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Abstract

In pickup and delivery problems vehicles have to transport loads from origins to desti
nations without transshipment at intermediate locations. In this paper, we discuss several
characteristics that distinguish them from standard vehicle routing problems and present
a survey of the problem types and solution methods found in the literature.



1 Introduction

In the General Pickup and Delivery Problem (GPDP) a set of routes has to be constructed in

order to satisfy transportation requests. A fleet of vehicles is available to operate the routes.

Each vehicle has a given capacity, a start location and an end location. Each transportation

request specifies the size of the load to be transported, the locations where it is to be picked

up (the origins) and the locations where it is to be delivered (the destinations). Each load

has to be transported by one vehicle from its set of origins to its set of destinations without

any transshipment at other locations.

Three well-known and extensively studied routing problems are special cases of the GPDP.

In the Pickup and Delivery Problem (PDP), each transportation request specifies a single

origin and a single destination and all vehicles depart from and return to a central depot.

The Dial-a-Ride Problem (DARP) is a PDP in which the loads to be transported represent
people. Therefore, we usually speak of clients or customers instead of transportation requests

and all load sizes are equal to one. The Vehicle Routing Problem (VRP) is a PDP in which

either all the origins or all the destinations are located at the depot.

The GPDP is introduced in order to be able to deal with various complicating character

istics found in many practical pickup and delivery problems, such as transportation requests

specifying a set of origins associated with a single destination or a single origin associated

with a set of destinations, vehicles with different start and end locations, and transportation
requests evolving in real time.

Many practical pickup and delivery situations are demand responsive, Le, new transporta

tion requests become available in real-time and are immediately eligible for consideration. As

a consequence, the set of routes has to be reoptimized at some point to include the new
transportation requests. Observe that at the time of the reoptimization, vehicles are on the

road and the notion of depots becomes void.

The purpose of this paper is to present a general model that can handle the practical

complexities mentioned above, to isolate and discuss some of the characteristics that differ

entiate pickup and delivery problems from traditional vehicle routing problems, and to give

an overview of the literature on pickup and delivery problems.

With respect to the literature on routing and scheduling problems, it is interesting to
observe that although pickup and delivery problems are as important from a practical point

of view and as interesting from a theoretical point of view as vehicle routing problems, they

have received far less attention. We hope that by identifying and discussing important issues

regarding pickup and delivery problems and by presenting a survey of the literature, we

stimulate further research in the area.

2 Problem Formulation

Let N be the set of transportation requests. For each transportation request i EN, a load

of size qi E :N has to be transported from a set of origins Nt to a set of destinations N j-.

Each load is subdivided as follows: qj = L,jENt q; = - L,jEN
i
- q;, Le., positive quantities

for pickups and negative quantities for deliveries. Define N+ := UjENNt as the set of all

origins and N- := UiENN j- as the set of all destinations. Let V := N+ U N-. Furthermore,

let M be the set of vehicles. Each vehicle k E M has a capacity Qk E :N, a start location

k+, and an end location k-. Define M+ := {k+lk E M} as the set of start locations and
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M- := {k-Ik E M} as the set of end locations. Let W := M+ U M-.

For all i,j E V U W let di,i denote the travel distance, ti,; the travel time, and CiJ the

travel cost.

Definition 1 A pickup and delivery route Ric for vehicle k is a directed route through a subset

Vic C V such that:

1. Ric starts in k+ .

2. (Nt U Ni-) nVic = 0 or (Nt U Ni-) n Vic = Nt U N i- for all i EN.

3. If Nt U N i- ~ Vic, then all locations in Nt are visited before all locations in Ni- .

4. Vehicle k visits each location in VI: exactly once.

5. The vehicle load never exceeds QI:.

6. Rk ends in k-.

Definition 2 A pickup and delivery plan is a set of routes n := {Rklk E M} such that:

1. Rk is a pickup and delivery route for vehicle k, for eo.ch k EM.

2. {Vk/k E M} is a partition of V.

Define f('R) as the cost of plan 'R corresponding to a certain objective function f. We

can now define the general pickup and delivery problem as the problem:

min{f(R)IR is a pickup and delivery plan.}

The special cases of the GPDP mentioned in the introduction can be characterized as

follows:

The pickup and delivery problem: IWI =1 and INti = !Ni-I = 1 for all i E N. In this
case we define i+ as the unique element of Ni+ and i- as the unique element of Ni-.

The dial-a-ride problem: IWI = 1 and INi+1 = INi-1 =1 and (ji =1 for all i EN.

The vehicle routing problem: IWI = 1, INi+\ = INi-1 = 1 for all i EN, and N+ ~ W.

To formulate the GPDP as a mathematical program, we introduce four types of variables:

zf (i EN, k E M) equal to 1 if transporta.tion request i is assigned to vehicle k and 0

otherwise,

xfj «i,j) E (Vx V)U{(k+,j)/j E V}U{(j,k-)lj E V},k E M) equal to 1 if vehicle k travels

from location i to location j and 0 otherwise,

Di (i E V UW), specifying the departure time at vertex i, and

'!Ii (i E V UW), specifying the loa.d of the vehicle arriving at vertex i.

