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The terms generalization and abstraction are used with various shades of
meaning by mathematicians and mathematics educatees;h
representing both a process and the product of that proceghkisin
article we attempt to rationalize the use of thesens in a cognitive
context, in a manner intended to shed some light on different
gualities of generalization in advanced mathematics. Usingattalysis

we will be able to suggest pedagogical principles designedsst
students’ comprehension of advanced mathematical concepts.

Generalization: Expansive, Reconstructive, and Disjunctive

The term “generalization” issed both within and outside mathematics
to mean the process of applying a given argument in a broader context.
However, the cognitive processes demanded by mathematical
generalization will depend on the individuatarrent knowledge. For
instance, students A, B and C may all know how to sdinear
equations in one variable. Howeveppose that Student A has a
relational understanding (in theense of Skemf976) of the solution
process: (s)he understands that when adding an expression to each side,
or multiplying by a (non-zero) constant, the solution dees not
change. Meanwhile students B and C have only imstrumental
understanding, simply carrying out manipulations on the equation (“do
the same thing to both sides,” “get tketerms on one side and the
numbers on the other,” “change side and change signs,” “collect together
like terms”). They all generalize the method to solving lineguations
in two variables, by “eliminating to obtain a solvable linear equation
in y, then substituting the value foufiok y back into the equations to
obtain an equation fox”. Student A is expanding and enriching his (or
her) schema for solving equations, whereas students B and C are simply
adding new, unconnected facts to their list of things to do (“elimixate
and solve fory,” “substitutey back to findx”).

Later a further generalization is given, frasolving 22 equations to
3«3, and “more generally,” ton¥n equations usingow operations on
the matrix of coefficients. lhappens that student A understands the
essence ofhe process and can proceed by enriching and expanding his
or her schemaseeing the early methods of equations in one and two
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variables as simply being speciagbses ofthe new generalized
procedure.Student B and C now diverge in what they do. Student B
begins to seethe underlying meaning of the solution process and
struggles with the new ideas to attain a cognitigeonstruction by
which (s)he can see the2case as a special casetlod m¥n procedure.

In contrast, student C adds yet anotegstem of solving equations to
his/her list of procedures: solving equations inm unknowns. We
therefore distinguish three different kinds of generalizatiorwhich
depend on the individual’'s mental construction:

1. Expansive generalizatioaccurs when the subjeexpands
the applicability range of an existingchema without
reconstructing it.

2. Reconstructive generalizatiomccurs when thesubject
reconstructs an existingchema inorder to widen its
applicability range.

3. Disjunctive generalizatiomccurs when, on moving from a
familiar context to a new one, the subject constructs a new,
disjoint, schema to deal with the new context and adds it to
the array of schemas available.

Note that expansive generalization idrae generalization in theense
that earlierschemasare included directly aspecialcases inthe final
schema. Reconstructive generalization differs in that thesdiéma is
changed and enriched before beigcompassed in theore general
schema, but then it gives a true generalization of the enriched schema.
Disjunctive generalizatioseems to aobserver (such as a university
professor marking atudents attempts at solving linear equations) to be
a successful case generalization. It certainly allows the individual to
cope with a broader range of mathematical examples. But it fails to be a
cognitive generalization in thesensethat the earlierexamples(linear
equations in one and two variables) are setn by the individual as
special cases of the genepmbcedure. The reverse move from the
case tothe case oflinear equations in a single variablesisen not as a
specialization, but as a shift to a disjoint schema. Disjunctive
generalization is also a reciper failure for the weakestudent in that
it increases the number of procedures that the individual requires to
solve the more general class of problems. It gives the weaker student an
additional burden to carry under which he or she is prone to collapse.
Long term, thereforegxpansive andeconstructive generalizations
are far more appropriate for cognitivdevelopment and, of these,
expansive generalization is cognitively easier thatonstructive
generalization. However, although expansive generalization may be
easier in the short term, in the long term there are times when the
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reorganization of knowledgeecomes essential, in whiclaconstructive
generalization is far more appropriate.

At such a time, even when the student’s schema is a relational one, the
relations may not extend in an appropriate direction to allow an
expansive generalization, andreconstructionbecomes essential. For
instance, thesuccessivegeneralizations of vector sum and scalar
multiples fromR2 to R3to Rnis essentially a case applying thesame
techniques to each coordinate sumccessivelybroader systems. The
algebraic aspects of thisprocess are likely to be amexpansive
generalization for most students. But the geometsjects -modifying
the geometrical ideas in two atidree dimensionaspace to a mental
concept of space ofdimensions — is likely teequire a re-constructive
generalization which few achieve.

