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Abstract

We prove that any quasirandom dense large graph in which all degrees are equal and even can
be decomposed into any given collection of two-factors (2-regular spanning subgraphs). A special
case of this result gives a new solution to the Oberwolfach problem.

1 Introduction

At meals in the Oberwolfach Mathematical Institute, the participants are seated at circular tables.
At an Oberwolfach meeting in 1967, Ringel (see [17]) asked whether there must exist a sequence of
seating plans so that every pair of participants sit next to each other exactly once. We assume, of
course, that there are an odd number of participants, as each participant sits next to two others in
each meal. The tables may have various sizes, which we assume are the same at each meal.

Oberwolfach Problem (Ringel). Let F be any two-factor (i.e. 2-regular graph) on n vertices,
where n is odd. Can the complete graph Kn be decomposed into copies of F?

We obtain a new solution of this problem for large n, with a theorem that is more general in
three respects: (a) we can decompose any dense quasirandom graph that is regular of even degree
(not just Kn for n odd), (b) we can decompose into any prescribed collection of two-factors (not just
copies of some fixed two-factor F ), (c) our theorem applies to directed graphs (digraphs).

We start by stating our result for undirected graphs. We require the following quasirandomness
definition. We say that a graph G on n vertices is (ε, t)-typical if every set S of at most t vertices

has ((1± ε)d(G))|S|n common neighbours, where d(G) = e(G)
(
n
2

)−1
is the density of G.

Theorem 1.1. For all α > 0 there exist t, ε, n0 such that any (ε, t)-typical graph on n ≥ n0 vertices
that is 2r-regular for some integer r > αn can be decomposed into any family of r two-factors.

Theorem 1.1 implies some variant forms of the Oberwolfach problem that have appeared in the
literature, such as the Hamilton–Waterloo Problem (two types of two-factors), or that if n is even
then Kn can be decomposed into a perfect matching and any specified collection of n/2 − 1 two-
factors. More generally, with parameters as in Theorem 1.1, it is easy to deduce that any (ε, t)-typical
graph on n ≥ n0 vertices that is (2r + 1)-regular for some integer r > αn can be decomposed into a
perfect matching and any family of r two-factors.
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We will deduce Theorem 1.1 from the directed version below. First we extend our definitions to
digraphs. We say that a digraph G on n vertices is (ε, t)-typical if for every set S = S− ∪ S+ of at
most t vertices there are ((1± ε)d(G))|S|n vertices which are both common inneighbours of S− and

outneighbours of S+, where d(G) = e(G)
(
n
2

)−1
is the density of G. We say that G is r-regular if

d+G(v) = d−G(v) = r for all v ∈ V (G). A one-factor is a 1-regular digraph; equivalently, it is a union
of vertex-disjoint oriented cycles.

Theorem 1.2. For all α > 0 there exist t, ε, n0 such that any (ε, t)-typical digraph on n ≥ n0 vertices
that is r-regular for some integer r > αn can be decomposed into any family of r one-factors.

Theorem 1.1 follows from Theorem 1.2 and the observation that for any typical graph that is
regular of even degree there exists an orientation which is a regular typical digraph. To see this,
one can orient edges independently at random and make a few modifications to obtain the required
orientation. (See Lemma 9.1 below for a similar argument.)

While we were preparing this paper, the Oberwolfach problem (for large n) was solved by Glock,
Joos, Kim, Kühn and Osthus [9]. They also obtained a more general result that covers the other
undirected applications just mentioned, but our result is more general than theirs in the three respects
mentioned above: (a) we can decompose any dense typical regular graph (whereas their result only
applies to almost complete graphs), (b) we can decompose into any collection of two-factors (whereas
they can allow for a collection of two-factors provided that some fixed F occurs Ω(n) times), (c) our
result also applies to digraphs (whereas theirs is for undirected graphs).

There is a large literature on the Oberwolfach Problem, of which we mention just a few highlights
(a more detailed history is given in [9]). The problem was solved for infinitely many n by Bryant and
Scharaschkin [6], in the case when F consists of two cycles by Traetta [20], and for cycles of equal
length by Alspach, Schellenberg, Stinson and Wagner [3]. A related conjecture of Alspach that Kn

can be decomposed into any collection of cycles each of length ≤ n and total size
(
n
2

)
was solved by

Bryant, Horsley and Pettersson [5].

There are several recent general results on approximate decompositions that imply an approxi-
mate solution to the generalised Oberwolfach Problem, i.e. that any given collection of two-factors
can be embedded in a quasirandom graph provided that a small fraction of the edges can be left
uncovered: we refer to the papers of Allen, Böttcher, Hladký and Piguet [1], Ferber, Lee and Mousset
[8] and Kim, Kühn, Osthus and Tyomkyn [15].

Notation.

Given a graph G = (V,E), when the underlying vertex set V is clear, we will also write G for
the set of edges. So |G| is the number of edges of G. Usually |V | = n. The edge density d(G) of
G is |G|/

(
n
2

)
. We write NG(x) for the neighbourhood of a vertex x in G. The degree of x in G is

dG(x) = |NG(x)|. For A ⊆ V (G), we write NG(A) :=
⋂
x∈ANG(x); note that this is the common

neighbourhood of all vertices in A, not the neighbourhood of A.

In a directed graph J with x ∈ V (J), we write N+
J (x) for the set of out-neighbours of x in G

and N−G (x) for the set of in-neighbours. We let d±G(A) := |N±G (A)|. We define common out/in-
neighbourhoods N±J (A) =

⋂
x∈AN

±
J (A).

We say G is (ε, t)-typical if dG(S) = ((1± ε)d(G))|S|n for all S ⊆ V (G) with |S| ≤ t.
We say that an event E holds with high probability (whp) if P(E) > 1− exp(−nc) for some c > 0

and n > n0(c). We note that by a union bound for any fixed collection E of such events with |E| of
polynomial growth whp all E ∈ E hold simultaneously.

We omit floor and ceiling signs for clarity of exposition.
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We write a� b to mean ∀ b > 0 ∃ a0 > 0 ∀ 0 < a < a0.

We write a± b for an unspecified number in [a− b, a+ b].

Throughout the vertex set V will come with a cyclic order, which we usually identify with the
natural cyclic order on [n] = {1, . . . , n}. For any x ∈ V we write x+ for the successor of x, so if
x ∈ [n] then x+ is x+ 1 if x 6= n or 1 if x = n. We define the predecessor x− similarly. Given x, y in
[n] we write d(x, y) for their cyclic distance, i.e. d(x, y) = min{|x− y|, n− |x− y|}.

2 Overview of the proof

We will illustrate the ideas of our proof by starting with a special case and becoming gradually more
general. Suppose first that we wish to decompose a typical dense (undirected) 2r-regular graph G on
n vertices into r triangle-factors (i.e. two-factors in which each cycle is a triangle – we require 3 | n
for this question to make sense). The existence of such a decomposition (also known as a resolvable
triangle-decomposition of G) follows from a recent result of the first author [12] generalising the
existence of designs (see [11]) to many other ‘design-like’ problems. The proof in [12] goes via the
following auxiliary decomposition problem, which also plays an important role in this paper.

