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Summary 

The general theory of electromagnetic induction in a conducting half- 
space by an external magnetic source is developed in a new way which 
simplifies and consolidates the classic treatment of A. T. Price. The novel 
features of the theory are a systematic application of integral transforms 
and the use of electric and magnetic Hertz vectors aligned normal to the 
surface of the conductor. It is shown that the solutions associated with 
the electric Hertz vector correspond only to a free decay of currents 
within the conductor so that the entire theory of the induction problem 
is developed in terms of the one scalar component of the magnetic Hertz 
vector. The general solution of the magnetic Hertz potential corres- 
ponding to induction by an arbitrary time-dependent source is obtained 
in the form of a closed integral involving just one unknown function 
which is a Fourier transform of the magnetic Hertz potential of the 
source evaluated at the surface of the conductor. Results corresponding 
to the special cases of aperiodic and periodic fields are developed and 
explicit expressions for the electric and magnetic field vectors are also 
derived. The general theory is illustrated by considering three specific 
sources: (i) an aperiodic magnetic dipole normal to the surface of the 
conductor, (ii) a periodic magnetic dipole parallel to the surface of the 
conductor, and (iii) a periodic line current flowing parallel to the surface 
of the conductor. 

Introduction 

Two decades have passed since the publication of his classic paper in which 
Price (1950) developed the general theory of electromagnetic induction in a semi- 
infinite conductor with a plane boundary. Over the intervening years it has become 
the standard reference work for analysing geophysical problems (such as those arising 
in the magnetic and magnetotelluric methods of exploration geophysics) which 
involve the induction of earth currents by an external source over sdiiciently localized 
regions of the Earth that its curvature can be neglected. A vast literature has accumu- 
lated covering solutions of such problems for different kinds of sources. An extensive 
bibliography can be found in a recent review article by Ward (1967). 

Price’s treatment was based on the elementary solutions obtained by separating 
the variables in the differential equation satisfied by the electromagnetic field vectors. 
Two distinct types of fundamental solutions emerged. Those of the ‘first type’ 
gave the field induced by the time-dependent magnetic field of an external system of 
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84 J. T. Weaver 

currents flowing parallel to the surface of the conductor, while those of the ‘ second 
type ’ represented freely decaying current systems inside the conductor which had 
no associated magnetic field outside the conductor. Although the particular case 
of an electric source field perpendicular to the surface of the conductor was not 
included in the solutions of the first type, this did not detract from the generality of 
the solutions since such a source has no effect inside the conductor as explained in a 
later paper by Price (1962). 

While Price’s approach provided an excellent description of the physical processes 
underlying the theory of induction it did not yield a general formula which gave 
directly the total field corresponding to any prescribed source. Rather it was neces- 
sary to construct the solutions for each special case by identifying certain functions 
of position and time ( P ( x , y )  and A( t )  in his notation) appropriate to the given 
source, and integrating the elementary solutions over a suitable range of values of 
the separation constant. Moreover, since the elementary solutions were derived 
directly in terms of the electric and magnetic field vectors (a slightly simpler pro- 
cedure than using the electromagnetic scalar and vector potentials because, as Price 
pointed out, the former vectors are solenoidal whereas the vector potential is not), 
the development of the theory was thereby encumbered with six scalar components. 

With a somewhat different approach it is found that these less attractive features 
of the theory can be avoided and at the same time its development considerably 
simplified. Thus, in view of the continued interest in induction problems and the 
increasing importance of their application to geophysical probing, it seems timely to 
present in this paper the complete theory of electromagnetic induction in a con- 
ducting half-space in a more modem form which is quite general and yet concise. 

The principal simplification is achieved by developing the theory in terms of 
Hertz vectors rather than in terms of the electric and magnetic field vectors. There is 
nothing new in the use of Hertz potentials, of course, but it has been the practice to 
follow the traditional method applicable to radiation fields by choosing the most 
appropriate Hertz vector to represent each specific source as it arises. For example, 
a magnetic dipole parallel to the surface of the conductor would be most con- 
veniently represented by a magnetic Hertz vector along the dipole. The total field, 
however, would then have to be expressed in terms of a magnetic Hertz vector having 
components both parallel and normal to the surface. The essential feature of the 
theory presented in this paper is that both electric and magnetic Hertz vectors are 
used, and that these are always defined to be normal to the surface of the conductor. 
It then follows that for any source the solutions associated with the electric Hertz 
vector correspond to Price’s solutions of the ‘ second type ’ and merely represent a 
free decay of currents, while those associated with the magnetic Hertz vector corres- 
pond to Price’s solutions of the ‘ first type ’. Thus the entire theory of induction by 
an external magnetic source can be expressed in terms of the one scalar component 
of the magnetic Hertz potential. Apart from some related ideas set forth by Gordon 
(1951) in a sequel to Price’s paper, this important result appears to have been over- 
looked by previous authors. It offers obvious advantages for extending the theory 
to a multilayered conductor. 