Define qk+ = 0 for all k EM. The problem is now to
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minimize I(x)

subject to

LkEMzt = 1

LjEVUW xfJ =EjEVUW Xi,l = zt

L l E N : + - U N ~ LjEVUW xfJ = INi+ U Ni-Izt

• • kLjEVU{k-} xk+J = 1

LiEVU{k+} xtk- =1

D k+ = 0

Dp~ Dq

xt = 1 => Di + tiJ ~ Dj

'Yk+ =0

'Yl ~ LkEM Qkzt
X

k
- 1 => 'Y' +q' - 'Y'i,j - ,,- )

xf j E{O,I}

zt' E {O, I}

Di 2: 0

'Yi 2: 0

for all i EN, (1 )
for all i E N,I E Ni+ U Nj-,k E M, (2)

for all i E N,k E M, (3)

for all k E M, (4)

for all k E M, (5)

for all k E M, (6)
for all i EN, PE N/, q E Ni-, (7)

for all i,i E V UW,k EM, (8)

for all k E M, (9)
for all i E N,I E N/ U N j-, (10)

foralli,jEVUW,kEM, (11)

for all i,j E V U W,k E M, (12)

for all i E N,k EM, (13)

for all i E V U W, (14)

for all i E V U W. (15)

Constraint (1) ensures that each transportation request is assigned to exactely one vehicle. By

constraint (2) a vehicle only enters or leaves a location I if it is an origin or a destination of a

transportation request assigned to that vehicle. By constraint (3) the origins and destinations
of a transportation request are only visited by that vehicle the transportation request is

assigned to. Constraints (4) and (5) make sure that each vehicle starts and ends at the

correct place. Constraints (6), (7), (8) and (14) together form the precedence constraints.

Constraints (9), (10), (11) and (15) together form the capacity constraints.

3 Problem Characteristics

3.1 Transportation requests

A very important characteristic of routing problems is the way in which transportation re

quests become available. In a static situation, all requests are known at the time the routes

have to be constructed. In a dynamic situation, some of the requests are known at the time

the routes have to be constructed and the other requests become available in real time during

execution of the routes. Consequently, in a dynamic situation, when a new transportation

request becomes available, at least one route has to be changed in order to serve this new

request. Most vehicle routing problems are static, whereas most pickup and delivery problems

are dynamic.

In practice, a dynamic problem is often solved as a sequence of static problems. Each

time a new request becomes available and the current set of routes has to be updated, only

the known transportation requests are considered. In doing so, one ignores any information

that may be known about the spatial or time distribution of future requests.
Another important concept in routing problems is that of a depot. In the routing liter

ature, the depot is usually the place where vehicles start and end their routes. Since most

pickup and delivery problems are dynamic, often with a long planning horizon, the concept

of a depot vanishes. Drivers sleep at the last location they visited or at the first location
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they have to visit the next day. Even for problems with a short planning horizon, such as
a single day, where vehicles start and end at a central depot, a demand responsive situation

leads to problems without depots. When new transportation requests become available and

the current set of routes has to be updated the vehicles are spread out over the planning area.

The general pickup and delivery model is well suited for dealing with the subproblems
that occur in dynamic demand responsive routing problems.

3.2 Time constraints

Apart from the vehicle capacity constraints and the intrinsic precedence constraints related
to pickup and delivery, side constraints related to time arise in almost every practical pickup

and delivery situation. Although time constraints have become an integral part of models

for vehicle routing problems (for recent surveys on the vehicle routing problem with time

windows see Desrochers, Lenstra, Savelsbergh, and Soumis [8] and Solomon and Desrosiers

[38]), they play an even more prominent role in pickup and delivery problems. Among other

reasons, because the most studied pickup and delivery problem is the dial-a-ride problem,

which deals with the transportation of people who specify desired pickup or delivery times.

The presence of time constraints complicates the problem considerably. If there are no

time constraints, finding a feasible pickup and delivery plan is trivial: arbitrarily assign

transportation requests to vehicles, arbitrarily order the transportation requests assigned to a

vehicle and process each transportation request separately. In the presence of time constraints

the problem of finding a feasible pickup and delivery plan is NP-hard. Consequently, it may

be difficult to construct a feasible plan, especially when time constraints are restrictive. On

the other hand, an optimization method may benefit from the presence of time constraints,

since the solution space may be much smaller.

3.2.1 Time constraints related to transportation requests

For each i E V U W a time window rei, Ii] is introduced denoting the time interval in which

service at location i must take place. Given a pickup and delivery plan and departure times

of the vehicles, the time windows define for each i E V the arrival time Ai and the departure

time Di. Note that Di = max{Ai, ed. If Ai < ei, then the vehicle has to wait at location i.

Next to the explicit time windows mentioned above there also exist implicit time windows.

Implicit time windows originate from controlling customer inconvenience. In dial-a-ride sys

tems, people usually specify either a desired delivery time Ai- or a desired pickup time D j+.

Because people do not want to be late at their destination, in a pickup and delivery plan

the actual delivery time A j - must satisfy A j - $ Ai-. Analogously, we require Di+ ~ Di+.

This defines half open time windows. To prevent clients from being served long before (after)

their desired delivery (pickup) time, we can either construct closed time windows or take

an objective function that penalizes deviations from the desired service time. Closed time

windows can, for example, be constructed by defining a maximum deviation from the desired
pickup or delivery time.

Another problem in which customer inconvenience can be controlled by time windows

emerges from a demand responsive immediate request dial-a-ride system. In such a system,

clients that request service want to be picked up as soon as possible. If client i has a pickup

location that is geographically far away, this client will be scheduled last on a vehicle route.

This situation will not change even when new clients request service. To prevent the client
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from suffering indefinite deferment, a closed pickup time window [0, lj+ ] is defined where lj+

is an input to the system.