Let J be an auxiliary graph with V (J) partitioned as V ∪W , where V = V (G) and |W | = r. Let
J [V ] = G, J [V,W ] = V ×W and J [W ] = ∅. Note that a decomposition of G into triangle-factors
is equivalent to a decomposition of J into copies of K4 each having 3 vertices in V and 1 vertex
in W . Indeed, given such a decomposition of J , for each w ∈ W we define a triangle-factor of G
by removing w from all copies of K4 containing w in the decomposition; clearly every edge of G
appears in exactly one of these triangle-factors. Conversely, any decomposition of G into triangle-
factors can be converted into a suitable K4-decomposition of J by adding each w ∈W to one of the
triangle-factors (according to an arbitrary matching).

The auxiliary construction described above is quite flexible, so a similar argument covers many
other cases of our problem. For example, decomposing G into C`-factors (two-factors in which each
cycle has length `) is equivalent to decomposing J into ‘wheels’ W` with ‘rim’ in V and ‘hub’ in W .
(We obtain W` from C`, which is called the rim, by adding a new vertex, called the hub, joined to
every other vertex, by edges that we call spokes.) Such a decomposition exists by [12].

We can encode our generalised Oberwolfach Problem in full generality by introducing colours on
the edges. For each possible cycle length ` we introduce a colour, which we also call `. For each
w ∈ W , we denote its corresponding factor by Fw, and suppose that it has nw` cycles of length `
(where

∑
` `n

w
` = n). We colour J so that each w ∈ W is incident to exactly nw` edges of colour

`, and all other edges are uncoloured. We colour each W` so that exactly one spoke has colour `
and all other edges are uncoloured. Then a decomposition of G into {Fw : w ∈ W} is equivalent
to a decomposition of J into wheels with this colouring with rim in V and hub in W . Note that
this equivalence does not depend on which edges of J we colour, but to apply [12] we will require
the colouring to be suitably quasirandom. Another important constraint in applying [12] is that the
number of colours and the size of the wheels should be bounded by an absolute constant. Thus our
generalised Oberwolfach Problem can only be solved by direct reduction to [12] in the case that all
factors have all cycle lengths bounded by some absolute constant.

This now brings us to the crucial issue for this paper: how can we encode two-factors with cycles
of arbitrary length by an auxiliary construction to which [12] applies? Before describing this, we
pass to an auxiliary problem of decomposing a subgraph G′ of G into graphs (Gw : w ∈ W ), where
each Gw is a vertex-disjoint union of paths with prescribed endpoints, lengths and vertex set. More
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xwi ywi(ywi )
−

`wi /8

J

xwi ywi

path length `wi G

precisely, for each w ∈W we are given specified lengths (`wi : i ∈ Iw), vertex-pairs ((xwi , y
w
i ) : i ∈ Iw),

a forbidden set Zw, and we want each Gw to be a union of vertex-disjoint xwi y
w
i -paths of length `wi

for each i ∈ Iw with V (Gw) = V (G) \ Zw. We will arrive at this problem having embedded some
subgraphs F ′w ⊆ Fw of each w ∈ W , so the prescribed endpoints will be endpoints of paths in F ′w
that need to be connected up to form cycles, and Zw will consist of all vertices of degree 2 in F ′w.
We assume that all lengths `wi are divisible by 8 (which is easy to ensure for long cycles).

We will translate the above path factor problem into an equivalent problem of decomposing a
certain auxiliary two-coloured directed graph J , with V (J) = V ∪W as in the previous construction.
We call the two colours ‘0’ (which means ‘uncoloured’) and ‘K’ (which means ‘special’). Again,
J [W ] = ∅. For now we defer discussion of J [V,W ] and describe the arcs of J [V ], which are in
bijection with the edges of G. For colour 0 this bijection simply corresponds to a choice of orientation
for edges, but for colour K we employ the following ‘twisting’ construction. We fix throughout a
cyclic order of V , and require that each arc −→xy of colour K in J comes from an edge xy+ of G, where
y+ denotes the successor of y in the cyclic order.

Consider any directed 8-cycle C in J with vertex sequence x1 . . . x8, such that all arcs have
colour 0 except that −−→x7x8 has colour K. The edges in G corresponding to C form a path with vertex
sequence x8x1 . . . x7x

+
8 . Now suppose we have a family of such cycles C = (Ci : i ∈ I) where each

Ci has vertex sequence xi1 . . . x
i
8. Call C compatible if (i) its cycles are mutually vertex-disjoint,

and (ii) if any (xi8)
+ is used by a cycle in C then it is some xj8. Suppose C is compatible and let

([xj , yj ] : j ∈ J) denote the family of maximal cyclic intervals contained in {xi8 : i ∈ I}. Then
the edges of G corresponding to the cycles of C form a family of vertex-disjoint paths (Pj : j ∈ J),
where each Pj is an xjy

+
j -path whose vertex sequence is the concatenation of vertex sequences of the

8-paths as described above for each cycle of C using a vertex of [xj , yj ].

The above construction allows us to pass from the path factor problem to finding certain edge-
disjoint compatible cycle families in J . In order for our path factor problem to obey the constraints
of this encoding we require the prescribed vertex-pairs for each w to define disjoint cyclic intervals
([xwi , (y

w
i )−] : i ∈ Iw) of lengths `wi /8 (and also that no successor ywi is contained in any of the other

intervals for w, where a successor of an interval is the successor of its largest member). We are thus
introducing extra constraints into the path factor problem that may affect up to n/8 vertices for
each w, but the flexibility on the remaining vertices will be sufficient.

Now we can complete the description of the auxiliary graph J and the decomposition problem
that encodes the compatible cycle family problem. We define J [V ] as above, and J [V,W ] so that all
arcs are directed towards W , each in-neighbourhood N−J (w) is obtained from V (G) \Zw by deleting
the interval successors {ywi : i ∈ Iw}, all arcs −→xw with x in an interval [xwi , (y

w
i )−] are coloured K, and
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all other arcs of J [V,W ] are coloured 0. Finally, the compatible cycle family problem is equivalent to

decomposing J into coloured directed wheels
−→
WK

8 , obtained from W8 by directing the rim cyclically,
directing all spokes towards the hub w, giving colour K to one rim edge −→xy and one spoke −→yw, and
colouring the other edges by 0. The deduction from [12] of the existence of wheel decompositions is
given in section 3.

We now describe the strategy for the proof of Theorem 1.2. The goal is to embed some parts of
our two-factors so that the remaining problem is of one of two special types that has an encoding

suitable for applying [12], either a path factor problem encoded as
−→
WK

8 -decomposition or a C`-factor

problem encoded as
−→
W`-decomposition (obtained from the coloured wheel W` discussed above for

C`-factors by introducing directions as in
−→
WK

8 , which are not necessary but convenient for giving a
unified analysis). We call a factor ‘long’ if it has at least n/2 vertices in cycles of length at least K
(as well as denoting the special colour, K is also used as a large constant length threshold, above
which we treat cycles using the special twisting encoding as above). We call the other factors ‘short’.

We start by reducing to the case that all factors are long or all factors are short. To do so, suppose
first that there are Ω(n) long factors and Ω(n) short factors. Then we can randomly partition G
into typical graphs GL and GS , each of which is regular of the correct degree (twice the number of
long factors for GL and twice the number of short factors for GS). If there are o(n) factors of either
type then these can be embedded one-by-one (by the blow-up lemma [16]), and then the remaining
problem still satisfies the conditions of Theorem 1.2 (with slightly weaker typicality). The short
factor problem can be further reduced to the case that there is some length `∗ such that each factor
has Ω(n) cycles of length `∗. Indeed, we can divide the factors into a constant number of groups
according to some choice of cycle length that appears Ω(n) times in each factor of the group. Any
group of o(n) factors can be embedded greedily, so after taking a suitable random partition, it suffices
to show that the remaining groups can each be embedded in a graph that is typical and regular of
the correct degree.

