 , M = RAC, N = DLB , S = CLM .(4.15)

Theorem 4.5. Let Ai, Bi and Ci (i = 1, 2) be given matrices over H. Then the following statements are

equivalent:

(1) The mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution (X,Y, Z).

(2)

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi), i = 1, 2,(4.16)
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r

(
C1 C2 A1 A2

B1 B2 0 0

)
= r(A1, A2) + r(B1, B2),(4.17)

r

(
C1 C2(A2)φ −A2(C2)φ A1 A2(B2)φ
B1 B2(A2)φ 0 0

)
= r(A1, A2(B2)φ) + r(B1, B2(A2)φ),(4.18)

r

(
C2(A2)φ −A2(C2)φ A2(B2)φ

B2(A2)φ 0

)
= 2r(A2(B2)φ),(4.19)

r


C1 C2(A2)φ −A2(C2)φ A1 A2(B2)φ
0 −(C1)φ 0 (B1)φ
B1 B2(A2)φ 0 0

0 (A1)φ 0 0

 = 2r

(
A1 A2(B2)φ
0 (B1)φ

)
.(4.20)

(3)

RA2
C2LB2

= 0, D11LC11
= 0, RB11

D11 = 0,(4.21)

RMRAE = 0, RCELB = 0, RAELD = 0.(4.22)

In this case, the general solution to (1.3) can be expressed as

X =
X1 + (X5)φ

2
, Y =

X2 + (X4)φ
2

, Z = Zφ =
X3 + (X3)φ

2
,(4.23)

where

X1 = A†1(C1 −RA2C2B
†
2B1 +A2U1B1) +W4A11 + LA1W6,(4.24)

X2 = −RA2
C2B

†
2 +A2U1 + V1RB2

,(4.25)

X4 = −(C2B
†
2)φ + V2(A2)φ + (RB2

)φU2,(4.26)

X5 = −[(A1)†(−C1 + C2B
†
2B1 −A2(V2)φB1)LA11 ]φ + (A11)φT1 + T3(LA1)φ,(4.27)

X3 = A†2C2 + U1B2 + LA2
W1,(4.28)

or

X3 = (A†2C2LB2)φ + (B2)φV2 + T6(LA2)φ,(4.29)

U1 = B†11D11C
†
11 + LB11

W2 +W3RC11
,(4.30)
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V1 = −RA1(C1 −RA2C2B
†
2B1 +A2U1B1)A†11 +A1W4 +W5RA11 ,(4.31)

V2 = (C†11)φD22(B†11)φ + (RC11
)φT4 + T5(LB11

)φ,(4.32)

U2 = [(−C1 + C2B
†
2B1 −A2(V2)φB1)(A11)†]φ + T1(A1)φ + (RA11

)φT2,(4.33)

W1 = (Ip1 , 0)[A†22(C22 − LB11
W2B2 + (B2)φT5(LB11

)φ)−A†22Z7B22 + LA22
Z6],(4.34)

T4 = (0, Ip2)[A†22(C22 − LB11
W2B2 + (B2)φT5(LB11

)φ)−A†22Z7B22 + LA22
Z6],(4.35)

W3 = [RA22
(C22 − LB11

W2B2 + (B2)φT5(LB11
)φ)B†22 +A22A

†
22Z7 + Z8RB22

]

(
Ip2
0

)
,(4.36)

T6 = [RA22(C22 − LB11W2B2 + (B2)φT5(LB11)φ)B†22 +A22A
†
22Z7 + Z8RB22 ]

(
0

Ip1

)
,(4.37)

W2 = A†EB† −A†CM†EB† −A†SC†EN†DB† −A†SZ1RNDB
† + LAZ2 + Z3RB ,(4.38)

T5 = M†ED† + S†SC†EN† + LMLSZ4 + LMZ1RN + Z5RD,(4.39)

and the remaining Wj , Tj , Zj are arbitrary matrices over H, p1 is the column number of A2, p2 is the row

number of B1.