Other time constraints that originate from customer inconvenience restrictions in dial-a

ride systems are maximum ride time restrictions, Le., a bound on the time a client is in the

vehicle, and deadhead restrictions, Le., no waiting time is allowed when a client is in the

vehicle. Deadhead restrictions introduce the concept of schedule blocks, Le., working periods

between two successive slack periods.

3.2.2 Time constraints related to vehicles

Usually, vehicles are not available all day. Drivers have to eat and sleep and vehicles are

subjected to service plans. These constraints can be modeled as time windows for vehicles.

Typically a vehicle has multiple time windows defining all the periods in which it is available.

3.3 Objective functions

A wide variety of objective functions is found in pickup and delivery problems. The most

common ones are discussed below.

First, we present objective functions related to single-vehicle pickup and delivery problems.

Minimize duration. The duration of a route is the total time a vehicle needs to execute the

route. Route duration includes travel times, waiting times, loading and unloading times, and

break times.

Minimize completion time. The completion time of a route is the time service at the last

location is completed. In case the start time of the vehicle is fixed at time zero, the completion

time coincides with the route duration.

Minimize travel time. The travel time of a route refers to the total time spent on actual

traveling between different locations.

Minimize client inconvenience. In dial-a-ride systems, client inconvenience is measured in

terms of pickup time deviation, Le., the difference between the actual pickup time and the

desired pickup time, delivery time deviation, Le., the difference between the desired delivery

time and the actual delivery time, and excess ride time, Le. the difference between the real
ized ride time and the direct ride time. In demand responsive situations where clients request

immediate service, Le., as soon as possible, the difference between the time of pickup and
the time of request placement may also contribute to the definition of client inconvenience.

Different kinds of functions, linear as well as nonlinear, have been proposed to model client
inconvenience.

Second, we present objective functions related to multiple-vehicle pickup and delivery prob

lems.

Minimize the number of vehicles. This function is almost always used in dial-a-ride systems,

combined with one of the above functions to optimize the single-vehicle subproblems. Dial-a-
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ride systems are normally highly subsidized systems for the transportation of the elderly and
handicapped. Therefore the objective is to minimize cost (mostly together with customer

inconvenience). Because drivers and vehicles are the most expensive parts in a dial-a-ride
system, minimizing the number of vehicles to serve all requests is usually the main objective.

Maximize profit. This function, which can use all of the above functions, can be used in a

system where the dispatcher has the possibility of rejecting a transportation request when it

is unfavorable to transport the corresponding load. Note that, for example, in a dial-a-ride

system, it is not allowed to reject a transportation request. A model based on this objective

function should not only incorporate the costs, but also the revenues associated with the

transportation of loads.

For dynamic pickup and delivery problems it is not clear what kind of objective functions
should be used. In a demand responsive environment pickup and delivery routes may be open
ended. Therefore, objectives such as duration, completion time, and travel time have no clear

meaning. Intuitively, an objective function for dynamic problems should emphasize decisions

that affect the near future more than decisions regarding the remote future.

4 Solution approaches

In this section, we review the literature on pickup and delivery problems. The survey is

organized as follows. The class of pickup and delivery problems has been divided into static

and dynamic problems, since their characteristics as well as their solution approaches differ

considerably. Within either of these classes, we distinguish single-vehicle and multiple-vehicle

problems. Obviously, in the single-vehicle PDP all transportation requests are handled by

the same vehicle, whereas in the multiple-vehicle PDP the transportation requests have to be

divided over the set of vehicles. Assigning transportation requests to vehicles in the PDP is

much more difficult than assigning transportation requests to vehicles in the VRP. In the VRP,

all the origins of transportation requests are located at the depot. Therefore, transportation

requests with geographically close destinations are likely to be served by the same vehicle. In
the PDP, geographically close destinations may have origins that are geographically far apart
and we cannot conclude that they are likely to be served by the same vehicle.

For each of the resulting subclasses, one or more papers are discussed. The level of
detail depends on the originality, viability and importance of the described solution approach.

Furthermore, we do not cover iterative improvement methods in any detail. For these the

interested reader is referred to Kindervater and Savelsbergh [22].

4.1 The static pickup and delivery problem

4.1.1 The static single-vehicle pickup and delivery problem

The static single-vehicle pickup and delivery problem is probably the most studied variant of

the PDP. First of all because the dial-a-ride problem belongs to this class, but also because
it appears as a subproblem in multiple-vehicle pickup and delivery problems. We discuss

solution approaches for problems with and without time windows separately.
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(A) The static I-PDP without time windows

Optimization
Psaraftis [27] considers immediate request dial-a-ride problems. In these problems, every
client requesting service wishes to be served as soon as possible. The objective is to minimize
a weighted combination of the time needed to serve all clients and the total degree of 'dis
satisfaction' clients experience until their delivery. Dissatisfaction is assumed to be a linear

function of the time each client waits to be picked up and of the time he spends riding in the
vehicle until his delivery. This leads to the following objective function:

min wIT + W2 L(aWi + (2 - a)Ri),
ieN

where T denotes the route length, Wi the waiting time of client i from the departure time
of the vehicle until the time of pickup, R i the riding time of client i from pickup to delivery.

and 0::; a::; 2.
The problem is solved using a straightforward dynamic programming algorithm. The

state space consists of vectors (L, k1 • k2•• •• ,kn ). where L denotes the location currently be

ing visited (L =0 at the starting location. L = i at the origin of client i and L = i + n at
the destination of client i) and ki denotes the status of client i (ki = 3 if client i has not

been picked up, ki =2 if client i has been picked up but has not been delivered and ki =1 if
client i has been delivered). Starting with state vector (0.3,3, ... ,3) the algorithm explores

new states preserving feasibility of the partial routes constructed so far. The algorithm has

a complexity of O(n23n
), where n = IN I. and can solve problems with up to 9 or 10 clients.