The other simplification accrues from a systematic use of integral transforms 
rather than separation of the variables. This allows the general solutions to be 
expressed directly in terms of an infinite integral involving just one unknown function 
which is simply the double Fourier transform of the magnetic Hertz potential of the 
source evaluated at the surface of the conductor. Thus the solution to any induction 
problem involving the standard types of sources can be written down immediately 
with the aid of ‘ Tables of Integral Transforms ’ compiled by ErdClyi (1954). For 
reference purposes these tables will be denoted in the subsequent sections by the 
abbreviation I.T. 
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General theory of electromagnetic induction 85 

The solutions are derived in the first instance for an arbitrary time-varying source, 
and the results obtained are then modified to suit the special cases of (i) aperiodic 
and (ii) periodic sources. Explicit formulas giving the electric and magnetic fields 
are also quoted. Finally, the usefulness of the general formulas is illustrated by 
applying them to some specific examples each of which has been the subject of separate 
investigations in the literature. The first example considered is that of an aperiodic 
magnetic dipole normal to the surface of the conductor. This has received the 
attention of Wait (1951), Bhattacharyya (1959) and Meyer (1962). Secondly, a 
periodic magnetic dipole parallel to the surface is considered, a problem which 
has been previously analysed by Wait (1953), Quon (1963) and Ward (1967) among 
others, and finally, we examine the two-dimensional field induced by a periodic 
infinite line current parallel to the surface of the conductor. This was the example 
chosen by Price (1950) himself to illustrate the application of his general theory 
to a specific problem. 

2. Electromagnetic field equations 

The behaviour of a quasi-static electromagnetic field within a uniform, isotropic 
and source-free medium of conductivity CT and permeability p is governed by the 
approximate Maxwell equations 

curlE = -dB/dt, (2.1) 

curlB = aE, (2.2) 

where a = ~ C T ,  E is the electric field and B is the magnetic induction. All quantities 
are measured in MKS units. Defining the scalar and vector potentials 4 and A in 
the usual way, 

E = -grad 4 -aA/dt, (2.3) 

B = curl A, 

divA+a+ = 0 
and imposing the condition 

we can easily verify that 4 and the components of A all satisfy a diffusion equation 
of the form 

The relation equation (2.5) corresponds to the Lorentz condition for radiation fields. 
It is automatically satisfied if we introduce electric and magnetic Hertz potentials, 
ll and r respectively, by defining 

v @ = ad@/&. (2 6) 

4 = -divII, A = aII+curlr .  (2.7) 

If 4 and the components of A, as given by equation (2.7), are substituted in equation 
(2.6), it is readily seen that the resulting equations are satisfied provided that the 
components of II and r themselves are also solutions of the diffusion equation (2.6). 
It then follows by equations (2.3), (2.4) and (2.7) that E and B can be expressed 
in terms of the Hertz potentials by the formulas 

E = curl curl II - curl (drldt), 

B = curl curl r + a curl n. 
(2.8) 

(2.9) 
Let i, j, k be unit vectors defining the directions of the x ,  y ,  and z axes respectively 

of a rectangular Cartesian co-ordinate system. Without loss of generality (Jones 
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86 J. T. Weaver 

1964) we may choose I3 = Ilk and r = r'k so that equations (2.8) and (2.9) become 

(2.10) 
E =  - - - ) i + ( - + - ) j - ( s + s ) k ,  a2n a2r a2n a2r a2rJ aZn ( azax ayat azay axat 

It is clear from equations (2.10) and (2.1 1) that the electromagnetic fields associa- 
ted with JI and r respectively are distinguished from each other by the fact that 
the &field has no magnetic z-component, while the r-field has no electric z-com- 
ponent. Thus all current flow associated with the magnetic Hertz potential is parallel 
to the xy-plane. 

When d = 0 (i.e. c( = 0), both II and r satisfy Laplace's equation 
V 2 @ = 0  (2.12) 

and the field expressions equations (2.10) and (2.11) reduce to 

E = grad (an/&) - curl (karpt), (2.13) 

B = grad (arlaz). (2.14) 

Thus the electric Hertz potential n does not contribute to the magnetic field in a 
non-conducting medium. Indeed, it follows from equation (2.14) that -aI'/paz 
plays the role of a magnetic scalar potential in the region. We note also that the 
electric field equation (2.13) depends on an/az rather than on n, so that the com- 
plete electromagnetic field in a non-conducting region can be specified in terms of 
r and aII/az, both of which satisfy equation (2.12) (aIT/dz obviously satisfies equation 
(2.12) because II does). 

3. The mathematical model and notation 

Let po be the permeability of free space. We shall take the half-space z > 0 of 
the rectangular co-ordinate system (x ,  y, z) to be occupied by a source-free medium 
of permeability p = I C ~ "  and conductivity o = a/p.  At a height h or greater above 
the conductor, i.e. in the region z < -h  (h > 0), we suppose there exists a given time 
varying magnetic source in the form of an electric current system of finite extent. 
The intervening region - h < z < 0 between the source currents and the boundary 
of the conductor is assumed to have a permeability po and to be non-conducting. 