Proof. We first prove that the mixed pairs of quaternion matrix Sylvester equations (1.3) has a solution

(X,Y, Z) if and only if the following system of quaternion matrix equations
A1X1 −X2B1 = C1,

A2X3 −X2B2 = C2,

(B2)φX4 −X3(A2)φ = −(C2)φ,

(B1)φX4 −X5(A1)φ = −(C1)φ

(4.40)

has a solution. If (1.3) has a solution, say, (X0, Y0, Z0), then (4.40) clearly has a solution (X1, X2, X3, X4, X5)

= (X0, Y0, Z0, (Y0)φ, (X0)φ). Conversely, if (4.40) has a solution (X1, X2, X3, X4, X5), then

(X,Y, Z) =

(
X1 + (X5)φ

2
,
X2 + (X4)φ

2
,
X3 + (X3)φ

2

)
is a solution of (1.3). Now we want to solve (4.40).

The main idea for solving (4.40) is that (4.40) has a solution if and only if the systems{
A2X3 −X2B2 = C2,

A1X1 −X2B1 = C1,
(4.41)
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and {
(B2)φX4 −X3(A2)φ = −(C2)φ,

(B1)φX4 −X5(A1)φ = −(C1)φ
(4.42)

are solvable, and the X3 in (4.41) is the same as in (4.42).

It follows from Lemma 4.1 that (4.41) is consistent if and only if

r

(
C1 A1

B1 0

)
= r(A1) + r(B1), r

(
C2 A2

B2 0

)
= r(A2) + r(B2),(4.43)

r

(
C1 C2 A1 A2

B1 B2 0 0

)
= r(A1, A2) + r(B1, B2),(4.44)

or

RA2C2LB2 = 0, D11LC11 = 0, RB11D11 = 0,(4.45)

where B11, C11, and D11 are defined in (4.11). In this case, the general solution to (4.41) can be expressed

as

X3 =A†2C2 + U1B2 + LA2
W1,(4.46)

X2 = −RA2C2B
†
2 +A2U1 + V1RB2 ,

X1 = A†1(C1 −RA2
C2B

†
2B1 +A2U1B1) +W4A11 + LA1

W6,

where

U1 = B†11D11C
†
11 + LB11W2 +W3RC11 ,

V1 = −RA1
(C1 −RA2

C2B
†
2B1 +A2U1B1)A†11 +A1W4 +W5RA11

,

A11, B11, C11, and D11 are defined in (4.11), and W1, . . . ,W6 are arbitrary matrices over H with appropriate

sizes.

Next we consider (4.42). It follows from Lemma 4.2 that (4.42) is solvable if and only if

r

(
−(C1)φ (B1)φ
(A1)φ 0

)
= r(A1)φ + r(B1)φ,

r

(
−(C2)φ (B2)φ
(A2)φ 0

)
= r(A2)φ + r(B2)φ,

r


−(C1)φ (B1)φ
−(C2)φ (B2)φ
(A1)φ 0

(A2)φ 0

 = r

(
(A1)φ
(A2)φ

)
+ r

(
(B1)φ
(B2)φ

)
,
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i.e., (4.43) and (4.44). In this case, the general solution to (4.42) can be expressed as

X3 = (A†2C2LB2
)φ + (B2)φV2 + T6(LA2

)φ,(4.47)

X4 = −(C2B
†
2)φ + V2(A2)φ + (RB2)φU2,

X5 = −[(A1)†(−C1 + C2B
†
2B1 −A2(V2)φB1)LA11

]φ + (A11)φT1 + T3(LA1
)φ,

where

V2 = (C†11)φD22(B†11)φ + (RC11
)φT4 + T5(LB11

)φ,

U2 = [(−C1 + C2B
†
2B1 −A2(V2)φB1)(A11)†]φ + T1(A1)φ + (RA11)φT2,

A11, B11, C11, and D22 are defined in (4.11) and (4.12), and T1, . . . , T6 are arbitrary matrices over H with

appropriate sizes.

Equating X3 in (4.46) and X3 in (4.47) gives

(LA2
,−(RC11

B2)φ)

(
W1

T4

)
+ (W3, T6)

(
RC11

B2

−(LA2
)φ

)
+ LB11

W2B2 − (B2)φT5(LB11
)φ

= (A†2C2LB2
)φ + (B2)φ(C†11)φD22(B†11)φ −A†2C2 −B†11D11C

†
11B2,

i.e.,

A22

(
W1

T4

)
+ (W3, T6)B22 + LB11

W2B2 − (B2)φT5(LB11
)φ = C22,(4.48)

where A22, B22, C22 are defined in (4.12) and (4.13). It follows from Lemma 4.3 that the equation (4.48) is

consistent if and only if

RMRAE = 0, ELBLN = 0, RAELD = 0, RCELB = 0.