Le., 18 or 20 locations.

Kalantari, Hill and Arora [21] propose a method based on the branch and bound algorithm
for the TSP developed by Little, Murty. Sweeney and Karel [23]. The method handles prece
dence constraints by precluding in each branch all the arcs that violate the active precedence

constraints.

Fischetti and Toth [17] develop an additive bounding procedure that can be used in a branch

and-bound algorithm for the TSP with precedence constraints, Le.• a single-vehicle dial-a-ride

problem without capacity constraints. The idea behind additive bounding is to use several
bounds for a problem type additively rather than separately. Let t,(k) (k = 1•... ,r) be a
procedure which, when applied to problem P with cost vector e, returns a lower bound 6(k)

and a residual cost vector e(k), such that 6(k) +e(k)x' ::; ex for all feasible x. Apply t,(I) to

problem P with cost vector e and subsequently apply t,(k) to problem P with cost vector
e(k-l) (k = 2••.•,r). Then Ek=16(k) +e(k)x ::; ex for all feasible x. So Ek=16(k) is a lower

bound for P.

The bounds used by Fischetti and Toth for the TSP with precedence constraints are based

on the assignment relaxation, the shortest spanning 1-arborescence relaxation, disjunctions.

and on variable decomposition, in that order.

Approximation

Stein [40] presents a probabilistic analysis of a simple approximation algorithm for the single
vehicle dial·a-ride problem without capacity constraints. The algorithm constructs a TSP
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tour through all origins and a TSP tour through all the destinations and then concatenates

them.

Stein shows that if n origin-destination pairs are randomly chosen in a region of area a,

using a uniform distribution, there exists a constant b such that the length tin of the tour

constructed by the algorithm satisfies

lim . ~ =2b.ja with probability 1,
n-+oo v n

where b is the constant that appears in the theorem of Beardwood, Halton and Hammersley [2]
on the length of an optimal traveling salesman tour in the Euclidean plane. Recent experi

ments by Johnson [18] indicate that b:::= 0.713. Stein also proves that if n origin-destination

pairs are randomly choosen in a region of area a, using a uniform distribution, the length Y:
of the optimal tour satisfies

limY,: = 1.89b.ja with probability 1.
n-+oo v n

This implies that the algorithm has an asymptotic performance bound of 1.06 with probabil

ity 1.

Psaraftis [30] presents a worst-case analysis of a simple two-phase approximation algorithm

for the single-vehicle dial-a-ride problem in the plane. In the first phase, a TSP tour through

all locations is constructed. In the second phase, this tour is traversed clock-wise, beginning

at the start location of the vehicle and skipping any location that has been visited before, any

origin where the pickup of a client would violate the capacity constraints, and any destination

whose origin has not yet been visited, until a feasible dial-a-ride solution has been obtained.

Psaraftis shows that if there are no capacity constraints, the TSP tour has to be traversed

at most twice. Furthermore, if in addition to the absence of capacity constraints the triangle

inequality holds and Christofides' heuristic is used to construct the TSP tour, the algorithm

has a worst case ratio of 3.

Fiala Timlin and Pulleyblank [16] consider a slightly different problem. There are groups

of customers, each group with its own priority. Customers have to be served in order of

increasing priority. Fiala Timlin and Pulleyblank develop an algorithm based on insertion

techniques and iterative improvement methods.

(B) The static I-PDP with time windows

Optimization

Psaraftis [28] modifies the dynamic programming algorithm discussed above to solve the

static single-vehicle dial-a-ride problems with time windows. The major difference between

the new and the original algorithm is the use of forward instead of backward recursion. Time

windows are handled by the elimination of time infeasible states. The new algorithm still has

a complexity of O(n23n ).

Desrosiers, Dumas and Soumis [10] also present a dynamic programming approach. Their

algorithm uses states (S, i) with S ~ V and i E V. State (S, i) is defined only if there exists

a feasible path that visits all nodes in S and ends in i. Elaborate state elimination criteria,
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based not only on 5, but also on the state (5, i), are used to reduce the state space. These
elimination criteria are very effective when the time windows are tight and the vehicle capacity

is small. The algorithm has been tested successfully on problems with up to 40 transportation
requests. When capacity constraints are rather tight, then, despite the fact that a dynamic

programming algorithm is exponential, the running time of this algorithm seems to increase

only linearly with problem size.

Approximation
Sexton and Bodin [35,36] consider the dial-a-ride problem with desired delivery times specified

by the clienys. The objective is to minimize client inconvenience, which is defined as a

weighted combination of delivery time deviation and excess ride time.

The presented solution approach applies Benders decomposition to a mixed 0-1 nonlinear

programming formulation, which separates the routing and scheduling component.

The concept of space-time separation indicators between tasks plays an important role

in the algorithm. Such an indicator measures the travel time between locations at which

the tasks are performed, Le., their spatial separation, and the difference between the latest

feasible times at which they can be performed, Le., their temporal separation.