The passage fromRn to the abstract notion of a vector spatever a
field F, on the other hand, requires a re-constructive generalization in
most students. Thiearner is presented with a narf@ the concept
(“the vectorspaceV”) and some of its properties (the axioms) and —
usually guided by an expert — must follow a subtle and difficult process
of construction of the meaning of and its properties byleduction
from the axioms. This ifurther complicated in the learner’'s mind by

the fact that the propertiés be deduceth V are knownto hold inRN,
causing theproblem for thestudent that, although thepeoperties are
“obvious” in the (only) examples (s)he understands, judgement must be
suspended ortheir truth inV until they are shown to follow by
deductionfrom the axioms. It is a processhich requiresmassive
cognitive reconstruction.

In principle we believe that the most desirable approach to
generalization is to provide experiences which lead to a meaningful
understanding of the current situation, to allow the move tontbee
generalcase tooccur byexpansive generalization, but thiere are
times when the situation demands a re-construction and, in such cases, it
IS necessary to provide tHearner with the conditions in whicthis
reconstruction is more likely to take place.

Abstraction

An abstraction process occurs when the subject focuses attention on
specific properties of a given object and then considers firegerties
in isolation from the original. This might be done, for example, to
understand the essence of a certain phenomenon, perhaps latabte be
to apply the same theory in other cases to which it applies.

Such application of anabstract theory would be aase of
reconstructive generalizatior because thabstracted properties are
reconstructions of the original properties, now applied tbr@ader
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domain. However, note that once the reconstructive generalization has
occurred, it may then bpossible to extend the range of examples to
which the arguments apply through the simpler procesexpansive
generalization.

For instance, when the group properties are extrected various
contexts to give the axioms for a group, this must be followed by the re-
construction of other properties (suchumsqueness of identity and of
inverses) from the axioms. Thisads to the construction of an abstract
group concept which is a re-constructive generalization of various
familiar examples ofgroups. When this abstract constructioes been
made, further applications of group theory to other contexts (usually
performed by specializationfrom the abstractconcept) are now
expansive generalizations of the original ideas.

The case of definition

The process of formal definition imdvanced mathematics actually
consists of two distinct complementary processes. One igbi$teaction

of specific properties of one or more mathematatgécts toform the
basis of thedefinition of the new abstract mathematical object. The
other is the process afonstructionof the abstract concephrough
logical deduction from the definition.

The first ofthese processes we will cétirmal abstraction in that it
abstracts the form of thawew concept through the selection of
generative properties of one or more specific situatiorsexample,
abstracting the vector-space axioiinem the space ofdirected-line
segments alone drom what it isnoticed to be common to thi&pace
and the space gfolynomials. This formal abstraction historically took
many generations, but is now @eferred method of progress in
building mathematical theories. The studearely seesthis part of the
process. Instead (s)he is presented with the definition in terms of
carefully selectedproperties as #&ait accomplit When presented with
the definition, the student is faced with thaming of the concept and
the statement of a small number of properties or axioms. But the
definition is more than a naming. It is tlselection of generative
properties suitable for deductive construction of the abstract concepit.

The abstract concept which satisfaagy those properties that may be
deduced from the definition and no others requires a massive
reconstruction. Its construction is guided by the properties which hold
in the original mathematical conceffitem which it was abstracted, but
judgement of the truth aheseproperties must beuspended until they
are deducedrom the definition. For thenovice this is liable tacause
great confusion at the time.

The newly constructed abstract object will then generalize the
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properties embodied in the definitiobecause anproperties that may
be deducedrom them will be part of it.Because ofthe difficulties
involved in the construction process, this is r&constructive
generalization

Occasionally the process leads to a newly constructed abstract object
whoseproperties apply only to the original domain, and not tmae
general domain. For instance, the formal abstraction of the notion of a
complete ordered field from the real numbers, or the abstraction of the
group concepfrom groups of transformations. Up to isomorphism
there is only one completardered field, andCayley’s theoremshows
that every abstract group is isomorphic to a group of transformations.
In thesecasesthe process leads to an abstract concept which does not
extend the class of possible embodiments.

We include these instances within the satheoretical framework
for, though they fail to generalize the notion to a broadess of
examples, they very much change the nature of the concept in question.
The formal abstraction process coupled with the construction of the
formal concept, when achievelgads to a mental object that is easier
for the expert tananipulate mentally because theecise properties of
the concept have been abstracted and can lead to precise geoefal
based on these properties.