In this case, the general solution to the equation (4.48) can be expressed as(
W1

T4

)
= A†22(C22 − LB11

W2B2 + (B2)φT5(LB11
)φ)−A†22Z7B22 + LA22

Z6,

(W3, T6) = RA22(C22 − LB11W2B2 + (B2)φT5(LB11)φ)B†22 +A22A
†
22Z7 + Z8RB22 ,

W2 = A†EB† −A†CM†EB† −A†SC†EN†DB† −A†SZ1RNDB
† + LAZ2 + Z3RB ,

T5 = M†ED† + S†SC†EN† + LMLSZ4 + LMZ1RN + Z5RD,

where A,B,C,D,E,M,N, S are defined in (4.14) and (4.15), Z1, . . . , Z7 are arbitrary matrices over H.
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Now we want to show the equivalence (4.22) ⇔ (4.18)–(4.20). It follows from Lemma 4.4 that

RMRAE = 0⇔ r(RAE, RAC) = r(RAC)⇔ r(E, A, C) = r(A, C)

⇔ r (RA22C22LB22 , RA22LB11 , RA22(B2)φ) = r (RA22LB11 , RA22(B2)φ)

⇔ r

(
C22 LB11

(B2)φ A22

B22 0 0 0

)
= r(LB11

, (B2)φ, A22) + r(B22).(4.49)

Note that the systems (4.41) and (4.42) are consistent, under the equalities in (4.45), i.e., (4.43) and (4.44).

In this case,

X1
3 := A†2C2 +B†11D11C

†
11B2 and X2

3 := (A†2C2LB2
)φ + (B2)φ(C†11)φD22(B†11)φ

are special solutions to (4.41) and (4.42), respectively. Then, we have

C22 = X2
3 −X1

3 .(4.50)

Substituting (4.50) into (4.49) yields

RMRAE = 0⇔ r

(
X2

3 −X1
3 LB11

(B2)φ A22

B22 0 0 0

)
= r(LB11

, (B2)φ, A22) + r(B22)

⇔ r

X2
3 −X1

3 LB11
(B2)φ LA2

RC11
B2 0 0 0

R(A2)φ 0 0 0

 = r(LB11 , (B2)φ, LA2) + r

(
RC11B2

R(A2)φ

)

⇔ r


X2

3 −X1
3 I (B2)φ 0 0 0 0

B2 0 0 0 B1 0 0

I 0 0 0 0 (A2)φ 0

0 A2 0 0 0 0 A1

0 0 0 A2 0 0 0

 = r

 I (B2)φ 0 0

A2 0 0 A1

0 0 A2 0

+ r

(
B2 B1 0

I 0 (A2)φ

)

⇔ r

(
C1 C2(A2)φ −A2(C2)φ A1 A2(B2)φ
B1 B2(A2)φ 0 0

)
= r(A1, A2(B2)φ) + r(B1, B2(A2)φ).

Similarly, it can be shown that

RCELB = 0 ⇔ (4.19) and RAELD = 0 ⇔ (4.20).

We remark that both Conditions (2) and (3) in Theorem 4.5 are practical. In fact, the proof of The-

orem 4.5 reveals that Condition (2) is the result of applying Lemma 4.4 on Condition (3) and is more

straightforward than Condition (3) in terms of checking the solvability of (1.3).
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Remark 4.6. We can also give some solvability conditions and general solution to the following system

of quaternion matrix equations {
A1X − Y B1 = C1,

A2Z − Y B2 = C2,
X = Xφ

by exchanging X and Z in the system (1.3).

Remark 4.7. The study on the η-Hermitian solutions to quaternion matrix equations has drawn more

attention in recent years (e.g. [12], [13], [15], [44], [45]).