Thus we can assume that we are in one of the following cases. Case K: all factors are long, our

goal is to reduce to
−→
WK

8 -decomposition. Case `∗: all factors have Ω(n) cycles of length `∗, our goal is

to reduce to
−→
W`∗-decomposition. In any case, the reduction is achieved by applying an approximate

decomposition result in a suitable random subgraph, in which we embed a subgraph of each of our
factors. At this step, in Case `∗ we embed all cycles of length 6= `∗, and in Case K we embed all
short cycles and some parts of the long cycles as needed to reduce to a suitable path factor problem.

This approximate decomposition result is superficially similar to the maximum degree 2 case of
the blow-up lemma for approximate decompositions due to Kim, Kühn, Osthus and Tyomkyn [15].
However, it does not suffice to use their result, as we require a decomposition that is compatible with

the conditions of our final decomposition problem (into
−→
WK

8 or
−→
W`∗), so the sets of vertices of the

partial factors embedded in this step must be suitably quasirandom and avoid the intervals needed
for Case K. Furthermore, we obtain the required approximate decomposition by similar arguments
to those for the exact decomposition, which does not add much extra work.

The technical heart of the paper is a randomised algorithm (presented in section 4), which gives
a unified treatment of the cases described above. It simultaneously (a) partitions almost all of G into
two graphs G1 and G2, and (b) sets up auxiliary digraphs J1 and J2 such that (i) an approximate
wheel decomposition of J2 gives an approximate decomposition ofG2 into the partial factors described
above, and (ii) the graph G′1 of edges that are unused by the approximate decomposition has an
auxiliary digraph that is a sufficiently small perturbation of J1 that it can still be used for the
exact decomposition step. The analysis of the algorithm falls naturally into two parts: the choice
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of intervals (section 5), then regularity properties of an auxiliary hypergraph defined by wheels
(section 6). The results of this analysis are applied to show the existence of the various partial factor
decompositions discussed above: the approximate step is in section 7 and the exact step in section
8. Section 9 combines all the ingredients prepared in the previous sections to produce the proof of
our main theorem. The final section contains some concluding remarks.

Case K Case `∗

F

F 2
w F 1

w

F ′w ⊆ F 2
w into G2G2
w

Rw into G1

paths into G′1

=
+

+

G2 G1

F 2
w F 1

w

F ′w ⊆ F 2
w into G2

Rw into G1

`∗-cycles into G′1

=

+

+

G2 G1

J2

Step 1. approximate embedding

Lemma 7.1

Step 2.

J1

Step 3. exact embedding

Theorem 3.1Theorem 3.2

Figure 1: An overview of the proof.
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3 Wheel decompositions

In this section we describe the results we need on wheel decompositions and how they follow from
[12]. We start by recalling the coloured wheels described in section 2.

For any c ≥ 3, the uncoloured c-wheel consists of a directed c-cycle (called the rim), another
vertex (called the hub), and an arc from each rim vertex to the hub. We obtain the coloured c-wheel−→
Wc by giving all arcs colour 0 except that one of the spokes has colour c. We obtain the special

c-wheel
−→
WK
c by giving all arcs colour 0 except that one rim edge −→xy and one spoke −→yw have colour

K. As discussed in section 2, we will only use
−→
WK
c with c = 8, but here we will consider the general

configuration so that the decomposition problems are quite similar. We start by stating the result

for
−→
Wc.

W8
−→
W8

−→
W

c

8

Theorem 3.1. Let n−1 � δ � ω � c−1 and h = 250c
3
. Let J = J0 ∪ Jc be a digraph with

arcs coloured 0 or c, with V (J) partitioned as (V,W ) where ωn ≤ |V |, |W | ≤ n. Then J has a−→
Wc-decomposition such that every hub lies in W if the following hold:

Divisibility: all arcs in J [V ] have colour 0, all arcs in J [V,W ] point towards W , d−J (v, V ) =
d+J (v, V ) = d+J (v,W ) for all v ∈ V , and d−J (w) = cd−Jc(w) for all w ∈W .

Regularity: each copy of
−→
Wc in J has a weight in [ωn1−c, ω−1n1−c] such that for any arc −→e there

is total weight 1± δ on wheels containing −→e .
Extendability: for all disjoint A,B ⊆ V and C ⊆W each of size ≤ h we have |N+

J0(A)∩N+
Jc(B)∩

W | ≥ ωn and |N+
J0(A) ∩N−

J0(B) ∩N−
Jc′ (C)| ≥ ωn for both c′ ∈ {0, c}.

Before stating our result on
−→
WK

8 -decompositions, we recall that V has a cyclic order, which we
can identify with the natural cyclic order on [n], and define the following separation properties.

Definition 3.2. For 1 ≤ x < y ≤ n the cyclic distance is d(x, y) = min{y − x, n + x − y}. We say
that S ⊆ [n] is d-separated if d(a, a′) ≥ d for all distinct a, a′ in S. For disjoint S, S′ ⊆ [n] we say
(S, S′) is d-separated if d(a, a′) ≥ d for all a ∈ S, a′ ∈ S′. For a (di)graph H whose vertex set is a
subset of [n] we say H is d-separated if V (H) is.

Now we state our result on
−→
WK

8 -decompositions. We note that it only concerns digraphs J such
that d(x, y) ≥ d for all −→xy ∈ J [V ], as this is implied by the regularity assumption. Our proof
of Theorem 1.2 will require us to only consider such J , so that we can satisfy the extendability
assumption.

Theorem 3.3. Let n−1 � δ � ω � c−1. Let h = 250c
3
and d � n. Let J = J0 ∪ JK be a digraph

with arcs coloured 0 or K, with V (J) partitioned as (V,W ) where ωn ≤ |V |, |W | ≤ n, such that all
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arcs in J [V,W ] point towards W and J [W ] = ∅. Then J has a
−→
WK
c -decomposition such that every

hub lies in W if the following hold:

Divisibility: d−J (w) = cd−
JK (w) for all w ∈ W , and for all v ∈ V we have d−J (v, V ) = d+J (v, V ) =

d+J (v,W ) and d−
JK (v, V ) = d+

JK (v,W ).

Regularity: each 3d-separated copy of
−→
WK
c in J has a weight in [ωn1−c, ω−1n1−c] such that for

any arc −→e there is total weight 1± δ on wheels containing −→e .
Extendability: for all disjoint A,B ⊆ V and L ⊆W each of size ≤ h, for any a, b, ` ∈ {0,K} we

have |N+
Ja(A) ∩N−

Jb(B) ∩N−
J`(L)| ≥ ωn, and furthermore, if (A,B) is 3d-separated then |N+

J0(A) ∩
N+
JK (B) ∩W | ≥ ωn.

For the remainder of this section we will explain how Theorem 3.3 follows from [12] (we omit the
similar and simpler details for Theorem 3.1). We follow the exposition in [13], which deduces from
[12] a general result on coloured directed designs that we will apply here.

3.1 The functional encoding

We encode any digraph J,H by a set of functions J,H, where for each arc
−→
ab ∈ J we include in J the

function (1 7→ a, 2 7→ b), i.e. the function f : [2] → V (J) with f(1) = a and f(2) = b (and similarly
for H,H). We will identify J with its characteristic vector, i.e. Jf = 1f∈J; if we want to emphasise
the vector interpretation we write J. If J has coloured arcs, and ` is a colour, we write J ` for the
digraph in colour `, which is encoded by J`.

