
This article appeared in For the Learning of Mathematics, 11 1, 38–42 (1989).

The General, the Abstract, and the Generic
in Advanced Mathematics

Guershon Harel David Tall
Purdue University University of Warwick
West Lafayette Coventry
Indiana 47907 CV4 7AL
USA UK

The terms generalization and abstraction are used with various shades of
meaning by mathematicians and mathematics educators, each
representing both a process and the product of that process. In this
article we attempt to rationalize the use of these terms in a cognitive
context, in a manner intended to shed some light on the different
qualities of generalization in advanced mathematics. Using this analysis
we will be able to suggest pedagogical principles designed to assist
students’ comprehension of advanced mathematical concepts.

Generalization: Expansive, Reconstructive, and Disjunctive

The term “generalization” is used both within and outside mathematics
to mean the process of applying a given argument in a broader context.
However, the cognitive processes demanded by mathematical
generalization will depend on the individual’s current knowledge. For
instance, students A, B and C may all know how to solve linear
equations in one variable. However, suppose that Student A has a
relational understanding (in the sense of Skemp 1976) of the solution
process: (s)he understands that when adding an expression to each side,
or multiplying by a (non-zero) constant, the solution set does not
change. Meanwhile students B and C have only an instrumental
understanding, simply carrying out manipulations on the equation (“do
the same thing to both sides,” “get the x terms on one side and the
numbers on the other,” “change side and change signs,” “collect together
like terms”). They all generalize the method to solving linear equations
in two variables, by “eliminating x to obtain a solvable linear equation
in y, then substituting the value found for y back into the equations to
obtain an equation for x”. Student A is expanding and enriching his (or
her) schema for solving equations, whereas students B and C are simply
adding new, unconnected facts to their list of things to do (“eliminate x
and solve for y,” “substitute y back to find x”).

Later a further generalization is given, from solving 2¥2 equations to
3¥3, and “more generally,” to m¥n equations using row operations on
the matrix of coefficients. It happens that student A understands the
essence of the process and can proceed by enriching and expanding his
or her schema, seeing the early methods of equations in one and two
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variables as simply being special cases of the new generalized
procedure. Student B and C now diverge in what they do. Student B
begins to see the underlying meaning of the solution process and
struggles with the new ideas to attain a cognitive reconstruction by
which (s)he can see the 2¥2 case as a special case of the m¥n procedure.
In contrast, student C adds yet another system of solving equations to
his/her list of procedures: solving n equations in m unknowns. We
therefore distinguish three different kinds of generalization which
depend on the individual’s mental construction:

1. Expansive generalization occurs when the subject expands
the applicability range of an existing schema without
reconstructing it.

2. Reconstructive generalization occurs when the subject
reconstructs an existing schema in order to widen its
applicability range.

3. Disjunctive generalization occurs when, on moving from a
familiar context to a new one, the subject constructs a new,
disjoint, schema to deal with the new context and adds it to
the array of schemas available.

Note that expansive generalization is a true generalization in the sense
that earlier schemas are included directly as special cases in the final
schema. Reconstructive generalization differs in that the old schema is
changed and enriched before being encompassed in the more general
schema, but then it gives a true generalization of the enriched schema.

Disjunctive generalization seems to an observer (such as a university
professor marking a students attempts at solving linear equations) to be
a successful case of generalization. It certainly allows the individual to
cope with a broader range of mathematical examples. But it fails to be a
cognitive generalization in the sense that the earlier examples (linear
equations in one and two variables) are not seen by the individual as
special cases of the general procedure. The reverse move from the m¥n
case to the case of linear equations in a single variable is seen not as a
specialization, but as a shift to a disjoint schema. Disjunctive
generalization is also a recipe for failure for the weaker student in that
it increases the number of procedures that the individual requires to
solve the more general class of problems. It gives the weaker student an
additional burden to carry under which he or she is prone to collapse.

Long term, therefore, expansive and reconstructive generalizations
are far more appropriate for cognitive development and, of these,
expansive generalization is cognitively easier than reconstructive
generalization. However, although expansive generalization may be
easier in the short term, in the long term there are times when the
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reorganization of knowledge becomes essential, in which reconstructive
generalization is far more appropriate.