• As a special case of the mixed pairs of quaternion matrix Sylvester equations (1.3), we can give

some necessary and sufficient conditions for the existence of a solution (X,Y, Z) to the systems

(1.3), where Z is η-Hermitian, i.e., Z = Zη∗ = −ηZ∗η, η ∈ {i, j,k}.
• As another special case of the mixed pairs of quaternion matrix Sylvester equations (1.3), we can

give some necessary and sufficient conditions for the existence of a solution (X,Y, Z) to the systems

(1.3), where Z is ξ-Hermitian, i.e., Z = Zξ∗ = −ξZ∗ξ, ξ ∈ {
√
2
2 (i + j),

√
2
2 (i + k),

√
2
2 (j + k)}.

We give two examples to illustrate Theorem 4.5 for the two special cases, respectively.

Example 4.8. Let

A1 =

 2− i + j i + k 1 + j + k

1 + 2i− j −1− k i− j− k

1− 3i + 2j 1 + i + 2k 1− i + 2j + 2k

 ,

B1 =

 i + 2k 1 + j− k j

−1− 2j i + j + k k

−1 + i− 2j + 2k 1 + i + 2j j + k

 ,

A2 =

2 + 2j + k −i + j− k 1 + 2i + j

−1− k i + k −2i− j

1 + 2j j 1

 ,

B2 =

 i + j i + k 1 + 2j

−1 + i− j −1 + i− k 1 + i− 2j

−1 −1 i

 ,

C1 =

 5− 7i + 11j + 9k 2 + 8i− j− k 6− 6i + 4j− 5k

−2 + 7i− 3j −1− 4i− 9j + 6k 3 + 6i

17− 18i + 14j + k −5 + 14i + 2j− 9k 3− 8i− 7k

 ,

C2 =

4− 2i + 11j− 2k 5− 4i + 3j + k −1− 2i + j + 3k

−2 + i− 5j + 2k −2 + 2j + k −1− i− 4j− 2k

5 + 3j− 4k 4− 7i + 2j− 2k 4− i + j− 2k

 .
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We consider the mixed pairs of quaternion matrix Sylvester equations (1.3), where Z is k-Hermitian. Direct

computations yield

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi) =

{
3, if i = 1,

4, if i = 2,

r

(
C1 C2 A1 A2

B1 B2 0 0

)
= r(A1, A2) + r(B1, B2) = 6,

r

(
C1 C2A

k∗
2 −A2C

k∗
2 A1 A2B

k∗
2

B1 B2A
k∗
2 0 0

)
= r(A1, A2B

k∗
2 ) + r(B1, B2A

k∗
2 ) = 6,

r

(
C2A

k∗
2 −A2C

k∗
2 A2B

k∗
2

B2A
k∗
2 0

)
= 2r(A2B

k∗
2 ) = 4,

r


C1 C2A

k∗
2 −A2C

k∗
2 A1 A2B

k∗
2

0 −Ck∗
1 0 Bk∗

1

B1 B2A
k∗
2 0 0

0 Ak∗
1 0 0

 = 2r

(
A1 A2B

k∗
2

0 Bk∗
1

)
= 10.

All the rank equalities in (4.16)–(4.20) hold. Hence, the mixed pairs of quaternion matrix Sylvester equations

(1.3) has a solution (X,Y, Z), where Z is k-Hermitian. Also, it is easy to show that

X =

 1 + 2i + k i + j + k 1 + j− k

1− 2i + 2j− k i− j + k 0

2 + 2j 2i + 2k 1 + j− k

 ,

Y =

 i + j 1 + k 2j

1 j 1 + k

1 + i + j 1− 2j 1 + j + k

 ,

and

Z = Zk∗ =

1 + i + j 1− k k

1 + k i 0

−k 0 j


satisfy (1.3).