We will consider decompositions by a coloured digraph H defined as follows. We start with
−→
WK
c

on the vertex set [c+ 1], where we label the rim cycle by [c] cyclically (so c+ 1 is the hub) so that,
writing c− = c − 1 and c+ = c + 1, −→c−c and −→cc+ have colour K and all other arcs have colour 0.
We let P be the partition ([c], {c+}) of [c+ 1]. We introduce new colours 0′ and K ′, and change the
colours of −→cc+ to K ′ and of the other spokes to 0′. We do this so that H is ‘(P, id)-canonical’ in
the sense of [13, Definition 7.1]; specialised to our setting, the relevant properties are that H is an
oriented graph (with no multiple edges or 2-cycles) and that for each colour all of its arcs have one
fixed pattern with respect to P (specifically, for colours 0 and K all arcs are contained in [c], and for
colours 0′ and K ′ all arcs are directed from [c] to {c+}).

Now we translate the H-decomposition problem for a digraph J into its functional encoding. We
will have a partition Q = (V,W ) of V (J), and wish to decompose J by copies φ(H) of H such that
φ([c]) ⊆ V and φ(c+) ∈W (i.e. wheels with hub in W ), and φ([c]) is 3d-separated (in which case we
will say that the graph φ(H) is 3d-separated). We think of the functional encoding J as living inside
a ‘labelled complex’ Φ of all possible partial embeddings of H: we define Φ = (ΦB : B ⊆ [c + 1]),
where each ΦB consists of all injections φ : B → V (J) such that φ(B ∩ [c]) ⊆ V , φ(B ∩ {c+}) ⊆ W
and Im(φ) is 3d-separated. The set of functional encodings of possible embeddings of H (if present
in J) is then

H(Φ) := {φH : φ ∈ Φ[c+1]}, where φH := {φ ◦ θ : θ ∈ H}.
The H-decomposition problem for J is equivalent to finding H ⊆ H(Φ) with

∑{H′ : H′ ∈ H} = J,
or equivalently

⋃H = J (where if J has multiple edges we consider a multiset union). We call such
H an H-decomposition in Φ.
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3.2 Regularity

Now we will describe the hypotheses of the theorem that will give us an H-decomposition in Φ.
We start with regularity, which is simply the functional encoding of the regularity assumption in
Theorem 3.3. Specifically, we say J is (H, δ, ω)-regular in Φ if there are weights yφ ∈ [ωn1−c, ω−1n1−c]
for each φ ∈ Φ[c+1] with φH ⊆ J such that

∑
φ yφφH = (1± δ)J.

3.3 Extendability

Next we consider extendability, which we discuss in a simplified setting that suffices for our purposes,
following [13, Definition 7.3]. The idea is that for any vertex x of H there should be many ways to
extend certain sets of partial embeddings of H − x to embeddings of H. Specifically, we say (Φ, J)
is (ω, h,H)-vertex-extendable if for any x ∈ [c+ 1] and disjoint Ai ⊆ V ∪W for i ∈ [c+ 1] \ {x} each
of size ≤ h such that (i 7→ vi : i ∈ [c + 1] \ {x}) ∈ Φ whenever each vi ∈ Ai, there are at least ωn
vertices v such that

i. (i 7→ vi : i ∈ [c+ 1]) ∈ Φ whenever vx = v and vi ∈ Ai for each i 6= x, and
ii. each J` with ` ∈ {0,K, 0′,K ′} contains all (1 7→ v1, 2 7→ v2) where for some θ ∈ H` we have

(v1 = v & v2 ∈ Aθ(2)) or (v2 = v & v1 ∈ Aθ(1)).
Note that by definition of Φ this only concerns maps φ such that Im(φ) is 3d-separated. To interpret
(ii) we consider 4 cases according to the position of x in the wheel.

x = c+ 1. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] of sizes ≤ h there are at least ωn vertices
v such that −→vcv ∈ JK′ for all vc ∈ Ac and −→viv ∈ J0′ for all vi ∈ Ai, i 6= c. Equivalently, for any
disjoint A,B ⊆ V with |A| ≤ h and |B| ≤ (c − 1)h such that (A,B) is 3d-separated we have
|N+

JK′ (A) ∩N+
J0′ (B)| ≥ ωn.

x = c. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c − 1] and Ac+1 ⊆ W of sizes ≤ h there are at
least ωn vertices v such that −−−→vvc+1 ∈ JK′ for all vc+1 ∈ Ac+1,

−−−→vc−1v ∈ JK for all vc−1 ∈ Ac−1,
and −→vv1 ∈ J0 for all v1 ∈ A1. Equivalently, for any disjoint A,B ⊆ V and C ⊆W of sizes ≤ h
such that (A,B) is 3d-separated we have |N+

JK (A) ∩N−
J0(B) ∩N−

JK′ (C)| ≥ ωn.

x = c− 1. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] \ {c− 1} and Ac+1 ⊆W of sizes ≤ h there
are at least ωn vertices v such that −−−→vvc+1 ∈ J0′ for all vc+1 ∈ Ac+1,

−→vvc ∈ JK for all vc ∈ Ac,
and −−−→vc−2v ∈ J0 for all vc−2 ∈ Ac−2. Equivalently, for any disjoint A,B ⊆ V and C ⊆ W of
sizes ≤ h such that (A,B) is 3d-separated we have |N−

JK (A) ∩N+
J0(B) ∩N−

J0′ (C)| ≥ ωn.

x ∈ [c− 2]. For any pairwise 3d-separated Ai ⊆ V , i ∈ [c] \ {x} and Ac+1 ⊆ W of sizes ≤ h
there are at least ωn vertices v such that −−−→vvc+1 ∈ J0′ for all vc+1 ∈ Ac+1,

−−−→vvx+1 ∈ J0 for
all vx+1 ∈ Ax+1, and −−−→vx−1v ∈ J0 for all vx−1 ∈ Ax−1, where A0 := Ac. Equivalently, for
any disjoint A,B ⊆ V and C ⊆ W of sizes ≤ h such that (A,B) is 3d-separated we have
|N−

J0(A) ∩N+
J0(B) ∩N−

J0′ (C)| ≥ ωn.

All of these conditions follow from the extendability assumption in Theorem 3.3 (after renaming
colours 0 and K in J [V,W ] as 0′ and K ′, and replacing h with (c− 1)h).

3.4 Divisibility

It remains to consider divisibility; we follow [13, Definition 7.2]. For integers s ≤ t we write Ist for
the set of injections from [s] to [t]. We identify V ∪W with [n′] for some n′. For 0 ≤ i ≤ 2, ψ ∈ Iin′ ,

9



θ ∈ Iic+1, we define index vectors in N2 describing types with respect to the partitions P or Q: we
write iP(θ) = (|Im(θ) ∩ [c]|, |Im(θ) ∩ {c+}|) and iQ(ψ) = (|Im(ψ) ∩ V |, |Im(ψ) ∩W |). For example,
for θ = (1 7→ c−, 2 7→ c) ∈ H we have iP(θ) = (2, 0). We define degree vectors H(θ)∗ and J(ψ)∗ in
NC×Ii2 by

H(θ)∗`π = |H`(θπ−1)| and J(ψ)∗`π = |J`(ψπ−1)|,
where e.g. H`(θπ−1) denotes the set of θ′ ∈ H` having θπ−1 as a restriction. Letting 〈·〉 denote the
integer span of a set of vectors, we say J is H-divisible in Φ if

J(ψ)∗ ∈ 〈H(θ)∗ : iP(θ) = iQ(ψ)〉 for all ψ ∈ Φ.