Formal abstraction leading to mathematical definitions usually serves
two purposes which are particularly attractive to tlexpert
mathematician:

(a) Any arguments valid for the abstracted properties apply to
all otherinstancesvhere the abstracted properties hold, so
(provided that there are otharstances) the arguments are
more general.

(b) Once the abstraction is made, by concentrating on the
abstracted properties and ignoring all others, the
abstraction should involve less cognitive strain.

These two factors make a formal abstraction a powerful faolthe
expert yet — because of the cognitive reconstruction involved — they may
cause great difficulty for the learner.

Generic abstraction

Having focussed on the fact that a formal abstraction is vald@bléne
expert, yet difficult for the learner to attain, \wese the question as to
how we may help studengmssthrough the difficult transition and to
attain the reconstructive generalization required for ftoemal
abstraction. We suggest that this can be domwe effectively by
focussing on a mid-way development in which a specific examdeeis
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by the teacher as a representative of the abstract idea, which we term a
generic example.

Initially the student will be presented with one or mgmtotypes
for the abstract concept. To the teachifrese ideasrepresent
instantiations of the abstract concept, but the student has not yet
performed the abstraction, and t®se prototypes may function in a
seriously erroneous way in which the student abstractswiang
properties. Thisseems to happewith the introduction of the function
concept in mathematics. So difficult is this abstract concept tisakihs
not possible to present it in a sufficiently generic manner. Instead we see
that pupils presented with an informal introduction to the function
concept develop a menagerie of examdiesn which they abstract
inappropriate properties. Tall & Bakar (to appeatggest that the
prototypes that students in the UK devetop the functionconcept are
ideas such ag=x2, any “typical polynomial”,y=1/x, a sine curve, a
relationship between two variables in whigh varies with x, a
“continuously varying graph” and so on. The result is that when asked if
a graph or a formula represent a function, in dbsence of &ormal
definition, the students seem s$oantheir prototypes tcsee ifthere is
any resonance. These may produce a false resonance (suchsasste
that a circlex2+y2=1 is a functionbecause it is given by ormula
relatingx andy or because it hasfamiliar graph) or erroneously fail
to produce a resonance (such as the factf@instant is not a function
because heng does not vary, or is not dependentxpn

However, if the process is successful and the student sees aner@r
specific examples as typical of a wider range of examples embodying an
abstract concept, then this is a (relatively painléssh of abstraction
which we call ageneric abstraction

This process clearly involves generalization (because it embeds the
examples in abroader class of exampleembodied by the generic
abstraction). But it is also a mild form of abstractimtause itifts the
student’s cognitiveconsciousness to faigher level in which themore
general concept isensedand abstracted, at least implicitlirom the
generic examples.

A wide range of computer experiences to learn mathematical
concepts seem to be instancegyeheric abstraction. Tall (1986, 1989)
defined aclass ofsoftware which enables theser to abstract higher
order conceptfrom examples of the concept a geneoiganizer. For
instance, a generic organizir the notion of the gradient of graph
consists of a magnificatioprogram toseethat a tiny part ofmany
familiar graphs will look straight under magnification. The learner who
comprehends thiproperty may nowglance along a curve arske the
changing gradient. A second generic organizer moves a secant along the
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graph (through two moving points a fixed small difference apart) and
plots gradient valuesnables the student seethe gradient plot as a
representation of the changing gradient of the graph. The generic
abstraction that the student attains is not the formal idea of the
derivative, but a gestalt appreciation of the dynamicahpwing
gradient function. This generic processgn only with specifigraphs,

is abstracted by the student in a manner which allows him or her to
apply the process to a new graph. The software offers the student the
possibility to guesghe formula for the gradient antkst if this is
appropriate. Thus the generic abstraction links intuitively withlaber
formal abstraction of the derivative function as a symbolic process.
Students also develop an ability to apply their generic abstraction of the
gradient process to have a significantly better ability to sketch gradients
of a given graph.