The Hertz potentials ll and r, with which we shall be dealing, are, in general, 
functions of position and time. By defining 

r = xi+yj, 

we can use the compact notation @(r, z ,  t )  to denote a function of the four variables 
x, y ,  z ,  t .  It will also be convenient to express partial derivatives in the Landau 
notation by using the appropriate numerical subscript on the function symbol to 
indicate to which of the ordered variables the differentiation applies. In this con- 
vention, we have, for example, 

QI3(r, +o, Z) = lim [a2 qa~ax] , , , .  
z-) +o 

It is now necessary to establish a notation for the various integral transforms 
which will be required later. The double Fourier transform of a function of x ,  y 
specified by a Greek letter will always be denoted by a function of <, q which is 
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G e m 1  theory of electromagnetic induction 87 

specified by the Dhonetically related Roman letter. Thus, if we formally define 

then we write 
P = Si+rli, 

m 

-m  
m 

where I-, ... dr means jm 1 co .. . dxdy.  The inverse transform in this notation 
is given by 

- m  - w  

m 

- m  

In addition we shall require a transform with respect to the variable z first introduced 
by Churchill (1944). This will be denoted in our notation by changing the function 
symbol from upper case to lower case, and is defined by 

where 
kp sin 6z + l cos Cz 

(kz p 2  + 12)* ' 
W , z )  = 

The inverse transform has the symmetric form 
rn 

(3 * 4) 

If we let k 4 00 in equation (3.4), then equation (3.3) reduces to a Fourier sine 
transform. This special case will be indicated by a cap on the function symbol, i.e. 

W 

(3 * 6) 
0 

4. Boundary conditions 
Since the source is h i t e  we may assume that ll and r and their derivatives vanish 

as r 3 co, and also, of course, as z 4 co. In addition the usual electromagnetic 
boundary conditions apply across the plane surface of the conductor. In order to 
express these conditions in terms of the Hertz potentials it is convenient to define 

T(r, +0, t)- T(r, -0, t )  = A(r, t ) ,  

r3(r, +0, r)+lcT,(r, -0, t )  = T(r, t), 

l13(r, fO, t)-l13(r, -0, t )  = Y(r, t). 

(4.1) 

(4 * 2) 

(4 * 3) 
Then by equation (2.11), the continuity across the plane z = 0 of the nonnal com- 
ponent of B, and of the tangential components of the magnetic intensity, implies 

T2(r, t)-all,@, +0, t )  = 0. (4 * 6)  
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88 J. T. Weaver 

Likewise, by equation (2. lo), the condition that the tangential components of E 
are continuous across z = 0, requires 

yl(r, t)-A32(r, t )  = O, 
Y2(r, t)+A31(r, t )  = 0. 

(4.7) 

(4.8) 
If we differentiate equation (4.5) with respect to y and equation (4.6) with respect 
to x, and subtract, we obtain 

I'Ill(r, +0, t)+IIz2(r, +0, t )  = 0. 

Thus n(r, +0, t )  is a two-dimensional harmonic function in the xy-plane. 
it also vanishes as r -+ co, it must identically vanish, i.e. 

Since 

H(r, +0, t )  = 0. (4.91 
If instead we differentiate equation (4.5) with respect to x and equation (4.6) with 
respect t oy  and add we find 

T I 1  (r, t> + Y22(r, 4 = 0. 

y l l ( r ,  t)+Y22(r, 0 = 0. 

(4.10) 

(4.11) 

A similar procedure applied to equations. (4.7) and (4.8) yields 

Equations (4.4), (4.10) and (4.11) show that A, Y and Y are all harmonic functions 
in x and y which tend to zero as r 3 03. Hence they too must vanish identically. 

Substituting these results back into equations (4. I),  (4.2) and (4.3), taking 
their Foutier transform, and that of equation (4.9) also, we obtain the simple bound- 
ary conditions 

G(P, +O, t )  = G(P, -0, t), (4.12) 

G,(P, +o, t )  = KG,(P,  - O , %  (4.13) 

PdP, +o, t )  = PAP, - O , t ) ,  (4.14) 

P(p, +o, 2 )  = 0. (4.15) 

We note that the boundary conditions for the magnetic Hertz potential are un- 
coupled from those for the electric Hertz potential. Thus the solutions for r and II 
exist quite independently of each other. 

5. The field outside the conductor 
It was shown in Section 2 that a quasi-static electromagnetic field in the non- 

conducting region - h  < z < 0 could be specified in terms of the two scalars I? and 
n3, both of which satisfy Laplace's equation (2.12) in the region. Applying the 
Fourier transform (equation (3.1)) to equation (2.12),fand assuming that the deriva- 
tives of the field vanish as r -+ 03, we find that G and P, (the Fourier transforms of 
r and II, respectively) both satisfy the differential equation 

F,,(P, z ,  9 = P 2  F(P, z ,  9. (5.1) 
Let us denote the magnetic Hertz potential of the source currents alone by r('). 