We refer to the divisibility conditions for index vectors (i1, i2) with i1 + i2 = j as j-divisibility
conditions, where we assume 0 ≤ j ≤ 2, as otherwise they are vacuous. We describe these conditions
concretely as follows.

2-divisibility. These conditions simply say that the arcs of J have the same types with respect
to Q as those of H do with respect to P, i.e. all arcs of J [V ] have colour 0 or K, all arcs of J [V,W ]
have colour 0′ or K ′, and J [W ] = ∅. To see this, consider any degree vector H(θ)∗ with θ ∈ I2c+1. We
write id = (1 7→ 1, 2 7→ 2) and (12) = (1 7→ 2, 2 7→ 1). For any ` ∈ C, π ∈ {id, (12)} we have H(θ)∗`π
equal to 1 if (`, π) is the pair such that θ ◦ π−1 ∈ H` (there is at most one such pair) or equal to 0
otherwise. For example, if θ = (1 7→ c, 2 7→ c−) then H(θ)∗`π is 1 if (`, π) = (K, (12)), otherwise 0.
Thus H〈(i1, i2)〉 := 〈H(θ)∗ : iP(θ) = (i1, i2)〉 consists of all integer vectors supported in coordinates
with colours in {0,K} if (i1, i2) = (2, 0) or {0′,K ′} if (i1, i2) = (1, 1), whereas H〈(0, 2)〉 only contains
the all-0 vector. Therefore, the 2-divisibility conditions say that J(ψ)∗ can be non-zero only at
coordinates with colours in {0,K} if iQ(ψ) = (2, 0) or {0′,K ′} if iQ(ψ) = (1, 1), and J(ψ)∗ = 0 if
iQ(ψ) = (0, 2), i.e. J has the same arc types with respect to Q as H with respect to P.

0-divisibility. Writing ∅ for the function with empty domain, all H(∅)∗`∅ = |H`| = |H`|, and

similarly for J , so the 0-divisibility condition is that for some integer m all |J `| = m|H`|. For our
specific H, this is equivalent to |J [V ]| = |J [V,W ]| = c|Jc[V ]| = c|Jc[V,W ]|.

1-divisibility. Given θ = (1 7→ a) ∈ I1c+1 and ` ∈ C = {0,K, 0′,K ′}, the two coordinates of H(θ)∗

corresponding to colour ` are the in/outdegrees of a in H`: we have H(θ)∗`id = |H(1 7→ a)| = d+
H`(a)

and H(θ)∗`(12) = |H(2 7→ a)| = d−
H`(a). Similarly, for ψ = (1 7→ v) ∈ I1n′ the coordinates of J(ψ)∗

corresponding to colour ` are d±
J`(v). We compute:

H(1 7→ a)∗ d+
H0(a) d−

H0(a) d+
HK (a) d−

HK (a) d+
H0′ (a) d−

H0′ (a) d+
HK′ (a) d−

HK′ (a)

a = c+ 0 0 0 0 0 c− 1 0 1
a = c 1 0 0 1 0 0 1 0
a = c− 0 1 1 0 1 0 0 0
a ∈ [c− 2] 1 1 0 0 1 0 0 0

so 〈H(1 7→ c+)∗〉 = {v ∈ Z8 : v1 = v2 = v3 = v4 = v5 = v7 = 0, v6 = (c− 1)v8}, and

〈H(1 7→ a)∗ : a ∈ [c]〉 = {v ∈ Z8 : v2 = v5, v4 = v7, v1 + v3 = v2 + v4, v6 = v8 = 0}.

For w ∈ W the 1-divisibility condition is J(1 7→ w)∗ ∈ 〈H(1 7→ c+)∗〉, i.e. d−
J0′ (w) = (c− 1)d−

JK′ (w),

or equivalently d−J (w) = cd−
JK′ (w). For v ∈ V the 1-divisibility condition is J(1 7→ v)∗ ∈ 〈H(1 7→

a)∗ : a ∈ [c]〉, which is equivalent to d−
JK (v) = d+

JK′ (v) and d+J (v, V ) = d−J (v, V ) = d+J (v,W ).

All of these divisibility conditions follow from the divisibility assumption in Theorem 3.3 (after
renaming colours 0 and K in J [V,W ] as 0′ and K ′). By the above discussion, Theorem 3.3 follows
from the following special case of [13, Theorem 7.4].
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Theorem 3.4. Let n−1 � δ � ω � c−1. Let h = 250c
3
and d � n. Let J be a digraph with

V (J) partitioned as (V,W ) where ωn ≤ |V |, |W | ≤ n, such that J [W ] = ∅, all arcs in J [V,W ] point
towards W , all arcs in J [V ] are coloured 0 or K and all arcs in J [V,W ] are coloured 0′ or K ′. Let
Φ = (ΦB : B ⊆ [c+ 1]), where ΦB consists of all injections φ : B → V (J) such that φ(B ∩ [c]) ⊆ V ,
φ(B ∩ {c+}) ⊆W and Im(φ) is 3d-separated. Suppose J is H-divisible in Φ and (H, δ, ω)-regular in
Φ and (Φ, J) is (ω, h,H)-vertex-extendable. Then J has an H-decomposition in Φ.

4 The algorithm

Suppose we are in the setting of Theorem 1.2: we are given a (ε, t)-typical αn-regular digraph G
on n vertices, where n−1 � ε � t−1 � α, and we need to decompose G into some given family
F of αn oriented one-factors on n vertices. In this section we present an algorithm that partitions
almost all of G into two digraphs G1 and G2, and each factor Fw into subfactors F 1

w and F 2
w, and

also sets up auxiliary digraphs J1 and J2, such that (i) an approximate wheel decomposition of
J2 gives an approximate decomposition of G2 into partial factors that are roughly {F 2

w}, (ii) given
the approximate decomposition of G2, we can set up (via a small additional greedy embedding) the
remaining problem to be finding an exact decomposition of a small perturbation G′1 of G1 into partial
factors that are roughly {F 1

w}, corresponding to a wheel decomposition of a small perturbation J ′1
of J1. For most of the section we will describe and motivate the algorithm; we then conclude with
the formal statement.

We fix additional parameters with hierarchy

n−1 � ε� t−1 � K−1 � d−1 � η � s−1 � L−1 � α. (1)

For convenient reference later, we also make some comments here regarding the roles of these addi-
tional parameters: η will be used to bound the number of vertices embedded greedily, we consider a
cycle ‘long’ if it has length at least K, and the cyclic intervals used to define the special colour K
will have sizes di = d/(2s)i−1 with i ∈ [2s + 1]. By the reductions in section 9.1, we will be able to
assume that we are in one of the following cases:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least K,

Case `∗ with `∗ ∈ [3, L]: each F ∈ F has ≥ L−3n cycles of length `∗.

We write F = (Fw : w ∈ W ), so |W | = αn. We partition each Fw as F 1
w ∪ F 2

w as follows. In
Case `∗ we let F 1

w consist of exactly L−3n cycles of length `∗ (and then F 2
w = Fw \ F 1

w). In Case K
we choose F 1

w with |F 1
w| − n/2 ∈ [0, 2K] to consist of some cycles of length at least K and at most

one path of length at least K. To see that this is possible, consider any induced subgraph F ′w of Fw
with |F ′w| = n/2 +K obtained by greedily adding cycles of length at least K until the size is at least
n/2 +K, and then deleting a (possibly empty) path from one cycle. Let P1 and P2 denote the two
paths of the (possibly) split cycle, where P1 ∈ F ′w. If |P1|, |P2| ≥ K we let F 1

w = F ′w. If |P1| < K we
let F 1

w = F ′w \ P1. If |P2| < K we let F 1
w = F ′w ∪ P2. In all cases, F 1

w is as required.

The algorithm is randomised, so we start by defining probability parameters. The graphs G1

and G2 are binomial random subdigraphs of G of sizes that are slightly less than one would expect
(we leave space for a greedy embedding that will occur between the approximate decomposition
step and the exact decomposition step). For each w ∈ W we let pgw = (1 − η)n−1|F gw| + n−.2 (so
1 − η ≤ p1w + p2w ≤ 1 − L−3η). We let pg = |W |−1∑w∈W pgw (so 1 − η ≤ p1 + p2 ≤ 1 − L−3η). For
each arc e of G independently we will let P(e ∈ Gg) = pg for g ∈ [2].

We introduce further probabilities corresponding to the cycle distributions of each F gw. For c < K
we write qgw,cn for the number of cycles of length c in F gw and let pgw,c = (1−η)qgw,c. We define pgw,K so
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that F gw has about 8pgw,Kn vertices not contained in cycles of length < K (for technical reasons, we

also ensure that each pgw,K ≥ n−.2, which explains the term n−.2 in the definition of pgw). Averaging
over W gives the corresponding probabilities that describe the uses of arcs in each Gg: we let
pgc = |W |−1∑w∈W pgw,c so that for each c < K, the number of edges in Gg allocated to cycles of
length c will be roughly

∑
w∈W cpgw,cn = |W |cpgcn = αcpgcn2 = cpgc |G|+O(n), and similarly, roughly

8pgK |G|+O(n) arcs in Gg will be allocated to long cycles.

The remainder of the algorithm is concerned with the auxiliary digraphs Jg. For any colour c, we
let Jcg denote the arcs of colour c in Jg. We also write J∗g = ∪c 6=KJcg . First we consider arcs within
Jg[V ]. Throughout the paper, we fix a cyclic order on V , which we choose uniformly at random.
For v ∈ V , let v+ denote the successor of v and v− denote the predecessor of V . Arcs of the special
colour K should correspond to 1/8 of the factor arcs that are not in short cycles, so should form
a graph of density about pgK . For each arc −→xy ∈ Gg not of the form −→zz+ (to avoid loops, we don’t
mind double edges) independently we assign −→xy to colour K with probability pgK/pg or colour 0 with
probability pg∗/pg (where pgK + pg∗ is slightly less than pg). If −→xy has colour K we add −→xy− to JKg .

Now we consider Jg[V,W ]. These arcs are all directed from V to W . For each w ∈W and cycle
length c < K, there should be about cpgw,cn vertices available for the c-cycles in F gw. The colouring

of
−→
Wc requires 1/c-fraction of these to be joined to w in colour c, so we should have N−Jc

g
(w) ≈ pgw,cn.

Similarly, there should be about 8pgw,Kn vertices available for vertices of F gw not in short cycles,

and the colouring of
−→
WK

8 requires 1/8 of these to be joined to w in colour c, so we should have
N−
JK
g

(w) ≈ pgw,Kn. These arcs are chosen randomly, not independently, but according to a random

collection of intervals, of sizes di = d/(2s)i−1 with i ∈ [2s + 1], where d is small enough that the
resulting graph is roughly typical, but large enough to give a good upper bound on the number of
vertices in long cycles that become unused when they are chopped up into paths, and so need to be
embedded greedily.

These intervals must be chosen quite carefully, because of the following somewhat subtle con-
straint. Recall that in Case K we will reduce to a path factor problem in some subdigraph H of G.
This can only have a solution if each vertex x has degree d±H(x) = d2(x)− d±(x), where d2(x) is the
number of path factors that will use x and d−(x) (respectively d+(x)) is the number of these in which

x is the start (respectively end). The path factors will be obtained from a set of arc-disjoint
−→
WK

8 ’s,
where for each w ∈W , its colour K neighbourhood is given by a set of intervals ([xwi , (y

w
i )−] : i ∈ Iw),

so its
−→
WK

8 ’s will define paths from xwi to ywi . Thus in the auxiliary digraph J , the degree of x into
W must be d+J (x,W ) = d2(x)− d′1(x), where d′1(x) is the number of path factors in which x is some
successor (ywi )+. To relate these two formulae, we note that a wheel decomposition of J requires
d+J (x,W ) = d+J (x, V ) = d−J (x, V ) and d+

JK (x,W ) = d−
JK (x, V ), and that in the twisting construc-

tion, d−
JK (x−, V ) arcs of H at x are not counted by d−J (x, V ), whereas d−

JK (x, V ) arcs of H not at

x are counted by d−J (x, V ). Writing ∆(x) = d−
JK (x−, V ) − d−

JK (x, V ) = d+
JK (x−,W ) − d+

JK (x,W ),

we deduce d+H(x) = d+J (x, V ) and d−H(x) = d−J (x, V ) + ∆(x), so we need ∆(x) = d′1(x) − d+(x) and
d′1(x) = d−(x). So ∆(x) = d−(x) − d+(x). We will ensure that both sides are always 0 (taking H
equal to the digraph G′1 in which we need to solve the path factor problem), i.e.

i. every vertex is used equally often as a startpoint or as a successor of an interval, and
ii. all vertices appear in some interval for the same number of factors.

(The successor of an interval is the successor of its largest member.) To achieve this, we identify
V with [n] under the natural cyclic order, and select our intervals from canonical sets Iij , i ∈ [2s+1],

j ∈ [di], where each Iij is a partition of [n] into n/di ± 1 intervals of length at most di, we have
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Iij ∩ Iij′ = ∅ for j 6= j′, and for each i, every v ∈ [n] occurs exactly once as a startpoint of some

interval in Ii = ∪jIij , and also exactly once as a successor of some interval in Ii. The two conditions
discussed in the previous paragraph will then be satisfied if there are numbers ti, i ∈ [2s + 1] such

that every interval in Ii is used by exactly ti factors. Each w will select intervals from some Ii(w)j(w),
and these intervals must be non-consecutive, so that the paths do not join up into longer paths. This
explains why we use several different interval sizes: if we only used one size d then a pair of vertices
in V at cyclic distance d could never be both used for the same factor, and so we would be unable
to satisfy the conditions of the wheel decomposition results in section 3.

Now we describe how factors choose intervals. For each w ∈ W , we start by independently
choosing i = i(w) ∈ [2s + 1] and j = j(w) ∈ [di] uniformly at random. Given i and j, we activate
each interval in Iij independently with probability 1/2, and select any interval I such that I is
activated, and its two neighbouring intervals I± are not activated. We thus obtain a random set of
non-consecutive intervals where each interval appears with probability 1/8 (not independently). We
form random sets of intervals X gw where each interval selected for w is included in X gw independently
with probability 8pgw,K (and is included in at most one of X 1

w or X 2
w). Thus, given w ∈ Wi := {w′ :

i(w′) = i}, any interval I ∈ Ii appears in X gw with probability pgw,K/di. The events {I ∈ X gw} for

w ∈Wi are independent, so whp about
∑

w∈Wi
pgw,K/di factors use I.