At such a time, even when the student’s schema is a relational one, the
relations may not extend in an appropriate direction to allow an
expansive generalization, and a re-construction becomes essential. For
instance, the successive generalizations of vector sum and scalar
multiples from R2 to R3 to Rn is essentially a case of applying the same
techniques to each coordinate in successively broader systems. The
algebraic aspects of this process are likely to be an expansive
generalization for most students. But the geometric aspects – modifying
the geometrical ideas in two and three dimensional space to a mental
concept of space of n dimensions – is likely to require a re-constructive
generalization which few achieve.

The passage from Rn to the abstract notion of a vector space V over a
field F, on the other hand, requires a re-constructive generalization in
most students. The learner is presented with a name for the concept
(“the vector space V”) and some of its properties (the axioms) and –
usually guided by an expert – must follow a subtle and difficult process
of construction of the meaning of V and its properties by deduction
from the axioms. This is further complicated in the learner’s mind by
the fact that the properties to be deduced in V are known to hold in Rn,
causing the problem for the student that, although these properties are
“obvious” in the (only) examples (s)he understands, judgement must be
suspended on their truth in V until they are shown to follow by
deduction from the axioms. It is a process which requires massive
cognitive reconstruction.

In principle we believe that the most desirable approach to
generalization is to provide experiences which lead to a meaningful
understanding of the current situation, to allow the move to the more
general case to occur by expansive generalization, but that there are
times when the situation demands a re-construction and, in such cases, it
is necessary to provide the learner with the conditions in which this
reconstruction is more likely to take place.

Abstraction

An abstraction process occurs when the subject focuses attention on
specific properties of a given object and then considers these properties
in isolation from the original. This might be done, for example, to
understand the essence of a certain phenomenon, perhaps later to be able
to apply the same theory in other cases to which it applies.

Such application of an abstract theory would be a case of
reconstructive generalization – because the abstracted properties are
reconstructions of the original properties, now applied to a broader
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domain. However, note that once the reconstructive generalization has
occurred, it may then be possible to extend the range of examples to
which the arguments apply through the simpler process of expansive
generalization.

For instance, when the group properties are extracted from various
contexts to give the axioms for a group, this must be followed by the re-
construction of other properties (such as uniqueness of identity and of
inverses) from the axioms. This leads to the construction of an abstract
group concept which is a re-constructive generalization of various
familiar examples of groups. When this abstract construction has been
made, further applications of group theory to other contexts (usually
performed by specialization from the abstract concept) are now
expansive generalizations of the original ideas.

The case of definition

The process of formal definition in advanced mathematics actually
consists of two distinct complementary processes. One is the abstraction
of specific properties of one or more mathematical objects to form the
basis of the definition of the new abstract mathematical object. The
other is the process of construction of the abstract concept through
logical deduction from the definition.

The first of these processes we will call formal abstraction, in that it
abstracts the form of the new concept through the selection of
generative properties of one or more specific situations; for example,
abstracting the vector-space axioms from the space of directed-line
segments alone or from what it is noticed to be common to this space
and the space of polynomials. This formal abstraction historically took
many generations, but is now a preferred method of progress in
building mathematical theories. The student rarely sees this part of the
process. Instead (s)he is presented with the definition in terms of
carefully selected properties as a fait accomplit. When presented with
the definition, the student is faced with the naming of the concept and
the statement of a small number of properties or axioms. But the
definition is more than a naming. It is the selection of generative
properties suitable for deductive construction of the abstract concept.

The abstract concept which satisfies only those properties that may be
deduced from the definition and no others requires a massive
reconstruction. Its construction is guided by the properties which hold
in the original mathematical concepts from which it was abstracted, but
judgement of the truth of these properties must be suspended until they
are deduced from the definition. For the novice this is liable to cause
great confusion at the time.

The newly constructed abstract object will then generalize the
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properties embodied in the definition, because any properties that may
be deduced from them will be part of it. Because of the difficulties
involved in the construction process, this is a reconstructive
generalization.

Occasionally the process leads to a newly constructed abstract object
whose properties apply only to the original domain, and not to a more
general domain. For instance, the formal abstraction of the notion of a
complete ordered field from the real numbers, or the abstraction of the
group concept from groups of transformations. Up to isomorphism
there is only one complete ordered field, and Cayley’s theorem shows
that every abstract group is isomorphic to a group of transformations.
In these cases the process leads to an abstract concept which does not
extend the class of possible embodiments.

We include these instances within the same theoretical framework
for, though they fail to generalize the notion to a broader class of
examples, they very much change the nature of the concept in question.
The formal abstraction process coupled with the construction of the
formal concept, when achieved, leads to a mental object that is easier
for the expert to manipulate mentally because the precise properties of
the concept have been abstracted and can lead to precise general proofs
based on these properties.

Formal abstraction leading to mathematical definitions usually serves
two purposes which are particularly attractive to the expert
mathematician:

(a) Any arguments valid for the abstracted properties apply to
all other instances where the abstracted properties hold, so
(provided that there are other instances) the arguments are
more general.

(b) Once the abstraction is made, by concentrating on the
abstracted properties and ignoring all others, the
abstraction should involve less cognitive strain.

These two factors make a formal abstraction a powerful tool for the
expert yet – because of the cognitive reconstruction involved – they may
cause great difficulty for the learner.

Generic abstraction

Having focussed on the fact that a formal abstraction is valuable for the
expert, yet difficult for the learner to attain, we pose the question as to
how we may help students pass through the difficult transition and to
attain the reconstructive generalization required for the formal
abstraction. We suggest that this can be done more effectively by
focussing on a mid-way development in which a specific example is seen
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by the teacher as a representative of the abstract idea, which we term a
generic example.

Initially the student will be presented with one or more prototypes
for the abstract concept. To the teacher these ideas represent
instantiations of the abstract concept, but the student has not yet
performed the abstraction, and so these prototypes may function in a
seriously erroneous way in which the student abstracts the wrong
properties. This seems to happen with the introduction of the function
concept in mathematics. So difficult is this abstract concept that it seems
not possible to present it in a sufficiently generic manner. Instead we see
that pupils presented with an informal introduction to the function
concept develop a menagerie of examples from which they abstract
inappropriate properties. Tall & Bakar (to appear) suggest that the
prototypes that students in the UK develop for the function concept are
ideas such as y=x2, any “typical polynomial”, y=1/x, a sine curve, a
relationship between two variables in which y varies with x, a
“continuously varying graph” and so on. The result is that when asked if
a graph or a formula represent a function, in the absence of a formal
definition, the students seem to scan their prototypes to see if there is
any resonance. These may produce a false resonance (such as the sense
that a circle x2+y2=1 is a function because it is given by a formula
relating x and y or because it has a familiar graph) or erroneously fail
to produce a resonance (such as the fact that y=constant is not a function
because here y does not vary, or is not dependent on x).

However, if the process is successful and the student sees one or more
specific examples as typical of a wider range of examples embodying an
abstract concept, then this is a (relatively painless) form of abstraction
which we call a generic abstraction.

This process clearly involves generalization (because it embeds the
examples in a broader class of example embodied by the generic
abstraction). But it is also a mild form of abstraction because it lifts the
student’s cognitive consciousness to a higher level in which the more
general concept is sensed and abstracted, at least implicitly, from the
generic examples.

A wide range of computer experiences to learn mathematical
concepts seem to be instances of generic abstraction. Tall (1986, 1989)
defined a class of software which enables the user to abstract a higher
order concept from examples of the concept a generic organizer. For
instance, a generic organizer for the notion of the gradient of a graph
consists of a magnification program to see that a tiny part of many
familiar graphs will look straight under magnification. The learner who
comprehends this property may now glance along a curve and see the
changing gradient. A second generic organizer moves a secant along the
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graph (through two moving points a fixed small difference apart) and
plots gradient values enables the student to see the gradient plot as a
representation of the changing gradient of the graph. The generic
abstraction that the student attains is not the formal idea of the
derivative, but a gestalt appreciation of the dynamically growing
gradient function. This generic process, seen only with specific graphs,
is abstracted by the student in a manner which allows him or her to
apply the process to a new graph. The software offers the student the
possibility to guess the formula for the gradient and test if this is
appropriate. Thus the generic abstraction links intuitively with the later
formal abstraction of the derivative function as a symbolic process.
Students also develop an ability to apply their generic abstraction of the
gradient process to have a significantly better ability to sketch gradients
of a given graph.

Thomas and Tall (1988) generate a concept of variable through
programming the computer in BASIC and using software which accepts
normal algebraic notation. Through comparing specific evaluations of
expressions such as 2(x+y) and 2x+2y for different numerical values the
pupils are encouraged to carry out the generic abstraction that such
expressions are equal. In this process the letters x and y are not general
symbols, but letters standing for numbers. This computer approach
forms a basis for further development in the solution of equations and
inequalities in which the letters stand for unknown numbers (or even
one of a set of possible numbers), leading to further abstraction of the
variable concept. Students develop significantly better understanding of
the concept of a letter as a variable. For instance, they are more likely
to see that the equations

3p–1=5 and 3(p+1)–1=5
are “essentially the same equation”, in which, having found the

solution of the first to be p=2, realize that the solution to the second is
p+1=2, so p=1. Meanwhile, control pupils who have taken a more
traditional route are more likely to see the solution of an equation as a
process, which means that they multiply out the brackets in the second
case and follow through to “move the terms involving p to one side and
the numbers to the other” to obtain the solution.