Thomas and Tall (1988) generate a concept of varidimeugh
programming the computer in BASIC and using software whatdepts
normal algebraic notation. Through comparing spea@fialuations of
expressions such asx2f) and X+2y for different numerical values the
pupils are encouraged tarry outthe generic abstraction thauch
expressions are equal. In this process the lextensdy are not general
symbols, but letters standinigpr numbers. This computer approach
forms abasisfor further development in the solution of equations and
inequalities in which the letters stafmr unknown numbers (oeven
one of a set of possibleumbers), leading téurther abstraction of the
variable conceptStudents develop significantlyetter understanding of
the concept of a letter as a varialff®r instance, they are more likely
to see that the equations

3p—1=5 and 3§+1)-1=5

are “essentially the same equation”, in which, having found the
solution of the first to b@=2, realize that the solution to the second is
p+1=2, sop=1. Meanwhile, control pupils who have takennmere
traditional route are more likely weethe solution of an equation as a
process which means that they multiply out the brackets in dbeond
case and follow through to “move the terms involvm¢p one side and
the numbers to the other” to obtain the solution.

Breidenbachet al (to appear)use thecomputer language ISETL to
introduce the notion of function through programming. Byatax of
ISETL encourages the student to think of the function psoaess in
which the function and the variable(s) it takes is named and the process
defined by which the output of the function is calculated for given input.
For instance, a function in the form

V() = 26.72 if 0<t<50
O (4/3)mt3 if 50<t
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is defined in ISETL as
V = func(t);
if t < O return “out of domain”; end;
if t <= 50 then return 26.7*(t**2);
else return (4/3) * 3.146*(t**3);
end;
end;

This program embodies the notion of checking that the ihmiin the
domain of V, then instructing the computer how tarry out the
process to give the appropriate output. Such a method of embodying the
function process leads to a generic abstraction of the function concept.
Students showradical improvements in their ability to deal with
properties of functions at thspecific level, (computing composites,
inverses and intricate related problems involving specific functions) but
may beless successful @he general leve(for instance, in proving or
disproving the statement that ‘fifandg are 1-1 then the produét) is

1-17).

Principles for Generic Abstraction

The idea of generic example is coupled with thrnpedagogical
principles which guide the instruction in helping students in the process
of abstraction. The three principles, which were developed tinree
year teaching experiment of linear algebra, with advanced high-school
students (Harel, 1985), were found to be applicabletier contexts,
such as those discussed in thagper. We start witthese principles and
then discusstheir contributions to the construction of the abstraction
process.

The entification principle. This principle states that, for student
to be able to abstract a mathematical strucftmen a given model of
that structure, the elements of that model must be conceptual entities in
the student’s eyes; that is to say, the studenptr@asdures that camake
these objects as inpu(&reeno, 1983, Harel & Kapuin press. This
principle was derived from the finding thatadvanced high-school
students were able to abstract the vector-spaicecture from the
geometricspaces oflirected line segments, but nivom the spaces of
polynomials (see Harel, 1989). It has beestablished by several
researchers (e.g., Dubinskg, appeaj that polynomials, or functions in
general, are not conceived bstudents as objects. Directed line-
segments, on the other hand, are manipulable objects which serve as
inputs for operations familiar to students.

The necessity principle. This principle states that thesubject
matter has to be presented in such a way tlearners carsee its
necessityFor if students do noseethe rationale for andea (e.g., a
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definition of an operation, or a symbolizatifor a concept), thedea
would seem to them as being evolaadbitrarily; it does not become a
conceptof the studentga la Steffe, 1988). IrHarel's (1985) linear
algebra program,this principle was implemented byproviding
instructional activities through which students, individually amdking

in groups, participated in the construction of twncepts andheir
relations. Through this workstudents discussed new idedeir
relations to familiar ones, their contribution to the reconstruction of
previous concepts, and thaise in solvingproblems.Special attention
was given to the symbolizatidorm and definitions of operations. For
example, why certain variables of a concept are included Bymbols
and others are not, or why the matrix operation are defined as they are
(see Harel, 1989).

The parallel principle. When instruction is concerned with a
“concrete” model, that is, a model which satisfies the entification
principle, the instructional activities within this model should be
designed to parallel the processes that will later apply within the abstract
structure. This will mean that the instruction potentiatiyolves only
an expansive generalization, in which the concrete model is manipulated
in a generic way. But it is designed to lay seedsfor a much easier
reconstructive generalization at a later stage when the abstraction of the
formal concept occurs in a corresponding abstract manner.

The parallel principle is vital to the abstraction process. It provides
structures in the mind which allow the abstractions to rodamniliar
processes and it also enables abstraction to operate more in the nature of
an expansive generalizatioRor example, when dealing with thieree-
dimensional geometric model of a vector space, a basis could be defined
as three non-collinear directed line segments. But such a definition is
restrictive and model-dependdmdcause it doesot transfer to abstract
vector spaces. In Harel (1985) the concepbadis wasxplored by the
students startingrom the concept of minimal spanning set. Initially
such a spanning set may be less approphatause the scalars involved
might not be unique. But this in turteads to thenecessity of
considering minimal spanning sets, which need also torbered in a
specific way to give a unique scalar representation.

None of thesdhree principles were explicitly used in thesearch
mentioned in the previous section. It is an interesting exercise to attempt
to identify where they occur implicitly. In retrospect it is possible for us
to identify the principles in action in the two developments in which one
of us was involved.

Certainly the entification principle is important in the development of
the concept of derivative, in that it assumed that the studemtiseady
have a mental image of the notion of linear functions, their graphs and
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their gradients. These are the entities, together with the process of
magnification, upon which the development is based. Gbmputer
programs used in the developmenpass from this knowledge to
generalize to the notion of locally straight curves. The necessity to study
such curves is given by the existence of highitynkled curveswhich

are not locally straight. It isseen as essential tealize that not all
functions are locally straight. Thus theoremsamalysis must explicitly
state in what way differentiability isequired andshow how this
property is necessaryfor the deduction of other properties.
Furthermore it is necessary to focus on how the numerical derivative is

calculated asﬂﬂrlm and what happens for small and show how

this numerical process parallels the symbolic process of taking the
symbolic limit of Kﬂhhﬂﬁ ash tends to zero. This lays the

foundations for a formal abstraction which may follow.

Likewise the introduction of algebra through compyiesgramming
occurs through building on the arithmetic experience of the pupils,
playing a physical game in which numbers written on card are stored in
boxes marked with th@ames of the variables to give a concrete
meaning to the notion of variable. Tinecessity to become acquainted
with algebra is partly shown through the power of the notation to
encapsulatgieneral processes such BsP+R/100: S=P+T to calculate

the taxT and total priceS given the initial priceP and the (percentage)
rateR. Thus it is only necessary to specify this algorithm and theRate

to give a computer process that takes the tias input and givelsack

the saleprice S as output. Thenecessity to study the peculiarities of
algebraic notation also arisdsom the fact that the computer is
programmed to function using such conventions and can be relied upon
always to use the notation in the same way, thus 2¢8ves 17 instead

of 25. The purpose therefore is to understand how the computer
calculates any given expression. The parallel principle abeesuse the
students learn to parallel the computation of algebraic expressions in
their physical game following thesame conventions used by the
computer.

From Generic Abstraction to Formal Abstraction

A generic abstraction of a mathematical concept gives the student a
sense of the concept thatoerative The student is likely to feel secure

in carrying out operations generically within the context (esglve
linear equations or fingigenvalues irRN), but may fail to be able to
prove formal properties, for instance that
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“if two linear mapsf:U -V, g:V - W are such thagf:U - W is 1-1,
thenf is 1-1".

Until the student has constructed the concepts of an abstract spater
and of linear functions, (s)he may find it difficult to handldedinition
of 1-1, say in the form:

f:U- Vs said to be 1-1 if and only if:

given f(x,)=f(x,) for x;, x, 0 U, thenx;=x,.

How can one handle a statement lik& -V is 1-1, until one has
constructed a meaning for its constituent parts?
The proof is simple enough:

To show thaf is 1-1,

supposehatf(x,)=f(x,) for x,,x, [1.U,

then g(f(x,))=9(f(x,)),

s0 gf(x1)=gf(x),

then (becausgf is 1-1)we concludethatx;=x..

The underlined part of this proof is tlstatement that is 1-1. It is
simple enough to learn by rote, and many students may do this. But this
may produce not relational, but instrumental understanding of the
proof, simply adjoining it to the separatems of knowledge that the
student has acquired through a process of disjunctive generalization.

To be able to attain such @oof within the context of dormal
abstraction requires a meaningful understanding of the definitions. As
we have seerearlier, this requires a process afe-construction.
However, the construction of such concepts in generic examples are
more likely to be achieved by the entification principle andribeessity
principle, and the provision of an appropriate procedure gayof
construction in the abstract context is more likely to follwam the
parallel principle. It must still occur within a context where the
individual knows that certain properties are true in f&miliar
examples but must be deduced without prejudice within the abstract
concept. But the parallel principle allows a generalization of the
procedure to b@assedrom theexamples to the abstract concept by a
process more akin to axpansive generalization, clouded only by the
conflict that the properties, known to be true in the examples, must be
re-constructed in the abstract context. Thus gassagdrom generic
abstraction to formal abstraction remains one requiring reconstruction,
but a reconstruction with potentially less cognitive strain.
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