Our final sets of intervals Ygw are obtained from X gw by removing a small number of intervals
so that every interval in Ii is used exactly tgi times, where tgi is about

∑
w∈Wi

pgw,K/di. (We only
need this property when g = 1, but for uniformity of the presentation we do the same thing for
g = 2.) These intervals determine JKg [V,W ]: we let N−

JK
g

(w) = Y g
w :=

⋃Ygw, i.e. the subset of V

which is the union of the intervals in Ygw. As each x is the startpoint of exactly one interval in Ii
it occurs as the startpoint of an interval for exactly tg :=

∑
i t
g
i factors; the same statement holds

for successors of intervals. As each x ∈ V appears in exactly one interval in each Iij we deduce

d+
JK
g

(x,W ) =
∑2s+1

i=1

∑di
j=1 t

g
i ≈

∑
w∈W pgw,K = |W |pgK .

The other arcs of J incident to w will come from Y w := V \
(
Y 1
w ∪ Y 2

w ∪ (Y 1
w)+ ∪ (Y 2

w)+
)
, where

(Y g
w)+ is the set of successors of intervals in Ygw (these vertices are endpoints of paths so should be

avoided by the short cycles, and also by the 7/8 of the paths not specified by the intervals). We define
J [V,W ] by N−

J
(w) = Y w. For any x ∈ V we will have P(x ∈ Y g

w) ≈ P(x ∈ Xg
w) = pgw,K and P(x ∈

Y g
w | w ∈Wi) ≈ P(x ∈ Xg

w | w ∈Wi) = pgw,K/di, so |Y w| ≈ pwn, where pw = 1− di+1
di

(p1w,K + p2w,K).

In J∗g = Jg \ JKg we require about pgw,∗n such arcs, where pgw,∗ := pgw − pgw,K , and of these, for

each cycle length c < K we require about pgw,cn arcs of colour c. For each x ∈ Y w independently we
include the arc xw in at most one of the J∗g with probability pgw,∗/pw, which is a valid probability
as p1w,∗ + p2w,∗ = 1 − L−3η − p1w,K − p2w,K < pw. Then we give each xw ∈ J∗g [V,W ] colour c
with probability pgw,c/p

g
w,∗. In particular, xw in J∗g is coloured 0 with probability pgw,0/p

g
w,∗, where

pgw,0 := pgw,∗ −
∑K−1

c=3 pgw,c.

4.1 Formal statement of the algorithm

The input to the algorithm consists of an αn-regular digraph G on V , a family (Fw : w ∈ W ) of
αn oriented one-factors, each partitioned as Fw = F 1

w ∪ F 2
w, and parameters satisfying n−1 � ε �

t−1 � K−1 � d−1 � η � s−1 � L−1 � α. We identify V with [n] according to a uniformly random
bijection and adopt the natural cyclic order on [n]: each x ∈ [n] has successor x+ = x + 1 (where
n+ 1 means 1) and predecessor x− = x− 1 (where 0 means n). Let di = d/(2s)i−1 for i ∈ [2s+ 1].
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We write n = ridi + si with ri ∈ N and 0 ≤ si < di, and let

P ij =

{
{kdi + j : 0 ≤ k ≤ ri} if j ∈ [si],
{kdi + j : 0 ≤ k ≤ ri − 1} if j ∈ [di] \ [si].

For each i ∈ [s+ 1] and j ∈ [di] we define a partition of [n] into a family of cyclic intervals Iij defined

as all [a, b−] where a ∈ P ij and b is the next element of P ij in the cyclic order. (So |Iij | = n/di ± 1,

each I ∈ Iij has |I| ≤ di, and Iij ∩ Iij′ = ∅ for j 6= j′.) We let Ii = ∪j∈[di]Iij . (So for every v ∈ [n],

exactly one [a, b−] ∈ Ii has a = v, and exactly one [a, b−] ∈ Ii has b = v.) Each w ∈ W will be
assigned i(w) ∈ [2s+ 1]. For c < K write qgw,cn for the number of cycles of length c in F gw. Let

pgw = (1− η)n−1|F gw|+ n−.2, pgw,c = (1− η)qgw,c for 3 ≤ c < K, pgw,K = 1
8

(
pgw − ΣK−1

c=3 cp
g
w,c

)
,

pgw,∗ = pgw − pgw,K , pgw,0 = pgw,∗ − ΣK−1
c=3 p

g
w,c, pw,K = p1w,K + p2w,K ,

pw = 1− di(w)+1

di(w)
pw,K , pg = |W |−1Σw∈W p

g
w, pgc = |W |−1Σw∈W p

g
w,c for c ∈ [0,K] ∪ {∗}.

We complete the algorithm by applying the following subroutines INTERVALS and DIGRAPH.

INTERVALS

i. For each w ∈W independently choose i(w) ∈ [2s+ 1] and j(w) ∈ [di(w)] uniformly at random.
Let Wi = {w : i(w) = i}.

ii. For each w ∈W , let Aw include each interval of Ii(w)j(w) independently with probability 1/2.

Let Sw consist of all I ∈ Aw such that both neighbouring intervals I± of I are not in Aw.
iii. Let X gw, g ∈ [2] be disjoint and chosen with P(I ∈ X gw) = 8pgw,K independently for each I ∈ Sw.

iv. Let tgi = min{|X g(I)| : I ∈ Ii}, where X g(I) := {w ∈ Wi : I ∈ X gw}, and obtain Ygw ⊆ X gw by
deleting each I ∈ Ii, i ∈ [2s + 1] from |X g(I)| − tgi sets X gw with w ∈ X g(I), independently
uniformly at random. Write Yg(I) := {w ∈Wi : I ∈ Ygw} (so |Yg(I)| = tgi for I ∈ Ii).

DIGRAPH

i. Let G1 and G2 be arc-disjoint with P(−→e ∈ Gg) = pg independently for each arc −→e of G.
ii. For each g ∈ [2] and −→xy ∈ Gg independently, if −→xy is −→zz− or −→zz+ for some z add −→xy to J0

g ,

otherwise choose exactly one of P(−→xy ∈ J0
g ) = pg∗/pg or P(−→xy− ∈ JKg ) = pgK/pg.

iii. For each w ∈ W , add −→xw to JKg for each x ∈ Y g
w :=

⋃Ygw, and add −→xw to J for each

x ∈ Y w := V \ (Y 1
w ∪ Y 2

w ∪ (Y 1
w)+ ∪ (Y 2

w)+).
iv. For each arc −→xw of J [V,W ] independently, add −→xw to J∗g [V,W ] with probability pgw,∗/pw, and

give it exactly one colour c 6= K (including 0) with probability pgw,c/p
g
w,∗.

We conclude this section by recording some estimates on the algorithm parameters used through-
out the paper.

In Case K, all |F gw| = n/2± 2K, p1w, p
2
w > .49, p1w,K = p1w/8 > 1/17,

p1w,c = 0 for c ∈ [3,K − 1], p1w,∗ = p1w,0 = 7p1w/8 > 1/3 and p2w,∗ ≥ p2w,0 ≥ 2p2w/3 > 1/4.

In Case `∗, all |F 1
w| = `∗L−3n, |F 2

w| = n− `∗L−3n, p1w > (1− η)`∗L−3 > 2L−3,

p2w > 1− 2L−2 > .9, p1w,`∗ = p1w/`
∗ > .9L−3, p1w,K = n−.2/8, p1w,c = 0 for c ∈ [3,K − 1] \ {`∗},

p1w,∗ > 2L−3, p1w,0 ≥ 2p1w,∗/3 > L−3 and p2w,∗ ≥ p2w,0 ≥ 2p2w/3 > .6.

In both cases, p2w,K ≥ n−.2/8.
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5 Analysis I: intervals

In this section we analyse the families of intervals chosen by the INTERVALS subroutine in section
4; our goal is to establish various regularity and extendability properties of JKg [V,W ] and Jg[V,W ]
(which are defined in step (iii) of DIGRAPH but are completely determined by INTERVALS). We also
deduce some corresponding properties that follow from these under the random choices in DIGRAPH.
Before starting the analysis, we state some standard results on concentration of probability that will
be used throughout the remainder of the paper. We use the following classical inequality of Bernstein
(see e.g. [4, (2.10)]) on sums of bounded independent random variables. (In the special case of a sum
of independent indicator variables we will simply refer to the ‘Chernoff bound’.)

Lemma 5.1. Let X =
∑n

i=1Xi be a sum of independent random variables with each |Xi| < b.

Let v =
∑n

i=1 E(X2
i ). Then P(|X − EX| > t) < 2e−t

2/2(v+bt/3).

We also use McDiarmid’s bounded differences inequality, which follows from Azuma’s martingale
inequality (see [4, Theorem 6.2]).

Definition 5.2. Suppose f : S → R where S =
∏n
i=1 Si and b = (b1, . . . , bn) ∈ Rn. We say that f is

b-Lipschitz if for any s, s′ ∈ S that differ only in the ith coordinate we have |f(s)− f(s′)| ≤ bi. We
also say that f is v-varying where v =

∑n
i=1 b

2
i /4.

Lemma 5.3. Suppose Z = (Z1, . . . , Zn) is a sequence of independent random variables, and X =
f(Z), where f is v-varying. Then P(|X − EX| > t) ≤ 2e−t

2/2v.

The next lemma records various regularity and extendability properties of JKg [V,W ] and Jg[V,W ].

We recall that each N−
JK
g

(w) = Y g
w and N−

Jg
(w) = Y w, and also our notation for common neighbour-

hoods, e.g. N−
JK
g

(R) =
⋂
w∈RN

−
JK
g

(w) in statement (iv). Statements (iv) and (v) will be applied to

nO(1) choices of set U or function h, so their conclusions apply whp simultaneously to all these choices
(recalling our convention that ‘whp’ refers to events with exponentially small failure probability).
For x ∈ V we write t−g (x) or t+g (x) for the number of w such that x is the startpoint or successor of
an interval in Ygw. We also use the separation property from Definition 3.2.

Lemma 5.4. Let g ∈ [2], U ⊆ V and h : W → R with each |h(w)| < n.01. Then whp:

i. |Yg(I)| = tgi =
|W |pgK
(2s+1)di

± n.51 for all I ∈ Ii, i ∈ [2s+ 1].

ii. d+
JK
g

(x,W ) = |W |pgK ± n.52 and t±g (x) = tg :=
∑

i t
g
i for each x ∈ V .

iii. d−
JK
g

(w) = |Y g
w | = pgw,Kn± n3/4 and d−

J
(w) = |Y w| = pwn± n3/4 for all w ∈W .

iv. For any disjoint R,R′ ⊆W of sizes ≤ s we have∣∣∣U ∩N−JK
g

(R) ∩N−
J

(R′)
∣∣∣ = |U |

∏
w∈R

pgw,K

∏
w∈R′

pw ± 3sn3/4.

v. Consider H :=
∑{

h(w) : w ∈ N+
JK
g

(S) ∩N+
J

(S′)
}

for disjoint S, S′ ⊆ V of sizes ≤ s.

If S ∪ S′ is 3d-separated then H =
∑
w∈W

(pgw,K)|S|p|S
′|

w h(w)± 5sn3/4.

If (S, S′) is 3d-separated then H ≥ 2−2s
∑
w∈W

(pgw,K)|S|h(w).

15



Write Xg
w =

⋃X gw and Xw = V \ (X1
w ∪X2

w ∪ (X1
w)+ ∪ (X2

w)+). In the proof we repeatedly use
the observation that if S ∪ S′ ⊆ V is 3d-separated and w ∈ W , given i(w) and j(w), the events
{{x ∈ Xg

w} : x ∈ S} ∪ {{x ∈ Xw} : x ∈ S′} are independent, as they are determined by disjoint
sets of random decisions in INTERVALS. The weaker assumption that (S, S′) is 3d-separated only
implies independence of {S ⊆ Xg

w} and {S′ ⊆ Xw}. We also note that for any S, S′ the events
{S ⊆ Xg

w} ∩ {S′ ⊆ Xw} are independent over w ∈W .

Proof. For (i), consider any I ∈ Iij with i ∈ [2s + 1], j ∈ [di]. For each w ∈ Wi independently
we have P(j(w) = j) = 1/di, P(I ∈ Sw | j(w) = j) = 1/8, P(I ∈ X gw | I ∈ Sw) = 8pgw,K , so

P(I ∈ X gw) = pgw,K/di. As P(w ∈ Wi) = 1/(2s + 1) for each w ∈ W and
∑

w∈W pgw,K = |W |pgK ,

by a Chernoff bound, whp |X g(I)| =
|W |pgK
(2s+1)di

± n.51. This estimate holds for all such I, and so for

tgi = min{|X g(I)| : I ∈ Ii}; thus (i) holds.

For (ii), note that each x ∈ V appears in exactly one interval in each Iij , so

d+
JK
g

(x,W ) =
2s+1∑
i=1

di∑
j=1

( |W |pgK
(2s+1)di

± n.51
)

= |W |pgK ± n.52.

Next we recall that INTERVALS chooses uniformly at random Yg(I) ⊆ X g(I) of size tgi . The
statements on t±g (x) hold as for each i there is exactly one [a, b] ∈ Ii with a = x and exactly one
[a, b] ∈ Ii with b+ = x. For future reference, we note that each |X g(I) \ Yg(I)| < 2n.51.

For (iii), consider any w ∈ W . We start INTERVALS by choosing i = i(w) ∈ [2s + 1] and
j = j(w) ∈ [di] uniformly at random. Given these choices, any I ∈ Iij appears in Sw if I ∈ Aw
and I± /∈ Aw; this occurs with probability 1/8, so E|Sw| = |Iij |/8 = n/8di ± 1. As |Sw| is a

3-Lipschitz function of the events {I ∈ Aw}, I ∈ Iij , by Lemma 5.3 whp |Sw| = n/8di ± n.51.
Each I ∈ Sw is included in X gw independently with probability 8pgw,K , so by a Chernoff bound

whp |X gw| = pgw,Kn/di ± 2n.51. For each I ∈ X gw independently we have I ∈ Ygw with probability

tgi /|X g(I)| = 1 ± n−.27, as pgK ≥ n−.2. Thus diE|Ygw| = pgw,Kn ± n.73, so by a Chernoff bound whp

d−
JK
g

(w) = |Y g
w | = di|Ygw|±di = pgw,Kn±2n.73. We deduce d−

J
(w) = n− di+1

di
(|Y 1

w |+|Y 2
w |) = pwn±n3/4,

so (ii) holds. We note that each |Y g
w | = |Xg

w| ± n3/4 and |Y w| = |Xw| ± n3/4.
For (iv), we first estimate the number N of u ∈ U such that u ∈ Xg

w for all w ∈ R and u ∈ Xw

for all w ