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Abstract

Coupons are collected one at a time from a population containing n distinct

types of coupon. The process is repeated until all n coupon have been collected

and the total number of draws, Y , from the population is recorded. It is

assumed that the draws from the population are independent and identically

distributed (draws with replacement) according to a probability distribution

X with the probability that a type i coupon is drawn being P (X = i). The

special case where each type of coupon is equally likely to be drawn from the

population is the classic coupon collector problem. We consider the asymptotic

distribution Y (appropriately normalized) as the number of coupons n → ∞

under general assumptions upon the asymptotic distribution of X. The results

are proved by studying the total number of coupons, W (t), not collected in t

draws from the population and noting that P(Y ≤ t) = P(W (t) = 0). Two

normalizations of Y are considered, the choice of normalization depending upon

whether or not a suitable Poisson limit exists for W (t). Finally, extensions to

the K-coupon collector problem and the birthday problem are given.

Keywords: The coupon collector problem; Poisson convergence; birthday

problem.
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1. Introduction

The classic coupon collector problem has a long history, see for example [3]. The

classic problem is as follows. A collector wishes to collect a complete set of n distinct

coupons, labeled 1 through to n. The coupons are hidden inside breakfast cereal boxes
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and within each cereal box there is one coupon which is equally likely to be any of

the n distinct coupons. The collector purchases one box of breakfast cereals at a time,

collecting the coupons, stopping when the collector has completed the set of n distinct

coupons. The total number of cereal boxes, Yn, which the collector needs to purchase

is the quantity of interest. Elementary calculations show that

E[Yn] = n

n
∑

i=1

1

i
≈ n log n.

Furthermore, if Z is a standard Gumbel distribution with P (Z ≤ z) = exp(− exp(−z))

(z ∈ R), then

1

n
(Yn − n log n)

D
−→ Z as n → ∞,

where ‘
D
−→’ denotes convergence in distribution, see for example [4].

The generalized coupon collector problem assumes that whilst the cereal boxes are

independent and identically distributed, the probability that a box contains coupon i

is pi. No assumption is placed upon the {pi}’s except that pi > 0 (i = 1, 2, . . . , n).

We allow for the possibility that some boxes may not contain a coupon by only

assuming that
∑n

i=1 pi ≤ 1. The random coupon collector problem, [5, 4], is an

alternative departure from the classic problem. The proofs in [4] rely upon a Poisson

embedding argument and although our proofs are different we shall also exploit a

Poisson approximation approach.

The paper is structured as follows. In Section 2 the main result, Theorem 2.1 is

presented and proved. An alternative result is given in theorem 2.2 which is applicable

when the Poisson arguments of theorem 2.1 fail. A number of examples are considered

in section 3. Finally, in Section 4 extensions of Section 2 are discussed. These include

the K-coupon collector problem, the total number of draws from the population that

are required to have K coupons of each type and the K-birthday problem, the total

number of draws from the population that are required to have K coupons of any

(unspecified) type.

2. Coupon Collecting problem

For the asymptotic results of this paper, we consider a sequence of coupon collections

{Cn} where the number of coupons to be collected n → ∞. For n ≥ 1, Cn requires the
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collection of n coupons, labeled 1 through to n to collect. Coupons are collected as

follows. Let Xn
1 ,Xn

2 , . . . be independent and identically distributed according to Xn,

where

P(Xn = i) =







pni i = 1, 2, . . . , n,

0 otherwise,

where
∑n

i=1 pni ≤ 1 and min1≤i≤n pni > 0. Then Xn
k is the kth coupon drawn from

the population (of coupons) and the process is continued until all n coupons have been

collected. Let Yn denote the total number of coupons which need to be collected to

obtain the full set of coupons in Cn.

Before stating the main result we introduce some useful notation. For n ≥ 1,

i = 1, 2 . . . , n and t = 1, 2, . . ., let χn
i (t) = 1 if coupon has not been collected in the first t

coupons drawn from the population and χn
i (t) = 0 otherwise. Let Wn(t) =

∑n
i=1 χn

i (t),

the total number of distinct coupons which still need to be collected after t coupon

draws. Thus for t ≥ 1, Yn ≤ t if and only if Wn(t) = 0.

Theorem 2.1. Suppose that there exists sequences {bn} and {kn} such that kn/bn → 0

as n → ∞ and that for y ∈ R,

n
∑

i=1

exp(−pni{bn + ykn}) → g(y) as n → ∞, (2.1)

for a non-increasing function g(·) with g(y) → ∞ as y → −∞ and g(y) → 0 as y → 0.

Then if Ỹn = (Yn − bn)/kn,

Ỹn
D
−→ Y as n → ∞,

where Y has cumulative distribution function

P(Y ≤ y) = exp(−g(y)) (y ∈ R).

The key restriction in Theorem 2.1 is that (2.1), implies that min1≤i≤n pnibn → ∞

as n → ∞. This condition is needed for the Poisson limit (2.3) below since it implies

that max1≤i≤n E[χn
i ([bn + ykn])] → 0 as n → ∞. In Theorem 2.2 we explore the case

where min1≤i≤n pnibn → c as n → ∞, for some 0 < c < ∞. By Jensen’s inequality,

n
∑

i=1

exp(−pnibn) ≥
n

∑

i=1

exp

(

−
1

n
bn

)

= n exp

(

−
bn

n

)

. (2.2)
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Therefore bn ≥ n log n and this will be used in Lemma 2.2. The only restriction placed

upon the sequence {Xn} is (2.1). Discussion of a natural construction of suitable

sequences {Xn} is deferred to Section 3.

The proof of theorem 2.1 relies upon two preliminary lemmas which are motivated

and proved in the following discussion.

Since for t ≥ 1, Yn ≤ t if and only Wn(t) = 0, it suffices to show that for all y ∈ R,

Wn([bn + ykn])
D
−→ Po(g(y)) (y ∈ R). (2.3)

The first step in proving (2.3) is to show that for any t ∈ N, {χn
i (t)} are negatively

related, [1], page 24. For n, t ≥ 1 and 1 ≤ j ≤ n, let {θn
i,j(t); i = 1, 2, . . . , n} be random

variables satisfying

L(θn
i,j(t); i = 1, 2, . . . , n) = L(χn

i (t); i = 1, 2, . . . , n|χn
j (t) = 1).

Lemma 2.1. For n, t ≥ 1, the random variables {χn
i (t)} are negatively related, i.e. for

each 1 ≤ j ≤ n, the random variables {θn
i,j(t); i = 1, 2, . . . , n} and {χn

i (t); i = 1, 2, . . . , n}

can be defined on a common probability space (Ω,F , P ) such that, for all i 6= j,

χn
i (t)(ω) ≥ θn

i,j(t)(ω) for all ω ∈ Ω.

Proof. The lemma is proved by a simple coupling argument.

Fix n, t ≥ 1 and j = 1, 2, . . . , n. Draw Xn
1 ,Xn

2 , . . . ,Xn
t from Xn. For k = 1, 2, . . . , t,

let X̃n
k (t)

D
= Xn

k |χ
n
j (t) = 1. For k = 1, 2, . . . , t, if Xn

k 6= j, set X̃n
k (t) = Xn

k . If Xn
k = j,

set X̃n
k (t) = X̂n

k , where

P(X̂n
k = i) =







pni

1−pnj
i 6= j

0 otherwise.

Thus X̃n
1 (t), X̃n

2 (t), . . . , X̃n
t (t) have the correct distribution and by construction χn

i (t) ≥

θn
i,j(t) for i 6= j.

Note that

E[Wn([bn + ykn])] =

n
∑

i=1

(1 − pni)
[bn+ykn]

→ g(y) as n → ∞.

Therefore by Lemma 2.1 and [1], Corollary 2.C.2, (2.3) holds if

var(Wn([bn + ykn]) → g(y) as n → ∞. (2.4)
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Now var(Wn([bn + ykn]) is equal to

n
∑

i=1

var(χn
i ([bn + ykn])) +

n
∑

i=1

∑

j 6=i

cov(χn
i ([bn + ykn]), χn

j ([bn + ykn])). (2.5)

Equation (2.1) ensures that

n
∑

i=1

exp(−pni[bn + ykn])2 → 0 as n → ∞.

Therefore by (2.1), the first term in (2.5) converges to g(y) as n → ∞. Thus (2.4)

holds if the latter term in (2.5) converges to 0 as n → ∞.

Lemma 2.2.

n
∑

i=1

∑

j 6=i

|cov(χn
i ([bn + ykn]), χn

j ([bn + ykn]))| → 0 as n → ∞.

Proof. For any i 6= j,

|cov(χn
i ([bn + ykn]), χn

j ([bn + ykn]))|

=
∣

∣

∣
(1 − pni − pnj)

[bn+ykn] − (1 − pni)
[bn+ykn](1 − pnj)

[bn+ykn]
∣

∣

∣

= (1 − pni)
[bn+ykn](1 − pnj)

[bn+ykn]

∣

∣

∣

∣

∣

(

1 −
pnipnj

(1 − pni)(1 − pnj)

)[bn+ykn]

− 1

∣

∣

∣

∣

∣

≤ (1 − pni)
[bn log n+yn](1 − pnj)

[bn+ykn] ×
[bn + ykn]pnipnj

(1 − pni)(1 − pnj)
,

with the inequality coming from |1 − (1 − y)m| ≤ my for 0 ≤ y ≤ 1 and m ∈ N.

Therefore
n

∑

i=1

∑

j 6=i

|cov(χn
i ([bn + ykn]), χn

j ([bn + ykn]))|

≤

{

√

[bn + ykn]

n
∑

i=1

pni

1 − pni
(1 − pni)

[bn+ykn]

}2

. (2.6)

Let An = {i; pni ≤ b
−3/4
n }. Then

√

[bn + ykn]

n
∑

i=1

pni

1 − pni
(1 − pni)

[bn+ykn]

=
√

[bn + ykn]
∑

i∈An

pni

1 − pni
(1 − pni)

[bn+ykn] +
√

[bn + ykn]
∑

i∈AC
n

pni

1 − pni
(1 − pni)

[bn+ykn]

≤
b
−3/4
n

√

[bn + ykn]

1 − b
−3/4
n

n
∑

i=1

(1 − pni)
[bn+ykn] +

√

[bn + ykn]
∑

i∈AC
n

(1 − b−3/4
n )[bn+ykn]−1

→ 0 as n → ∞,
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since
∑n

i=1(1 − pni)
[bn+ykn] → g(y) and bn ≥ n log n as n → ∞. Therefore the right-

hand side of (2.6) converges to 0 as n → ∞ and the lemma is proved.

Proof of Theorem 2.1. For any y ∈ R, Ỹn ≤ y if and only if Wn([bn + ykn]) = 0.

Therefore by (2.3), for y ∈ R,

P(Ỹn ≤ y) = P(Wn([bn + ykn]) = 0)

→ exp(−g(y)) = P(Y ≤ y) as n → ∞,

and the theorem is proved.

The proof of theorem 2.1 presents a straightforward bound for |P(Ỹn ≤ y)− P(Y ≤

y)| (y ∈ R). For t ≥ 0, let Z(t) ∼ Po(t) and for y ∈ R, let gn(y) = E[Wn([bn + ykn])].

By the triangle inequality and [1], Corollary 2.C.2,

|P(Ỹn ≤ y) − P(Y ≤ y)|

= |P(Wn([bn + ykn]) = 0) − P(Z(g(y)) = 0)|

≤ |P(Wn([bn + ykn]) = 0) − P(Z(gn(y)) = 0)| + |P(Z(gn(y)) = 0) − P(Z(g(y)) = 0)|

≤
(

1 − e−gn(y)
)

(

1 −
var(Wn([bn + ykn]))

gn(y)

)

+
∣

∣

∣
e−gn(y) − e−g(y)

∣

∣

∣
.

We now turn our attention to the situation where the natural scaling {bn} is such

that min1≤i≤n pnibn → c as n → ∞, for some 0 < c < ∞.

Theorem 2.2. Suppose that there exists sequences {bn} such that for y ∈ R
+,

n
∑

i=1

exp(−pniybn) → g(y) as n → ∞, (2.7)

for a non-increasing function g(·) with g(y) → ∞ as y → 0 and g(y) → 0 as y → ∞.

Suppose that there exists a function h(·) such that for all y ∈ R
+,

n
∏

i=1

(1 − exp(−pniybn)) → h(y) as n → ∞. (2.8)

Then (2.7) ensures that h(y) → 0 as y → 0 and h(y) → 1 as y → ∞, and if

Ŷn = Yn/bn,

Ŷn
D
−→ Y as n → ∞,

where Y has cumulative distribution function

P(Y ≤ y) = h(y) (y ∈ R
+).
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Proof. The proof has a number of similarities and differences to the proof of theorem

2.1. We shall again exploit that Yn ≤ t if and only Wn(t) = 0.

Let ηn
∗ be a homogeneous Poisson point process with rate 1 and let Tn(t) denote

the time of the [tbn]th point on ηn
∗ . Let V n

1 , V n
2 , . . . be independent and identically

distributed according to Xn. Let ηn
1 , ηn

2 , . . . , ηn
n be independent homogeneous Poisson

point processes with rates pn1, pn2, . . . , pnn, respectively, constructed from ηn
∗ and

V n
1 , V n

2 , . . . as follows. For k = 1, 2, . . ., let sn
k denote the time of the kth point on ηn

∗

then there is a point on ηn
j at time sn

k if V n
k = j. Furthermore, χn

1 (t), χn
2 (t), . . . , χn

n(t),

and hence, Wn(t) can be constructed using V n
1 , V n

2 , . . . , V n
t .

Let ψn
i (t) = 1 if there is no point on ηn

i [0, t] and note that {ψn
i (t)}’s are independent.

For t ≥ 0, let W̃n(t) =
∑n

i=1 ψn
i (t). Then Wn([ybn]) = W̃n(Tn([ybn])). Since W̃n(·) is

non-decreasing, if [ybn] − ([ybn])3/4 ≤ Tn([ybn]) ≤ [ybn] + ([ybn])3/4 then

W̃n([ybn] + ([ybn])3/4) ≤ Wn([ybn]) ≤ W̃n([ybn] − ([ybn])3/4). (2.9)

Since 1
(ybn)3/4

(Tn([ybn])−[ybn])
p

−→ 0 as n → ∞, it follows from (2.9) that P(Wn([ybn]) =

0) → h(y) if

P(W̃n([ybn] ± ([ybn])3/4) = 0) → h(y) as n → ∞.

By independence, for all y ∈ R,

P(W̃n([ybn] ± ([ybn])3/4) = 0) =

n
∏

i=1

(

1 − (1 − pni)
([ybn]±([ybn])3/4)

)

→ h(y) as n → ∞.

The main benefit of Theorem 2.1 over Theorem 2.2 is that g(y) is usually much

easier to calculate than h(y).

3. Examples

A natural construction of {Xn} is to take a (continuous) distribution X with

probability density function f(·) on [0, 1] and for n = 1, 2, . . . and i = 1, 2, . . . , n,

set

pni =

∫ i/n

(i−1)/n

f(x) dx. (3.1)
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A number of results can be proved concerning various choices of X with Lemma 3.1

illustrating the point using a class of distributions with f(·) being continuous.

Lemma 3.1. Let 0 ≤ σ ≤ 1 be such that for all 0 ≤ x ≤ 1 and x 6= σ, 0 < f(σ) < f(x).

For p = 1, 2, let

up = lim
ǫ→0+

f(σ + ǫ) − f(σ)

ǫp

lp = lim
ǫ→0−

f(σ + ǫ) − f(σ)

|ǫ|p
.

(i) Suppose that 1{σ>0}l1 + 1{σ<1}u1 > 0. Then bn = n
f(σ) (log n− log(log n)) and

kn = n with

g(y) = f(σ)

(

1{σ>0}

l1
+

1{σ<1}

u1

)

exp(−f(σ)y).

(ii) Suppose that 1{σ>0}l1 + 1{σ<1}u1 = 0 and 1{σ>0}l2 + 1{σ<1}u2 > 0. Then

bn = n
f(σ)

(

log n − 1
2 log(log n)

)

and kn = n with

g(y) =

√

πf(σ)

2

(

√

1{σ>0}

l2
+

√

1{σ<1}

u2

)

exp(−f(σ)y).

Proof. We outline the proof of (i) with (ii) being proved similarly.

Let bn = n
f(σ) (log n − log(log n)) and kn = n. Note that

n
∑

i=1

exp(−pni(bn + ykn)) ≈

n
∑

i=1

exp

(

−(bn + ykn)
1

n
f

(

i − 1/2

n

))

= n
n

∑

i=1

1

n
exp

(

−

(

bn

n
+ y

)

f

(

i − 1/2

n

))

≈ n

∫ 1

0

exp

(

−

(

bn

n
+ y

)

f (x)

)

dx.

Therefore it is straightforward to show that

g(y) = lim
n→∞

n

∫ 1

0

exp

(

−

(

1

f(σ)
(log n − log(log n)) + y

)

f(x)

)

dx.

Linearizing f(x) about σ and considering the left and right hand limits separately

yields the result.
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Examples of probability density functions on [0, 1] satisfying Lemma 3.1 include

f(x) = 2
3 (1 + x), f(x) = 6

5 (1 − x(1 − x)) and f(x) = 12
7 max(1 − x, x/2).

Suppose instead that X is piecewise constant with for 1 ≤ j ≤ k,

f(x) = λj (πj−1 < x ≤ πj)

where λ1, λ2, . . . , λk > 0 and 0 = π0 < π1 < . . . < πk = 1. Without loss of

generality assume that λ1 < λ2 < . . . < λk. Then bn = 1
λ1

n log n, kn = n and

g(y) = π1 exp(−λ1y).

In the above examples kn/bn → 0 and Theorem 2.1 holds. In all cases, the limiting

distribution Y is a Gumbel distribution with bn/n log n → 1/min0≤x≤1 f(x) as n → ∞.

An example of where Theorem 2.2 is necessary is f(x) = 2x (0 ≤ x ≤ 1) giving

pni = 2i−1
n2 (i = 1, 2, . . . , n). Then for y ∈ R

+,

n
∑

i=1

exp(−pniyn2) =
n

∑

i=1

exp(−(2i − 1)y) → g(y) =
ey

e2y − 1
as n → ∞,

and theorem 2.2 holds with bn = n2 and h(y) = limn→∞

∏n
i=1(1 − exp(−(2i − 1)y)).

4. Extensions

The methodology outlined in Section 2 can be extended to find the total number

of coupons, Y K
n , which need to be collected in order to have (at least) K coupons

of each type. In this case, simply let χn
i (t) = 1 if at most K − 1 coupons of type i

have been collected in the first t draws from the population and χn
i (t) = 0 otherwise.

Then set WK
n (t) =

∑n
i=1 χn

i (t) and note that Y K
n ≤ t if and only if WK

n (t) = 0. It is

straightforward to adapt Lemmas 2.1 and 2.2 to this case and consequently, Theorem

2.1 holds with (2.1) replaced by

bK−1
n

(K − 1)!

n
∑

i=1

pK−1
ni exp (−pni{bn + ykn}) → g(y) as n → ∞. (4.1)

Since kn/bn → 0 implies that min1≤i≤n bnpni → ∞ as n → ∞, (4.1) holds if and only

if E[WK
n ([bn + ykn])] → g(y) as n → ∞. Theorem 2.2 can also be adapted to the

K-coupon collector problem.

At the other end of the spectrum, the Poisson arguments above can be applied to the

generalized birthday problem. That is, for K ≥ 2, let UK
n denote the total number of
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draws from the population that are required to obtain K coupons of any (unspecified)

type. Let χ̃n
i (t) = 1 if at least K coupons of type i have been collected in the first t

draws from the population and χ̃n
i (t) = 0 otherwise. Then if W̃K

n (t) =
∑n

i=1 χ̃n
i (t),

UK
n > t if and only if W̃K

n (t) = 0. Along the lines of Lemma 2.1 it can be shown that

{χ̃n
i (t)} are negatively related and straightforward bounds for the covariance terms can

be obtained. We then have the following theorem.

Theorem 4.1. For fixed K ≥ 2, suppose that there exists a sequence {ln} such that

lKn

n
∑

i=1

pK
ni → 1, (4.2)

and max1≤i≤n lnpni → 0 as n → ∞. Then

UK
n /ln

D
−→ UK as n → ∞,

where UK has cumulative distribution function

P(UK ≤ u) = 1 − exp(−uK) (u ∈ R
+).

Proof. The conditions imposed on {ln} are sufficient for WK
n ([uln])

D
−→ Po(uK)

from which the theorem follows immediately.

The limiting distribution UK obtained in Theorem 4.1 is identical to that obtained

in [4], Theorem 5.2, for the random birthday problem. For the case K = 2, Theorem

4.1 follows immediately from [2], Example 2, since given (4.2), max1≤i≤n lnpni → 0 if

and only if l3n
∑n

i=1 p3
ni → 0 as n → ∞.

Finally, it is worth noting that for the establishing of Poisson limits for WK
n ([bn +

ykn]) and W̃K
n ([uln]) it is crucial that max1≤i≤n E[χn

i ([bn + ykn])] → 0 and

max1≤i≤n E[χ̃n
i ([uln])] → 0 as n → ∞, respectively. That is, for the K-coupon collector

problem we require that min1≤i≤n bnpni → ∞ as n → ∞ (none of the probabilities

are too small) and for the K-birthday problem we require that max1≤i≤n lnpni → 0 as

n → ∞ (none of the probabilities are too large).
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