Let Ak - be the desired delivery time of client k. The latest possible pickup time D k+ is

then defined as Dk+ := Ak- - tk+,k-' The space-time separation indicators between tasks i
and j are now defined as follows:

Van der Bruggen, Lenstra and Schuur [5] develop a solution procedure based on the Lin

Kernighan variable-depth local search method for the TSP. They use the techniques intro

duced by Savelsbergh [33,34] to handle time windows and precedence constraints efficiently.

The algorithm has a construction and an improvement phase. An initial route is obtained

by visiting the locations in order of increasing centers of their time window, Le., (ei + li)/2

for location i, taking precedence and capacity constraints into account. The resulting route

may be time infeasible. Using an objective function measuring total infeasibility, the route

is made feasible by iterative improvement methods. The same procedures, with a different

objective function, are then applied to find a better feasible route.

4.1.2 The static multiple-vehicle pickup and delivery problem

(A) The static m-PDP without time windows

Approximation

Cullen, Jarvis and Ratliff [6] propose an interactive approach for the multiple-vehicle dial-a

ride problem with a homogeneous fleet, Le., equal vehicle capacities. The problem is decom

posed in a clustering part and a chaining part. Both parts are solved in an interactive setting,
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i.e., man and machine cooperate to obtain high quality solutions. The algorithmic approach
in both parts is based on set partitioning and column generation.

A cluster consists of a seed arc and a set of clients assigned to this seed arc. The total
number of clients assigned to a seed arc may not exceed the vehicle capacity Q. Let (u+, u-)

denote the seed arc of the cluster and let S denote the set of clients assigned to this seed arc.

The cost c of serving this cluster is approximated by c =2 Eies du+,it +du+,u- + 2 Eies du- ,i-,
i.e., it is assumed that a vehicle serving a cluster starts in u+, makes a round trip to each

pickup location in the cluster, travels to u- and makes a round trip to each delivery location

in the cluster.

The clustering problem, i.e., the problem of constructing and selecting clusters to serve all

the clients, can be formulated as a set partitioning problem. Let J be the set of all possible

clusters, i.e., seed arcs and assignments of clients to seed arcs. For each j E J, let Cj denote
the approximate cost of serving the cluster, and for each i E N,j E J let aij be a binary
constant indicating whether client i is a member of cluster j or not. Furthermore, introduce

a binary decision variable Yj to indicate whether a cluster is selected or not. The clustering

problem is now to

minimize

subject to

L CjYj
jeJ

L ai,j'Yj = 1
jeJ

Yj E {O,l}

for all i E N,

for all j E J.

Because the set of all possible clusters is extremely large, a column generation scheme is used

to solve the linear programming relaxation of this set partitioning problem.

The master problem is initialized with all columns corresponding to clusters consisting of

a single client. The row prices (1rlt 11"2,"" 1I"n) are computed and used to define a subproblem

to generate columns with negative reduced costs, i.e., clusters that correspond to attractive

columns for the master problem. The master problem now heuristically tries to improve the

current solution by using (some of) the new columns. Then new row prices are calculated

and the subproblem is solved again.

The subproblem that has to be solved is a location-allocation problem. Let tij =2d + '+ +
U

J
.1

2 d u ~ i- and Ij = du+ u~. The subproblem has the following mathematical programming
J ' J • J

formulation:

minimize

subject to

" z" < Qx'L... IsJ _ )

ieN
" z' , < 1L... 1.)_

jeJ

ZiJ E {O, l}
Xj E {0,1}

for all j E J,

for all i EN,

for all i EN, j E J,
for all j E J.

Because of the size of J, the subproblem is still very difficult to solve. Therefore, it is solved

approximately: Choose a set of clients to form the seed arcs. With these seed arcs fixed, solve

the resulting assignment problem. With these assignments fixed, solve the resulting location

problem. Continue alternating between the assignment problem and the location problem for
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some specified number of iterations, or until no further improvement in the objective function

is found.
The clusters in the solution to the clustering problem, together with some promising

clusters that did not appear in the final solution, are input for the chaining problem. In the

chaining problem a subset of these clusters, partitioning the set of clients, is selected and

linked to form pickup and delivery routes. In the set partitioning formulation of this problem

the rows correspond to clients again, but columns now correspond to vehicle routes. The

column generation procedure links a subset of the seed arcs of the selected clusters. Each
linking of seed arcs is then translated into a column for the set partitioning problem by placing

a 1 in row i if client i is part of one of the clusters in the linking.

(B) The static m-PDP with time windows

Optimization
Dumas, Desrosiers and Soumis [15] present a set partitioning formulation for the static pickup

and delivery problem with time windows and a column generation scheme to solve it to

optimality. The approach is very robust in the sense that it can be adapted easily to handle

different objective functions and variants with multiple depots and an inhomogeneous fleet of

vehicles.

Let n be the set of all feasible pickup and delivery routes. For each route r e n, we

denote the cost of the route by Cr' For all i eN, r e n let air be a binary constant indicating

whether transportation request i is served on route r (air =1) or not (air =0). Furthermore,
introduce a binary variable indicating whether route r is used in the optimal solution (x r =1)

or not (x r = 0). The static PDP can now be formulated as follows:

minimize L: CrXr
rEO

subject to L: airXr =1
,.eO
L: x,. = IMI,

,.eO
x,. e {0,1}

for all i eN,

for all r en.

The cardinality of n is much too large to apow an exhaustive enumeration. Therefore, a

column generation method is used to solve the linear relaxation of the set partitioning problem.

Columns, defining admissible routes, are generated as needed by solving a constrained shortest

path problem on a perturbed distance matrix. The perturbation of the distance matrix

depends on the dual variables of the set partitioning problem. The lower bound found in

this way is usually excellent and constitutes a good starting point for a branch and bound

approach to obtain an integral solution. The constrained shortest path problem is solved

by dynamic programming. The dynamic programming algorithm employed is essentially the

same as the one in Desrosiers, Dumas, and Soumis [10] (see Section 4.1.1), except for the fact

that not all transportation requests have to be processed.

Approximation

Dumas, Desrosiers and Soumis [14] develop an approximation algorithm for the dial-a-ride

problem based on their optimization algorithm discussed above. The basic idea is to create

route segments for small groups of clients, called mini-clusters. A minicluster is a segment

of a route starting and ending with an empty vehicle. Each minicluster is then treated as a

11



transportation request that entirely fills a vehicle. The optimization algorithm is now applied

to this set of transportation requests. This reduces the number of rows in the setpartioning

matrix. The subproblem is now much easier to solve because each transportation request
corresponds to a full truck load. Note that in the approach of Cullen, Jarvis and Ratliff [6]

clusters cannot be identified with rows because they do not partition the set of clients.
Miniclusters are constructed simply by taking a known pickup and delivery plan, con

structed using any existing algorithm, and cutting it into pieces, such that each piece starts

and ends with an empty vehicle. In this setup, the approach can best be viewed as an

improvement method.

An alternative method to construct mini-clusters is presented by Desrosiers, Dumas,

Soumis, Taillefer and Villeneuve [11]. A parallel insertion heuristic creates mini-clusters.

The insertion criteria are based on the concept of neighboring requests. Two requests are con
sidered to be neighbors if they satisfy certain temporal and spatial restrictions. To be more

precise, two requests i and j are considered to be neighbors if the time intervals [ei+, li-] and

[ej+,lj-] overlap, if ti+j+ + t j +i - :$ at;+i- or tj+i+ + t i+j - :$ atj+j- for some constant a,
if the angle between the arcs (i+,i-) and U+,j-) is less than some constant {3, and if the
difference in cost between serving i and j together and serving i and j separately is larger

than some constant i.

Jaw, Odoni, Psaraftis and Wilson [19, 20] present two different approaches to the multiple

vehicle dial-a-ride problem, in which clients that are to be picked up and delivered have the

following types of service constraints: Each client i specifies either a desired pickup time D;+

or a desired delivery time A i -, and a maximum ride time Ti. The objective is to minimize a

combination of customer dissatisfaction and resource usage.

Jaw, Odoni, Psaraftis and Wilson [19] present a three-phase algorithm. The first phase, the

grouping phase, decomposes the problem by dividing the time horizon into intervals and then
assigning clients to groups according to the time interval into which their desired pickup or

delivery time falls. The time intervals are chosen in such a way that it is possible to fully serve

a client in two consecutive time intervals. The second phase, the clustering phase, partitions

the set of clients in each time group into clusters and assigns a vehicle to each cluster. The

number of clusters created is equal to the number of available vehicles. The third phase, the

routing phase, constructs a route for each vehicle using a standard approximation algorithm
for the single-vehicle dial-a-ride problem.

Jaw, Odoni, Psaraftis and Wilson [20] present an insertion algorithm. Time windows on

both the pickup time and delivery time of a client are defined based on a prescribed tolerance
U and the specified desired pickup or delivery time. If client i has specified a desired pickup

time, the actual pickup time Di+ should fall within the time window [Di+,Di+ +U]; if he has
specified a desired delivery time, the actual delivery time A;- should fall within the window

[Ai- - U,Ai-]' Moreover, his actual travel time should not exceed his maximum ride time:

Ai- - D i+ :$ Ti. Note that this information suffices to determine two time windows [ei+' li+]

and [ei-, li-] for each customer i. Finally, waiting time is not allowed when the vehicle is
carrying passengers.

The selection criterion is simple: customers are selected for insertion in order of increas

ing ei+' The insertion criterion is as follows: among all feasible points of insertion of the

customer into the vehicle schedules, choose the cheapest; if no feasible point exists, introduce

an additional vehicle.
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For the identification of feasible insertions, the notion of an active period is introduced.
This is a period of time a vehicle is active between two successive periods of slack time.

For convenience, we drop the superscript indicating pickup or delivery. For each visit to an

address i during an active period, we define the following possible forward and backward

shifts:

where uand u are the durations of the slack periods immediately preceding and following the
active period in question. Pi- (p/) denotes the maximum amount of time by which every
stop preceding but not including i can be advanced (delayed) without violating the time

windows, and 5; (5t) denotes the maximum amount oftime by which every stop following
but not including i can be advanced (delayed). These quantities thus indicate how much each

segment of an active period can be displaced to accommodate an additional customer. Once

it is established that some way of inserting the pickup and delivery of customer i satisfies the

time window constraints, it must be ascertained that it satisfies the maximum travel time

constraints.

Psaraftis [31] compares and tests these two approaches and concludes that the three-phase
algorithm can be best used as a fast planning tool or as a device to produce good starting
solutions in an operational situation, whereas the insertion algorithm can form the basis of
an operational scheduling system that would assist the dispatcher in the actual execution of
the schedule.

Bodin and Sexton [4] extend their algorithm for the single-vehicle dial-a-ride problem with

desired delivery times to a two-phase algorithm for the the multiple-vehicle dial-a-ride problem

with desired delivery times. In the first phase, the clients are assigned to vehicles and a

single-vehicle dial-a-ride problem is solved to constrllct an initial feasible solution. In the

second phase, the algorithm attempts to reassign clients with bad service to other vehicles

in order to find a better solution. This swapping of clients is done in the following way: the

algorithm passes repeatedly through the client list, each time reassigning clients with a client
inconvenience larger than some threshold. This threshold depends on the pass the algorithm
is on.

4.1.3 The static full-truck-load pickup and delivery problem

The full-truck-Ioad problem is the special case of the GPDP in which each load has to be

transported directly from its origin to its destination, Le., INti = INi-/ = 1 for all i EN,
qi = 1 for all i EN, and Qk =1 for all k EM. In these problems, a transportation request
is usually called a trip.
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The full-truck-Ioad is an interesting special case since it can be easily transformed into

an asymmetric TSP. The set of vertices of this asymmetric TSP corresponds to the set of

transportation requests, and the distance between two vertices i, j is taken to be di - J+ •

Ball, Golden, Assad and Bodin [3] present two different route first-cluster second ap

proximation procedures for the static full-truck-Ioad problem. Both procedures construct

one giant route servicing all transportation requests, and then divide this route into feasible
vehicle routes. The first procedure constructs the giant route by solving a rural postman

problem. The objective in this problem is to find a minimum cost cycle that traverses each

arc in a given subset of arcs, in this case all arcs corresponding to traveling from an origin to a

destination, at least once. The second procedure applies the above suggested transformation

and constructs a giant route by solving an asymmetric TSP.

Desrosiers, Laporte, Sauve, Soumis and Taillefer [12] develop an optimization algorithm
for a multiple-depot full-truck-Ioad problem in which the objective is to minimize the to

tal distance traveled and there is a restiction on the length of the routes. The problem is
transformed into an asymmetric TSP with a reduced set of subtour elimination constraints,

prohibiting only subtours not including any depot, and distance constraints, prohibiting ille

gal subpaths of the Hamiltonian cycle. The transformed problem is solved by an algorithm of

Laporte, Nobert and Taillefer [24], which is a direct extension of the algorithm of Carpaneto

and Toth [7] for the asymmetric TSP.

4.2 The dynamic pickup and delivery problem

As in most combinatorial optimization problems, dynamic aspects of the pickup and delivery
problem are not very well studied.

4.2.1 The dynamic single-vehicle pickup and delivery problem

Psaraftis [27] extends the dynamic programming algorithm described in Section 4.1.1 for

the static immediate request dial-a-ride problem to the dynamic case. Indefinite deferment

of customers, i.e., continuously reassigning service of a customer to the last position in the

pickup and delivery sequence, is prevented with a special priority constraint.

The times at which requests for service are received define a natural order among the

clients. In general, the position that a particular customer holds in the sequence of pickups

will not be the same as his position in this natural order. The difference between these two
positions defines a pickup position shift. A delivery position shift can be similarly defined
as the difference between the position in the sequence of deliveries and the position in the

natural order. A priority constraint bounding the two position shifts from above prevents
indefinite deferment.

The dynamic problem is solved as a sequence of static problems. Each time a new request

for service is received, a slightly modified instance of the static problem is solved to update

the current route. Obviously, all clients that have already been picked up and delivered can

be discarded and the new client has to be incorporated. The starting location of the vehicle

and the origins of the clients that have been picked up but not yet delivered have to be set

to the location of the vehicle at the time of the update.
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4.2.2 The dynamic multiple-vehicle pickup and delivery problem

Psaraftis [32] develops an algorithm for the dynamic multiple-vehicle problem in which the

vehicles are in fact ships. In this case, the capacity of the ports also has to be considered in

order to avoid waiting times when loads are to be picked up or delivered. The algorithm is

based on a rolling horizon principle. Let tic be the 'current time', Le., the time at the kth

iteration of the procedure. At time tic the algorithm only considers those known loads i whose

earliest pickup time ei+ falls between tic and tic +L, where L, the length of the rolling horizon,
is a user input. The algorithm then makes a tentative assignment of loads to eligible ships.

However, only loads with ei+ within the front end of the interval [tlc,tlc +L] are considered

for permanent assignment. In this way the algorithm places less (but still some) emphasis on

the less reliable information about the future. Iteration k +1 will move the 'current time' to

tlc+b which is equal to the time a significant input update has to be made, or to the lowest

ei+ of all yet unassigned loads, whichever of the two is the earliest.

The tentative assignment of loads to ships is calculated in two phases. First calculate for
each load i and ship i the utility UiJ of assigning load i to ship i. This utility is a complicated

function measuring the assignment's effect on (1) the delivery time ofload i, (2) the delivery
times of all other loads already assigned to ship i, (3) the efficiency of use of ship i, and (4)

the system's port resources. In the second phase solve the following assignment problem:

minimize

subject to

"" u· ·x· .L- L- I,) I.)

i i

LXi,i ~ K for all i
i

LXi,i ~ 1 for all i
i

xi,i E {a, 1} for all i,i.

where K is a user specified integer denoting that no more than K loads are assigned to each
ship.