Clearly its Fourier transform G'") will satisfy equation (5. l), and since the field of 
the source must approach zero when z -+ +co, the appropriate solution for G(') in 
- h < z < O i s  

If we formally change the sign of z in equation (5.2) and subtract, we obtain 

G(")(p, z ,  t )  = G(")(p, -0, t )  exp ( - p z ) .  (5.2) 

(5.3) G(S)(p,z, t)-G@)(p, - z ,  t )  = -2G@)(p, -0, t)sinhpz. 
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General theory of electromagnetic induction 89 

Likewise we denote the magnetic Hertz potential associated with the currents 
flowing inside the conductor by 17(i). The field of these currents must vanish as 
z + - 03, so that the solution of equation (5.1) which gives G(’) in -ti < z < 0 is 

G(”(p, z, t )  = ~ ( ” ( p ,  - 0, t )  exp (pz). (5.4) 
The total potential is the sum of r0 and l?). Thus we can substitute 
G(’) = G-G“)  in equation (5.4), and then use equation (5.2) and the boundary 
condition (equation (4.12)), to obtain 

G(p,z, t )  = G(p, +0, t) exp (p~)-2G(~)(p, -0, f )  sinhpz. (5.5) 
Hence, substituting equation (5.3) in equation (5.5) and applying the inversion 
formula (equation (3.2)) we obtain the solution for in -ti < z < 0 in the form 

r(r, Z, t )  = P ( r ,  Z, t ) -  P ( r ,  -z, t ) +  r*(r, Z,  t ) ,  (5.6) 

G(p, + 0, t) exp (pz  - ir . p) dp.  (5.7) 27c 

where 

- m  

The first two terms in equation (5.6) represent the known potential of the source 
plus the potential of its image in the plane z = 0. The third term is expressed by 
equation (5.7) in terms of the boundary value of the solution of G in z > 0. Thus, 
if the magnetic Hertz potential within the conductor is known, then equations (5.6) 
and (5.7) complete the solution in the region -h < z < 0. 

Since P ,  also satisfies equation (5.1) subject to a boundary condition equation 
(4.14) which is identical in form to the condition (equation (4.12)) satisfied by G, 
the solution for ll, is analagous to equation (5.6), namely 

n3(r, z, t )  = II,(’)(~, z ,  t )  - n3(S)(r, -z, t )  

+ i P3(r, +0, t) exp (pz-ir.p)dp. (5.8) 2n 
- m  

6. Solution of the electric Hertz potential 

formed according to equation (3. I), becomes 
In z > 0, II satisfies the diffusion equation (2.6) which, when Fourier trans- 

aP,(p, z ,  0 = P,,(P, z ,  0 - p 2  P(P, z, 0. (6.1) 
We now apply the sine transform (equation (3.6)) to this equation and make use of 
the boundary condition (equation (4.15)) for integrating the term involving P,, by 
parts. The resulting equation is 

Mh4(P, r ,  t )  = - (P2 + 12)  IXP, r ,  0, 
which has the immediate solution 

where 
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which is, in turn, inverted by equation (3.2) to yield 

n(P,z, t> = - 1 P(p,z, t> exp (-ir.p)dp (6.5) 27c 
-a, 

as the solution of the electric Hertz potential in z > 0. If equation (6.4) is differen- 
tiated with respect to z, we also obtain when z + +0, 

This result may be substituted into equation (5.8) to complete the solution outside 
the conductor. 

In any given problem the initial distribution of the potential field within the 
conductor must be specified in order that $(p, 5, 0) may be determined. We note, 
however, that the field within the conductor as given by equatjon (6.4) is, in any 
case, completely unaffected by the source field. In fact, since is real and positive, 
the field freely decays in time as does also that part of the field outside the conductor 
which is given by the third term in equation (5.8). If the external source has been 
established for a sufficiently long time that such fields may be assumed to have decayed 
away (or if we consider the prescribed initial potential to be zero everywhere inside 
the conductor), then we may take II = 0 in z > 0. In -h  < z < 0, however, it is 
clear from equation (5.8) that there still remains a non-vanishing part of the electric 
Hertz potential which is just the combined field of the source and its image, given by 

H3(r, z ,  t )  = H3(s)(r, z ,  t)-r13(r, -z, t ) .  (6.6) 
The potential (equation (6.6)) contributes only to the electric field outside the con- 
ductor, as shown in Section 2, and is merely required to accommodate the electric 
field of the source and of the electric charge induced on the surface of the conductor. 

The behaviour of these solutions is in complete accord with the properties ascribed 
by Price to his ' solutions of the second type '. 

7. Solution of the magnetic Hertz potential 

In z > 0 the Fourier transform of the magnetic Hertz potential satisfies the same 
differential equation (6.1) as the electric Hertz potential. This time, however, we 
apply the transform defined in equations (3.3) and (3.4), with k = IC. The term 
involving G,, can be integrated by parts as follows: 

a 

The first term on the right-hand side of equation (7.1) can be related to the source 
field by differentiating equation (5.5) with respect to z ,  letting z -+ -0, and substi- 
tuting the boundary condition (equation (4.13)). We obtain 

ICPC(P, +0, t)-G,(p, +0, t) = 21~pG'~' (p ,  -0, t ) .  

Hence the equation satisfied by g becomes 
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General theory of electromagnetic induction 91 

where fl is given by equation (6.3). The solution of equation (7.2) is readily found 
to be 
g(p, c, 0 = d P ,  L 0) exp (-- PO 

~cp[G'"'(p, -0, t -u) 
exp (- Pu) du. (7.3) 

The first term in this solution is independent of the source and again describes the 
free decay of an electromagnetic field initially existing inside the conductor. It is 
similar in form to the solution of the electric Hertz potential given by equation (6 .2 ) ,  
and although the inversion formula (equation (3.5)) will this time include terms in- 
volving both sin [z and cos @ the final form of the solution is otherwise the same as 
before. The corresponding magnetic Hertz potential outside the conductor is given 
by r* defined in equation (5.7) since this is the remaining term in equation (5.6) 
when l?') is set equal to zero. 

Physically, the solutions differ from those for the electric Hertz potential in 
that they produce a magnetic field in the non-conducting region, but do not contri- 
bute to the component of the electric field normal to the surface of the conductor, 
as can be seen from equation (2.10). Thus that part of r which is independent of 
the source represents the free decay of currents flowing parallel to the bounding 
surface of the conductor and corresponds to Price's ' free modes of decay of the first 
type '. 

Solutions which describe a free decay of the field can usually be disregarded in 
induction problems where we are concerned with the field induced in the conductor 
by an external magnetic source. Henceforth, therefore, we shall suppose that 
$(p, [, 0) = g(p, [, 0) = 0 so that the complete theory of induction in a conducting 
half-space is contained in the second term of the solution (equation (7.3)) (together 
with equation (6.6) if the electric Hertz potential outside the conductor is required). 
It should be pointed out, however, that inherent in the neglect of the initial field is 
the assumption that the external source is not established until t = 0. For if a time- 
dependent source were to exist before this instant, it would have already induced a 
current system in the conductor thereby contradicting the supposition that the 
initial field is zero. 

Taking g(p, [, 0) = 0, and applying the inverse transform (equation (3.5)) to the 
remaining part of equation (7.3) we obtain 

m t  
p [  exp (- P u ) ( ~ p  sin cz + i' cos [z) 

K2 p* + c2 G(P,Z, 0 = 2 1 1 nu 
0 0  

x G'"'(p, -0, t-u)dud(. (7.4) 

Equation (7.4) completes the theory of electromagnetic induction in a conducting 
half-space by an external magnetic source. For we can invert it by equation (3.2) 
to give 

m 

T(r, z, t )  = - G(p, z ,  t )  exp (- ir . p) dp, (7.5) 2n ' s  
which totally specifies the electromagnetic field in z > 0, and we can let z -+ +O in 
equation (7.4) and substitute it in equation (5.7) to obtain the magnetic Hertz 
potential in - h  c z < 0 as given by equation (5.6). 

The general solutions may be simplified still further when the source possesses 
certain specified time variations. Two simple cases merit special treatment: (i) an 
aperiodic source which is suddenly created at the instant t = 0 but is static thereafter, 
and (ii) a periodic source. 
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92 J. T. Weaver 

8. Aperiodic source 

is already inherent in the general solution equation (7.4)). Then we may write 
Suppose that I?) is stationary for t > 0, but vanishes for t c 0 (which assumption 

P ( r ,  Z, t )  = P f r ,  Z, + 0) ~ ( t ) ,  

where H ( t )  is the Heaviside function, and hence for t > 0 

It follows that 
G'"(p, -0, t )  = G'S'(p, -0, +O). 

1 -exp ( - B t )  

B 
G'"'(p, -0, +O), J" G(s)(p, - 0, t - u) exp (- pu) du = 

0 

which, when substituted into equation (7.4), gives 

By expressing the integrand in partial fractions and using standard Fourier sine 
and cosine transforms (I.T. Section 1 .2  (il), Section 1.4 (15), Section 2.2 (15), 
Section 2.4 (26)), it is a straightforward exercise to show that 

where 1 = J(t/cr) and 

exp (204  
K - 1  

~ ( u ,  w) = erfc ( u  -3w) - { ( K  + 1) erfc ( u  +&w) 

- 2 ~  erfc ( K U + + W )  exp [ u ( K -  i)(w+u+w)]). (8.5) 
By equation (5.2) it is clear that 

exp ( - p z )  G@)(p, -0, +0) = G@)(p,z, +0) ( 8 . 6 )  
so that when equation (8.4) is substituted in equation (7.5) we may write the solu- 
tion of the magnetic Hertz potential (for z > 0, t > 0) in the form 

2lc 
T(r, z, t )  = - P ( r ,  Z, +o) 

K + 1  

K { G'"(P, Z, + 0) x(p1, z/1) exp (- ir . p) dp. (8 .7) - 
2n(rc+ 1) --a, 

The limiting value of the field as t -+ 00 is given by the first term of equation (8.7), 
since, by equation (8.5), ~ ( u ,  w )  -+ 0 as u 4 03. It represents, of course, the static 
field within a permeable half-space as given by magnetic image theory. 

To find the field outside the conductor we first let z + + O  in equation (8 .4), 
which yields 

lc 
G(P, +O, t )  = - [ 2 - ~ ( d ,  0)J G("(P, -0, +O) ,  (8 * 8 )  K + 1  
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where, by equation (8.5), 

(8.9) 
2 

K - 1  
X ( V ,  0) = - { K  exp [v’(K’ - I)] erfc KV - erfc v}.  

If we now replace z by -z in equation (8.6) and substitute in equation (8.8) we have 

This can be substituted into equation (5.7) and the first term inverted immediately 
to give (for - h  < z < 0, t > 0) 

2 K  
K + l  

r*(r,z, t )  = - P ( r ,  -2, +o) 
m 

- IC G(”(p, -2, + 0) ~ ( p i l ,  0) exp (- ir. p) dp. (8.10) 
- 0 3  

2n(lc+ 1) 

The leading term of equation (8.10) represents its limiting value as t 4 co. Thus 
when r* is substituted in equation (5.6) we find that 

K - 1  

K +  1 
r(r, z ,  co) = P ( r ,  Z, +o) + - P ( r ,  -2, + o), 

which is again in accordance with magnetic image theory for the static field outside 
a permeable half-space. 

9. Periodic source 

w. Thus we write 

whence 

and 

We assume that the source varies harmonically in time with an angular frequency 

P ( r ,  z ,  t )  = P ( r ,  z, + 0) exp (jot), 

G(”(p, -0, t )  = G(”)(p, -0, +0) exp (iwt) 

(9.1) 

(9.2) 

exp (iwt) - exp (- f i t )  

B+iw 
G(’)‘(p, -O,t-u)exp(-flu)du= G(”(p, -0, +O). (9.3) 

0 

The term involving exp ( - f i t )  represents a transient field which is a consequence 
of the assumption that the source is not initiated until t = 0. The steady-state 
periodic field containing the factor exp (iwt) becomes dominant after the source 
has been established for some time. We shall, therefore, retain only the first term 
of equation (9.3) in deriving the periodic solution. 

By equation (7.4), we have for z > 0 
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which can be evaluated immediately by comparison with the corresponding result 
for equation (8.3), i.e. 

(9.4) 

where v(p) = J(p2 +iwcr). 

Hence, following the same procedure used in Section 8 we find that the general 
solution of a periodic magnetic Hertz potential in z > 0 is given by 

while in the region -h  < z < 0 we obtain 

T*(r,z, t )  = exp (-ir.p)dp (9.6) 
n 

- m  

for substitution in equation (5.6). Note that when w + 0, the integrals in equations 
(9 .5)  and (9.6) reduce to ~ K ( K  + l)-' T(")(p, kz, 0), respectively. Thus the correct 
magnetostatic limit, given by the first terms in equations (8.7) and (8. lo), is again 
obtained. 

10. Solutions for E and B 

Since (for an induction problem) the electromagnetic field inside the conductor 
is completely specified by the magnetic Hertz potential defined by equations (7.4) 
and (7.5), we find that by equations (2. lo), (2.11) and (2.6) the field in z > 0 is 

El I = -curl (kdrldt), E,  = 0, (10.1) 

(10.2) B = grad ( d l p z )  - ak drpt, 
where E l ,  = E-E, k is the component of the electric field parallel to the surface 
of the conductor. 

Outside the conductor both r in equation (5.6) and 113 in equation (6.6) are, 
in general, non-vanishing. In this region the source and image potentials each 
satisfy equations (2.13) and (2.14). Thus we may use these formulas to express 
the electric and magnetic fields of the source and of its image in terms of the corres- 
ponding Hertz potentials, noting only that a differentiation of the image potentials 
with respect to z introduces a change in sign. Denoting the electric and magnetic 
vectors of the source by E'"' and B'"' respectively and of the image by E and B' 
respectively, we can show by equations (2.13), (2.14), (5.6), 

I E, I = El ,@)-El I'-curl (k dr*/dt), 

B = B(')+B+grad (W*/dz)-2B,'k 

E, = E,'g'+E,', 

in the region - h  < z < 0. 

(5.7) and (6.6) that 

(10.3) 

(10.4) 

The Lbove formulas provide a quick means of calculating the electric and mag- 
netic fields everywhere once the magnetic Hertz potential has been found for any 
given source. We note that no reference to the electric Hertz potential is required 
for computing E and B. 