Breidenbach et al (to appear) use the computer language ISETL to
introduce the notion of function through programming. The syntax of
ISETL encourages the student to think of the function as a process, in
which the function and the variable(s) it takes is named and the process
defined by which the output of the function is calculated for given input.
For instance, a function in the form

V(t) = 

  26.7t2    if 0<t≤ 5 0

 (4/3)πt3   i f   50<t
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is defined in ISETL as
V := func(t);

if t < 0 return “out of domain”; end;
if t <= 50 then return 26.7*(t**2);
else return (4/3) * 3.146*(t**3);
end;

end;

This program embodies the notion of checking that the input t is in the
domain of V, then instructing the computer how to carry out the
process to give the appropriate output. Such a method of embodying the
function process leads to a generic abstraction of the function concept.
Students show radical improvements in their ability to deal with
properties of functions at the specific level, (computing composites,
inverses and intricate related problems involving specific functions) but
may be less successful at the general level (for instance, in proving or
disproving the statement that “if f and g are 1-1 then the product fg is
1-1”).

Principles for Generic Abstraction

The idea of generic example is coupled with three pedagogical
principles which guide the instruction in helping students in the process
of abstraction. The three principles, which were developed in a three
year teaching experiment of linear algebra, with advanced high-school
students (Harel, 1985), were found to be applicable in other contexts,
such as those discussed in this paper. We start with these principles and
then discuss their contributions to the construction of the abstraction
process.

The entification principle. This principle states that, for a student
to be able to abstract a mathematical structure from a given model of
that structure, the elements of that model must be conceptual entities in
the student’s eyes; that is to say, the student has procedures that can take
these objects as inputs (Greeno, 1983, Harel & Kaput, in press). This
principle was derived from the finding that advanced high-school
students were able to abstract the vector-space structure from the
geometric spaces of directed line segments, but not from the spaces of
polynomials (see Harel, 1989). It has been established by several
researchers (e.g., Dubinsky, to appear) that polynomials, or functions in
general, are not conceived by students as objects. Directed line-
segments, on the other hand, are manipulable objects which serve as
inputs for operations familiar to students.

The necessity principle.  This principle states that the subject
matter has to be presented in such a way that learners can see its
necessity. For if students do not see the rationale for an idea (e.g., a
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definition of an operation, or a symbolization for a concept), the idea
would seem to them as being evoked arbitrarily; it does not become a
concept of the students (à la Steffe, 1988). In Harel’s (1985) linear
algebra program, this principle was implemented by providing
instructional activities through which students, individually and working
in groups, participated in the construction of the concepts and their
relations. Through this work students discussed new ideas, their
relations to familiar ones, their contribution to the reconstruction of
previous concepts, and their use in solving problems. Special attention
was given to the symbolization form and definitions of operations. For
example, why certain variables of a concept are included in its symbols
and others are not, or why the matrix operation are defined as they are
(see Harel, 1989).

The parallel principle . When instruction is concerned with a
“concrete” model, that is, a model which satisfies the entification
principle, the instructional activities within this model should be
designed to parallel the processes that will later apply within the abstract
structure. This will mean that the instruction potentially involves only
an expansive generalization, in which the concrete model is manipulated
in a generic way. But it is designed to lay the seeds for a much easier
reconstructive generalization at a later stage when the abstraction of the
formal concept occurs in a corresponding abstract manner.

The parallel principle is vital to the abstraction process. It provides
structures in the mind which allow the abstractions to root in familiar
processes and it also enables abstraction to operate more in the nature of
an expansive generalization. For example, when dealing with the three-
dimensional geometric model of a vector space, a basis could be defined
as three non-collinear directed line segments. But such a definition is
restrictive and model-dependent because it does not transfer to abstract
vector spaces. In Harel (1985) the concept of basis was explored by the
students starting from the concept of minimal spanning set. Initially
such a spanning set may be less appropriate because the scalars involved
might not be unique. But this in turn leads to the necessity of
considering minimal spanning sets, which need also to be ordered in a
specific way to give a unique scalar representation.

None of these three principles were explicitly used in the research
mentioned in the previous section. It is an interesting exercise to attempt
to identify where they occur implicitly. In retrospect it is possible for us
to identify the principles in action in the two developments in which one
of us was involved.

Certainly the entification principle is important in the development of
the concept of derivative, in that it is assumed that the students already
have a mental image of the notion of linear functions, their graphs and
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their gradients. These are the entities, together with the process of
magnification, upon which the development is based. The computer
programs used in the development pass from this knowledge to
generalize to the notion of locally straight curves. The necessity to study
such curves is given by the existence of highly wrinkled curves which
are not locally straight. It is seen as essential to realize that not all
functions are locally straight. Thus theorems in analysis must explicitly
state in what way differentiability is required and show how this
property is necessary for the deduction of other properties.
Furthermore it is necessary to focus on how the numerical derivative is

calculated as  
f(x+h)-f(x)

h    and what happens for small h. and show how

this numerical process parallels the symbolic process of taking the

symbolic limit of  
f(x+h)-f(x)

h     as h tends to zero. This lays the

foundations for a formal abstraction which may follow.
Likewise the introduction of algebra through computer programming

occurs through building on the arithmetic experience of the pupils,
playing a physical game in which numbers written on card are stored in
boxes marked with the names of the variables to give a concrete
meaning to the notion of variable. The necessity to become acquainted
with algebra is partly shown through the power of the notation to
encapsulate general processes such as T=P*R/100: S=P+T to calculate
the tax T and total price S given the initial price P and the (percentage)
rate R. Thus it is only necessary to specify this algorithm and the rate R
to give a computer process that takes the price P as input and gives back
the sale price S as output. The necessity to study the peculiarities of
algebraic notation also arises from the fact that the computer is
programmed to function using such conventions and can be relied upon
always to use the notation in the same way, thus 2+3*5 gives 17, instead
of 25. The purpose therefore is to understand how the computer
calculates any given expression. The parallel principle arises because the
students learn to parallel the computation of algebraic expressions in
their physical game following the same conventions used by the
computer.

From Generic Abstraction to Formal Abstraction

A generic abstraction of a mathematical concept gives the student a
sense of the concept that is operative. The student is likely to feel secure
in carrying out operations generically within the context (e.g. solve
linear equations or find eigenvalues in Rn), but may fail to be able to
prove formal properties, for instance that
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“if two linear maps f:U→V, g:V→W are such that gf:U→W is 1-1,

then f is 1-1”.

Until the student has constructed the concepts of an abstract vector space
and of linear functions, (s)he may find it difficult to handle a definition
of 1-1, say in the form:

f:U→V is said to be 1-1 if and only if:

given f(x1)=f(x2) for x1, x2 ∈  U, then x1=x2.

How can one handle a statement like f:U→V is 1-1, until one has

constructed a meaning for its constituent parts?
The proof is simple enough:

To show that f is 1-1,
   suppose       that       f      (      x   1   )=       f      (      x   2   )       for       x   1   ,      x   2       ∈            U    ,
then g(f(x1))=g(f(x2)),
so gf(x1)=gf(x2),
   then    (because gf is 1-1)     we       conclude       that       x   1    =       x   2.

The underlined part of this proof is the statement that f is 1-1. It is
simple enough to learn by rote, and many students may do this. But this
may produce not relational, but instrumental understanding of the
proof, simply adjoining it to the separate items of knowledge that the
student has acquired through a process of disjunctive generalization.

To be able to attain such a proof within the context of a formal
abstraction requires a meaningful understanding of the definitions. As
we have seen earlier, this requires a process of re-construction.
However, the construction of such concepts in generic examples are
more likely to be achieved by the entification principle and the necessity
principle, and the provision of an appropriate procedure for proof
construction in the abstract context is more likely to follow from the
parallel principle. It must still occur within a context where the
individual knows that certain properties are true in all familiar
examples but must be deduced without prejudice within the abstract
concept. But the parallel principle allows a generalization of the
procedure to be passed from the examples to the abstract concept by a
process more akin to an expansive generalization, clouded only by the
conflict that the properties, known to be true in the examples, must be
re-constructed in the abstract context. Thus the passage from generic
abstraction to formal abstraction remains one requiring reconstruction,
but a reconstruction with potentially less cognitive strain.
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