4.2.3 The dynamic full-truck-Ioad pickup and delivery problem

Powell [25, 26] considers a dynamic full-truck-Ioad pickup and delivery problem in which

transportation requests may be rejected. He develops an algorithm based on a network flow

representation of the problem. In this model the planning area is divided into regions R and

the time axis with time horizon P is divided into days {a, 1,2, ... , Pl. The network has node

set (R X {a, 1,2, ... ,P})USUT, where S represents a source and T represents a sink. The arc

set consists of arcs representing loaded moves that are known at time t =0, arcs representing

empty moves, all arcs «r, t), (r, t +1», where r E R and a ~ t < P, and all arcs (S, (r, 0»

and «r,P),T), where r E R. Arcs representing a loaded move have capacity 1, arcs (S,(r,O»

have capacity equal to the number of vehicles available in region r on day O. All other arcs

have capacity 00. The profit of an arc representing a move is the net profit or cost of the

corresponding move. The profit of all other arcs is O. Note that a maximum profit flow in

this network corresponds to an allocation of vehicles to transportation requests, but that it

is not required to honor all transportation requests.

To anticipate future transportation requests, the network is extended with stochastic links.

These stochastic links correspond to future uncertain trajectories of vehicles. They emanate

from each node (r, t) and end in T. The profit of the kth stochastic link emanating from (r, t)
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reflects the expected marginal value of another vehicle in region r on day t given that there are

already k vehicles in region r on day t. These expected marginal values of an extra vehicle are

based on historical data. Each stochastic link has capacity 1. A maximum profit flow in this
extended network not only represents a deterministic allocation of vehicles to loads known at

t = 0, but also assigns vehicles to regions in order to be able to serve future transportation
requests at minimal cost. The use of a stochastic link from (r, t) to T indicates that at time t
the vehicle will be available in region r to serve some request that is not yet known. Because

the vehicles are only allocated to known loads, the network has to be reoptimized a few times

each day.

5 Conclusion

In this paper, we have discussed various characteristics of pickup and delivery problems and

have given an overview of the solution approaches that have been proposed. In the process,

we have identified several important research topics.
Most r e a l ~ l i f e pickup and delivery problems that we are aware of are demand responsive.

Currently, very little is known about on-line algorithms for dynamic pickup and delivery

problems. Besides the obvious practical importance of such algorithms, it seems to be a

fascinating and challenging research area as well.
Although the single-vehicle pickup and delivery problem is NP-hard, it can be solved

very efficiently with dynamic programming as long as the number of transportation requests
is relatively small, which is the case in many practical situations. Therefore, the main problem

in solving multiple-vehicle pickup and delivery problems is the assignment of transportation
requests to vehicles.

Consequently, pickup and delivery problems, as well as many other routing and scheduling
problems, seem to be well suited for solution approaches based on set partitioning with column

generation. Although this approach has already been explored successfully, it is likely to

remain an active research area for the next decade.

An important obstacle in the development of effective and efficient approximation algo

rithms is the lack of a reliable measure of closeness. In vehicle routing problems, customers

that are geographically close to each other are likely to be served by the same vehicle. A

concept similar to that of geographical closeness in vehicle routing problems does not exist

for pickup and delivery problems. Although several alternatives have been proposed, none

of them has turned out to be entirely satisfactory. The development of a useful closeness
concept seems crucial for progress in approximation algorithms.

Many interesting questions arise in the context of interactive planning systems for pickup

and delivery problems. Representing solutions, for instance, is nontrivial: an optimal solution

to a single vehicle pickup and delivery problem may look very bad when drawn on a map,

even without time windows and with infinite vehicle capacity.
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M.W.P. Savelsbergh Preprocessing and Probing Techniques for Mixed Integer

Programming Problems
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Number Month Author Title

92-27 July I.J.B.F. Adan Analysing EklErlc Queues

W.A. van de

\Vaarsenburg

J. Wessels

92-28 July O.J. Boxma The compensation approach applied to a 2 x 2 switch

G.J. van Houtum

92-29 July E.H.1. Aarts Job Shop Scheduling by Local Search

P.J.M. van La.a.rhoven

J.K. Lenstra

N.1.J. Ulder

92-30 August G.A.P. Kindervater Local Search in Physical Distribution Management

M.W.P. Savelsbergh

92-31 August M. Makowski MP-DIT Mathematical Program data Interchange Tool

M.W.P. Savelsbergh

92-32 August J .A. Hoogeveen Complexity of scheduling multiprocessor tasks with

S.L. van de Velde prespecified processor allocations

B. Veltman

92-33 August O.J. Boxma Tandem queues with deterministic service times

J.A.C. Resing

92-34 September J.H.J. Einmahl A Bahadur-Kiefer theorem beyond the largest

observation

92-35 September F.P.A. Coolen On non-informativeness in a classical Bayesian

inference problem

92-36 September M.A. Peters A Mixed H2IH oo Function for a Discrete Time System

92-37 September I.J.B.F. Adan Product forms as a solution base for queueing
J. Wessels systems

92-38 September 1.C.G.J.M. Habets A Reachability Test for Systems over Polynomial Ring
using Grobner Bases

92-39 September G.J. van Houtum The compensation approach for three or more
I.J.B.F. Adan dimensional random walks
J. Wessels

W.H.M. Zijm
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92-40 September F.P.A. Coolen Bounds for expected loss in Bayesian decision theory with

imprecise prior probabilities

92-41 October H.J .C. Huijberts Nonlinear disturbance decoupling and linearization:

H. Nijmeijer a partial interpretation of integral feedback

A.C. Ruiz

92-42 October A.A. Stoorvogel The discrete-time H oo control problem with measurement

A. Saberi feedback

B.M. Chen

92-43 October P. van der Laan Statistical Quality Management

92-44 November M. Sol The General Pickup and Delivery Problem

M.W.P. Savelsbergh