We shall now illustrate the general theory with some examples involving specific 
magnetic sources. 
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11. Aperiodic dipole normal to the surface 
Suppose that at f = 0 a steady current 4nM/p0 AA starts to flow around a small, 

closed loop of area AA, which lies in the plane z = - h  and is centred on the point 
(0, 0, -h). The current constitutes an aperiodic magnetic dipole whose moment 
is 47rMlrH(t). The magnetic induction of this source is 

where 
B@) = - MH(t) grad {(h +z)/R3), 

R = {rZ + ( h + ~ ) ' } ~  

(11.1) 

(11.2) 

is the distance from the dipole to the field point. Since H'(t)  = S(t) ,  the Dirac 
generalized function, it follows by equation (2.1) that the time-dependent electric 
field of the source will consist of an impulse at 1 = 0, but will vanish thereafter. 
Hence for t > 0 we may take E(') = 0, and 

r@)(r, Z, t )  = T(')(r, Z, +0) = M/R, (11.3) 

the last result following from equations (1 1.1) and (2.14). 

drical co-ordinates (r, 8, z)  and (p, $, z)  where 
Since the source is dependent only on r and z, it is convenient to introduce cylin- 

x = r cos8, y = r sine, 5 = p cos$, q = p sin$. (11.4) 

The double Fourier transform (equation (3.1)) of equation (1 1 .3) can then be put 
in the form 

G@)(p,z, t )  = - - exp[ipr cos (e-+)]dOdr. (11.5) 
2.n MfSI; 0 --I 

Using the Bessel integral of order zero 

2nJ0(u) = exp [iu cos (8-$)] d8 
--I i (11.6) 

we can simplify equation (11.5) to 

9 (11.7) 
M exp [ - P(h+Z)l G@)(p, z, +0) = M 

P 0 

the last result following by a standard Hankel transform (I.T., Section 8.2 (4)). 
The solution to the problem is now found by substituting equations (11.3) and 
(11.7) into equations (8.7) and (8.10). 

We consider first the field inside the conductor. Introducing the dimensionless 
parameters 7 = r/A, Z = z/L, h = h / l ,  and transforming the integral in equation (8.7) 
into cylindrical co-ordinates with the aid of Bessel's integral (equation (1 1 .6 ) ) ,  we 
find that the solution of r in z > 0 is 

T(r,z, t )  = - IcM {i - J(+) 1 exp [-v(h+Z)] J,(Fv)X(o,Z)du I . (11.8) 
K+l 

An asymptotic expansion of equation (1 1.8) valid for large h, i.e. for t -4 poh', 
can be found by expanding ~ ( v ,  5)  in a Taylor series about o = 0 and integrating each 
term separately with the aid of the well-known result 
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where ZF1 denotes the hypergeometric function in the usual notation. It follows that 

Now by equation (8 .5) ’  we have x(0,Z) = 2 and 

x1(0,,?) = 2 ( ~ + 1 )  (Zerfc@-(2/Jjrr) exp (-z2/4)), (11 .lo) 

so that substitution in equation (1 1 .9) gives the first term asymptotic representation 
of equation (1 1 .8) in the form 

To obtain the field outside the conductor we apply the same transformation 
used in deriving equation (1 1 .8) above to the integral appearing in equation (8.10). 
The solution of r in - h < z < 0 is then given by equation (5 .6 )  with 

where ~ ( u ,  0) is given by equation (8.9) and where 

R’ = {r2 + (h -z)~)) 

is the distance from the image dipole to the field point. 
For small values of t ,  i.e. t << p h 2 ,  an asymptotic representation of equation 

(1 1.12) can be found by the same procedure used to derive equation (11.11). It 
is obvious from equations (8.9) and (1 1.10) that ~(0’0) = 2 and 

Hence it follows that 
0) = -4(~+1)/Jz.  

41cM(h -z) 
RJ3 

r*(r, Z, t )  (11.13) 

This completes the solution in - h < z c 0. 

Because of the symmetry about the z-axis, it is convenient to express the electro- 
magnetic field in cylindrical components E = (0, Eo, 0), B = (Br, 0, B,). Hence for 
this example, the appropriate formulas for computing the electromagnetic field in 
z > 0 are, by equations (10.1) and (10.2), 

E,  = a2 r iara t ,  B, = d2 rpzd r ,  B, = -d(rar/ar)/rar, (I 1.14) 

E ,  = a2 r* /ara t ,  

while in the region - h < z < 0 they are 

a2 r* 
B, = 3Mr (F 

by equations (10.3) and (10.4) 
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A peculiar feature of the solutions requires explanation. By equations (1 1-11) 
and (11.14) it is clear that as t 3 0, B, 3 B, -+ 0 everywhere inside the conductor 
and Ee -+ 0 also, provided z # +O. At the surface z = +O itself however, we have 

(11.15) 

which becomes infinite as t -+ 0. This implies that the impulsive electric field associa- 
ted with the sudden creation of the dipole source causes an instantaneous surface 
current to flow at time t = 0, the effect of which is to completely screen the inside 
of the conductor from the external electromagnetic field. In fact, since for t = 0, 
B, = 0 at z = +0, and by equation (11.13), 

B, = 6Mhr(r2+h2)-* 

at z = -0, the well-known boundary condition gives the surface current density as 
6Mhr 

po(r2 + h2)+ ’ 
3, = - (11.16) 

On the other hand, if we denote the component of the volume current density by 
J,, then for small t we have 

J ,  = oE, - ~ , / A J T c  
by equations (11.15) and (11.16). This shows that the surface current can be 
regarded, as the limiting value as t --f 0 of the volume current flowing in a layer of 
thickness A,/.. In other words, while the asymptotic formulas equations (1 1 .11) 
and (1 1.13) are valid for t < p h 2 ,  caution must be exercised in interpreting the 
solutions when t is so near zero that A,,/. is no longer of macroscopic magnitude. 

The reason for the appearance of an infinite electric field and its associated 
surface current is, of course, our assumption that changes in the field are sufficiently 
slow that displacement currents may be neglected. Clearly an aperiodic source of 
the type considered here does not satisfy this requirement near t = 0, although the 
subsequent diffusion of the field does. The physical explanation of this phenomenon 
has been discussed in greater detail by Gordon (1951). 

12. Periodic dipole parallel to the surface 
In this example we suppose that the magnetic moment of the dipole is directed 

parallel to the x-axis and that the current flowing round the loop has an harmonic 
time variation of angular frequency o. In the same notation as in Section 8 the 
quasi-static field of this source is 

B@) = - M exp (iot) grad (x/R3) 
E(’) = ioM exp (iot){(h+z) j-yk)/R3. 

It follows from equation (2.14) that the appropriate magnetic Hertz potential for 
this field is 

Mx exp (iot) 

R(R+h+z) 
P(~,z ,  t )  = (12. I)  

The Fourier transform of equation (12.1) can be expressed in cylindrical co- 
ordinates by equation (1 1 .4) and simplified with the aid of the formula 

27ciJ1(u) cos+ = cos0 exp [iu cos (8-+)]d8, (12.2) 
-z i 
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which follows at once from Bessel's integral of order one. We obtain 

J ,  (pr) r z  dr i R(R + h +z) ' 

G@)(p, z ,  t )  = i M  exp (iot) cos$ 
0 

(12.3) 

Noting that r2 / (R  +h +z) = R -h -z, and using two Hankel transforms (I.T. Section 
S .4 (4) and Section 8 . 5  (3)), we deduce from equation (12.3) that 

G@)(p,z, +0) = iMtp-'exp [-p(h+z)].  (12.4) 
Substituting equation (1 2.4) in equations (9.5) and (9.6), and using equation 

(12.2) again, we find that the magnetic Hertz potential in cylindrical co-ordinates 
is given by 

m 

T(r, Z ,  t )  = 2rcM exp (ior) cos 8 ' -ph-zv@)3 
J ,  (rp) p d p  (12.5) 

0 

for the region z > 0, and by equation (5 .6 )  for the region - h < z < 0, with 

The electromagnetic field components are readily calculated by substituting equation 
(12.5) into equations (10.1) and (10.2), and equation (12.6) into equations (10.3) 
and (10.4). 

13. Periodic line current parallel to the surface 

Finally we consider the inducing field produced by a periodic linear current 
(2nI/p,,) exp ( i o t )  flowing in the positive y-direction along the line x = 0, z = -h. 
This example shows how a strictly two-dimensional source can be incorporated in the 
general theory. 

The quasi-static magnetic field of the line current is well known to be 

B(")(r, z ,  t )  = I exp ( io t )  grad arctan - ( h 3  
(13.1) 

whence by equation (2.1) 

E@)(r, z, t)-E")(O, 0, t )  = ioZ exp ( io t )  log (S/h)  j, (13.2) 
where S = {x'+ (h +z)'}*. By equation (2.14) we immediately deduce that 

X 
r3(s)(r, z ,  t )  = I exp ( i o t )  arctan - 

which has as its Fourier transform the generalized function 

h+z ' 

G,'")(p, z ,  t )  = inI6(q) 5-l exp [iwt - (A+") 1511. 
It is the two dimensional nature of the problem (independence of y )  which gives 
rise to the Dirac delta function 6(q). By integration, we now have 

G@)(p,z, +0) = -i7rZ6(q)t-1 151-l exp [-(h+z)Itl] .  

Substituting equation (1 3.3) into equation (9.5) and simplifying, we 

d5 sin r x  - 
5 

T(r, z, t )  = - ~ K Z  exp ( iot)  
0 

(13.3) 

obtain 

(13.4) 
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for the magnetic Hertz potential in z > 0. Similarly, substitution of equation (13.3) 
in eguation (9.6) leads to 

(13.5) d t  
5 

sin t x  - , r * ( r , z ,  t )  = -2uZ exp (iwt) 
0 

which gives the field in - h < z < 0. 

Hence, writing E(5) = exp [ - t (h - z ) ] / (u t  + v(<)}, and substituting equations 
(13.1), (13.2), and (13.5) in equations (10.3) and (10.4) we find, for example, that 
the electric and magnetic fields outside the conductor are 

m 

E,  = iwZ exp (iwt) -2x 1 E(t) cos t x  d t )  , 
0 

m 
h+z h - z  

S2 
B, = I exp (icot) (7 - - 

0 
where S’ = (xz + (h -z)’}’. 
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