Example 4.9. Let

A1 =

 i + j− k 2 + i + j + k j

−1 + j + k −1 + 2i− j + k k

−1 + i + 2j 1 + 3i + 2k j + k

 ,
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B1 =

 1 + i + k j− 3k 3i

−2 + j + k i− j + 2k −2i + j

−1 + i + j + 2k i− k i + j

 ,

A2 =

2i + k 3 + j + k 1− i + j− k

1 + i j 1 + k

k i + 2j + k j

 ,

B2 =

 j 2i + k 3

k −2− j 3i

j + k −2 + 2i− j + k 3 + 3i

 ,

C1 =

5 + 2i + 9j + 5k 2− j + 7k −5 + 2i + 5j− 9k

8 + 2i− 8j + 9k −5 + 3i− 8j −2i + 2j + 7k

4 + i + 2j + 11k −2 + 4i + 2j + 2k −9 + i + 9j− k

 ,

C2 =

−1− 3i− 8j + 2k −2− 3i + 7k −5− j + k

5 + 6i− 4j− k 9− 6i− 2j + 8k −6− 8i− 12j− 8k

5 + i− 2j + 3k 2− 4i + 5j− k −5− 3i− 2j + 4k

 .

Now we consider the mixed pairs of quaternion matrix Sylvester equations (1.3), where Z = Z
√

2
2 (i+j)∗.

Direct computations yield

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi) =

{
3, if i = 1,

4, if i = 2,

r

(
C1 C2 A1 A2

B1 B2 0 0

)
= r(A1, A2) + r(B1, B2) = 5,

r

C1 C2A

√
2

2 (i+j)∗
2 −A2C

√
2

2 (i+j)∗
2 A1 A2B

√
2

2 (i+j)∗
2

B1 B2A

√
2

2 (i+j)∗
2 0 0


= r

(
A1, A2B

√
2

2 (i+j)∗
2

)
+ r

(
B1, B2A

√
2

2 (i+j)∗
2

)
= 4,

r

C2A

√
2

2 (i+j)∗
2 −A2C

√
2

2 (i+j)∗
2 A2B

√
2

2 (i+j)∗
2

B2A

√
2

2 (i+j)∗
2 0

 = 2r

(
A2B

√
2

2 (i+j)∗
2

)
= 2,

r


C1 C2A

√
2

2 (i+j)∗
2 −A2C

√
2

2 (i+j)∗
2 A1 A2B

√
2

2 (i+j)∗
2

0 −C
√

2
2 (i+j)∗

1 0 B

√
2

2 (i+j)∗
1

B1 B2A

√
2

2 (i+j)∗
2 0 0

0 A

√
2

2 (i+j)∗
1 0 0

 = 2r

A1 A2B

√
2

2 (i+j)∗
2

0 B

√
2

2 (i+j)∗
1

 = 6.
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All the rank equalities in (4.16)–(4.20) hold. Hence, the mixed pairs of quaternion matrix Sylvester equations

(1.3) has a solution (X,Y, Z), where Z = Z
√

2
2 (i+j)∗. Moreover, it is easy to show that

X =

 −i 1 + k 2 + i + 2j + k

2 + j 0 i− k

2− i + j 1 + k 2 + 2i + 2j

 ,

Y =

 2 + k i + j + 2k 0

1 + i + j 1− i i + 3k

0 0 1 + j

 ,

and

Z = Z
√

2
2 (i+j)∗ =

1 + i− j + k i + 2j i

−2i− j i− j j

−j −i k


satisfy (1.3).

5. The solution to system (1.4). In this section, we consider some solvability conditions and the

general solution to the mixed pairs of quaternion matrix Sylvester equations (1.4). The following lemma

gives the solvability conditions and general solution to the mixed Sylvester matrix equations{
A1X1 −X2B1 = C1,

A2X2 −X3B2 = C2
(5.51)

over C.

Lemma 5.1. [16] Let Ai, Bi, and Ci (i = 1, 2) be given matrices over H. Set

A11 = R(A2A1)A2, B11 = RB1
LB2

, C11 = R(A2A1)(A2RA1
C1B

†
1 + C2)LB2

.

Then the following statements are equivalent:

(1) The mixed generalized Sylvester quaternion matrix equations (5.51) is solvable.

(2)

RA1
C1LB1

= 0, RA11
C11 = 0, C11LB11

= 0.

(3)

r

(
C1 A1

B1 0

)
= r(A1) + r(B1), r

(
C2 A2

B2 0

)
= r(A2) + r(B2),

r

(
A2A1 A2C1 + C2B1

0 B2B1

)
= r(A2A1) + r(B2B1).

If any of the above condition is satisfied, then the general solution to (5.51) can be expressed as

X1 = A†1C1 + U1B1 + LA1
W1,
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X2 = −RA1C1B
†
1 +A1U1 + V1RB1 ,

X3 = −R(A2A1)(C2 +A2RA1
C1B

†
1 −A2V1RB1

)B†2 +A2A1W4 +W5RB2
,

where

V1 = A†11C11B
†
11 + LA11

W2 +W3RB11
,

U1 = (A2A1)†(C2 +A2RA1
C1B

†
1 −A2V1RB1

) +W4B2 + L(A2A1)W6,

and W1, . . . ,W6 are arbitrary matrices over H with appropriate sizes.

Using the similar method, we can extend Lemma 5.1 to H. For simplicity, put

A11 = R(A2A1)A2, B11 = RB1
LB2

, C11 = R(A2A1)(A2RA1
C1B

†
1 + C2)LB2

,(5.52)

A22 = (B1L(B2B1))φ, B22 = (RA1
LA2

)φ, C22 = −[RA1
(C1 +A†2C2LB2

B1)L(B2B1)]φ,(5.53)

A33 = (A2A1, (RB2)φ), B33 = RB11RB1B
†
2,(5.54)

C33 = − [C2B
†
2 + A2(C1 + A†2C2LB2B1)(B2B1)†]φ + R(A2A1)(A2RA1C1B

†
1 + C2 −A2A

†
11C11B

†
11RB1)B†2,(5.55)

A = RA33
A11, B = B33(RA33

)φ, C = RA33
(R(B2B1))φ, D = (RA33

A2)φ,(5.56)

E = RA33
C33(RA33

)φ, M = RAC, N = DLB , S = CLM .(5.57)

Then we have the following theorem with two solvability conditions and the general solution to (1.4).

Theorem 5.2. Let Ai, Bi, and Ci (i = 1, 2) be given matrices over H. Then the following statements

are equivalent:

(1) The mixed pairs of quaternion matrix Sylvester equations (1.4) has a solution (X,Y, Z).

(2)

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi), i = 1, 2,(5.58)
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r

(
A2A1 A2C1 + C2B1

0 B2B1

)
= r(A2A1) + r(B2B1),(5.59)

r

(
(B2)φA2C1 + (B2)φC2B1 − (C2)φB2B1 (B2)φA2A1

(A2)φB2B1 0

)
= r((B2)φA2A1) + r((A2)φB2B1),(5.60)

r

(
(B2B1)φA2C1 + (B2B1)φC2A1 − (C2B1)φA2A1 − (B2C1)φA2A1 (B2B1)φA2A1

(A2A1)φB2B1 0

)
= 2r((A2A1)φB2B1),(5.61)

r

(
(B2)φC2 − (C2)φB2 (B2)φA2

(A2)φB2 0

)
= 2r((A2)φB2).(5.62)

(3)

RA1
C1LB1

= 0, RA11
C11 = 0, C11LB11

= 0,(5.63)

RMRAE = 0, RCELB = 0, RAELD = 0.(5.64)

The general solution to (1.4) can be expressed as

X =
X1 + (X5)φ

2
, Y =

X2 + (X4)φ
2

, Z = Zφ =
X3 + (X3)φ

2
,(5.65)

where

X1 = A†1C1 + U1B1 + LA1
W1,(5.66)

X2 = −RA1
C1B

†
1 +A1U1 + V1RB1

,(5.67)

X4 = (A†2C2LB2
)φ + (B2)φU2 + V2(LA2

)φ,(5.68)

X5 = [A†1(C1 +A†2C2LB2
B1 + LA2

(V2)φB1)L(B2B1)]φ − (B2B1)φT4 + T5(LA1
)φ,(5.69)

X3 = −R(A2A1)(C2 +A2RA1
C1B

†
1 −A2V1RB1

)B†2 +A2A1W4 +W5RB2
,(5.70)

or

X3 = −(C2B
†
2)φ + U2(A2)φ − (RB2)φT1,(5.71)

V1 = A†11C11B
†
11 + LA11W2 +W3RB11 ,(5.72)
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U1 = (A2A1)†(C2 +A2RA1
C1B

†
1 −A2V1RB1

) +W4B2 + L(A2A1)W6,(5.73)

V2 = A†22C22B
†
22 + LA22T2 + T3RB22 ,(5.74)

U2 = −[(C1 +A†2C2LB2
B1 + LA2

(V2)φB1)(B2B1)†]φ − T4(A1)φ − (R(B2B1))φT6,(5.75)

W4 = (Ip1 , 0)[A†33(C33 −A11W3B33 − (R(B2B1))φT6(A2)φ) −A†33Z7(A33)φ + LA33Z6],(5.76)

T1 = (0, Ip2)[A†33(C33 −A11W3B33 − (R(B2B1))φT6(A2)φ) −A†33Z7(A33)φ + LA33Z6],(5.77)

T4 = [RA33(C33 −A11W3B33 − (R(B2B1))φT6(A2)φ)(A†33)φ + A33A
†
33Z7 + Z8(LA33)φ]

(
Ip1
0

)
,(5.78)

W5 = [RA33(C33 −A11W3B33 − (R(B2B1))φT6(A2)φ)(A†33)φ + A33A
†
33Z7 + Z8(LA33)φ]

(
0

Ip2

)
,(5.79)

W3 = A†EB† −A†CM†EB† −A†SC†EN†DB† −A†SZ1RNDB
† + LAZ2 + Z3RB ,(5.80)

T6 = M†ED† + S†SC†EN† + LMLSZ4 + LMZ1RN + Z5RD,(5.81)

and the remaining Wj , Tj , Zj are arbitrary matrices over H, p1 is the column number of A1, p2 is the row

number of B2.

Proof. The proof is similar to that for Theorem 4.5. It can be shown that (1.4) has a solution (X,Y, Z)

if and only if the following system of quaternion matrix equations
A1X1 −X2B1 = C1,

A2X2 −X3B2 = C2,

(B2)φX3 −X4(A2)φ = −(C2)φ,

(B1)φX4 −X5(A1)φ = −(C1)φ

(5.82)

has a solution.

Remark 5.3. We can also give some solvability conditions and general solution to the following system

of quaternion matrix equations {
A1X − Y B1 = C1,

A2Y − ZB2 = C2,
X = Xφ

by taking φ to the first and second matrix equations in (1.4).
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Based on Remark 4.7, we can also give two examples with respect to the two special cases.

Example 5.4. Given the quaternion matrices:

A1 =

 2i + j + k −1 + j− k j

−2− j + k −i + j + k k

2 + i + 2j −1 + i− 2k j− k

 ,

B1 =

 i + 2j + 3k i 1 + k

1 + i + 3j + 3k i + k 2 + j + k

1 + j k 1 + j

 ,

A2 =

 1 + k i + j− k i + 2j + k

i− j −1 + j + k −1− j + 2k

2 + 2k 2i + 2j− 2k 2i + 4j + 2k

 ,

B2 =

i + 2j + k 1 + j− k −1 + j

−1 i + j −i

1 + j −i + k i

 ,

C1 =

 2− 9i− 4j −3− j + 6k −3− i− j− 6k

6− 6i− 7j− 8k −3− 7i− 4j− 3k −2− 7i + 2j

5− 6i− 8j + 5k 3i + 8k −2 + 5i− 10j− 9k

 ,

C2 =

 5 + 3i− j −7− 5i −5 + 6i + 2j + 4k

−5 + i− 8j− 3k 1− 6i− j + 4k −2− 7i− 8j + 3k

3 + 7i + j + 5k −9− 7i + 6j− k −14 + 5i + 5j + 9k

 .

Direct computations yield

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi) =

{
3, if i = 1,

4, if i = 2,

r

(
A2A1 A2C1 + C2B1

0 B2B1

)
= r(A2A1) + r(B2B1) = 3,

r

(
(B2)j∗A2C1 + (B2)j∗C2B1 − (C2)j∗B2B1 (B2)j∗A2A1

(A2)j∗B2B1 0

)
= r((B2)j∗A2A1) + r((A2)j∗B2B1) = 2,

r

(
(B2B1)j∗A2C1 + (B2B1)j∗C2A1 − (C2B1)j∗A2A1 − (B2C1)j∗A2A1 (B2B1)j∗A2A1

(A2A1)j∗B2B1 0

)
= 2r((A2A1)j∗B2B1) = 2,
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r

(
(B2)j∗C2 − (C2)j∗B2 (B2)j∗A2

(A2)j∗B2 0

)
= 2r((A2)j∗B2) = 2.

All the rank equalities in (5.58)–(5.62) hold. Hence, (1.4) has a solution (X,Y, Z), where Z is j-Hermitian.

It is easy to show that

X =

 i + 2j 1 + j + 2k i

−1 j 1 + k

−1 + i + 2k 1 1 + i + 3j

 ,

Y =

 2− k −1 + 2j i + j + k

1 + i + j + k 1 j

1− i + j 2j 1 + 2j + k

 ,

and

Z = Zj∗ =

1 + i + k 2 + j i

2− j i 0

i 0 k


satisfy (1.4).

Example 5.5. Let

A1 =

(
2i + j 1 + k 2− i

−2 + k i− j 1 + 2i

)
, B1 =

(
1 + i + 3k j 1

0 1 + 2j k

)
,

A2 =

(
1 + i + k −2i + k

−1 + i− j 2− j

)
, B2 =

(
1 + 2i + j + k 1 + j− k

−2 + i− j + k i + j + k

)
,

C1 =

(
−1− 5i + j + 2k 5i− 4j− k −1 + 3j− k

2i− 3j− 2k −7− 7i− k −1− i + j + k

)
,

C2 =

(
1− 4i + 10j + 5k 1− i− j + 4k

−3− 2i + 7j + 4k −8i− 2j + 3k

)
.

Now we consider (1.4), where Z = Z
√

2
2 (j+k)∗. Direct computations yield

r

(
Ci Ai
Bi 0

)
= r(Ai) + r(Bi) =

{
3, if i = 1,

2, if i = 2,

r

(
A2A1 A2C1 + C2B1

0 B2B1

)
= r(A2A1) + r(B2B1) = 2,

r

(
(B2)

√
2

2
(j+k)∗A2C1 + (B2)

√
2

2
(j+k)∗C2B1 − (C2)

√
2

2
(j+k)∗B2B1 (B2)

√
2

2
(j+k)∗A2A1

(A2)
√

2
2

(j+k)∗B2B1 0

)

= r((B2)
√

2
2

(j+k)∗A2A1) + r((A2)
√

2
2

(j+k)∗B2B1) = 0,
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r

(
Ω (B2B1)

√
2

2 (j+k)∗A2A1

(A2A1)
√

2
2 (j+k)∗B2B1 0

)
= 2r((A2A1)

√
2

2 (j+k)∗B2B1) = 0,

r

(
(B2)

√
2

2 (j+k)∗C2 − (C2)
√

2
2 (j+k)∗B2 (B2)

√
2

2 (j+k)∗A2

(A2)
√

2
2 (j+k)∗B2 0

)
= 2r((A2)

√
2

2 (j+k)∗B2) = 0,

where

Ω = (B2B1)
√

2
2

(j+k)∗A2C1 + (B2B1)
√

2
2

(j+k)∗C2A1 − (C2B1)
√

2
2

(j+k)∗A2A1 − (B2C1)
√

2
2

(j+k)∗A2A1.

All the rank equalities in (5.58)–(5.62) hold. Hence, (1.4) has a solution (X,Y, Z), where Z = Z
√

2
2 (j+k)∗.

It is easy to show that

X =

 i + j + 2k 2 + 2j + k −1

1− k −1− 2j i + j

1 + i + j + k 1 + k −1 + i + j

 ,

Y =

(
1 + i + 2j− k 1 + 2i + k

k 1

)
,

and

Z = Z
√

2
2 (j+k)∗ =

(
i + j− k j

−k 1 + 2j− 2k

)
satisfy (1.4).

6. Conclusions. We have derived some practical necessary and sufficient conditions for the existence

of a solution (X,Y, Z) (with a φ-Hermitian Z) to the mixed pairs of quaternion matrix Sylvester equations

(1.3) and (1.4) and presented general solutions to (1.3) and (1.4) when they are solvable. Moreover, some

numerical examples have been provided.

A more challenging problem is to give the solvability conditions and general solutions to the mixed pairs

of quaternion matrix Sylvester equations (1.3) and (1.4), where all of the unknowns X,Y, Z are φ-Hermitian.
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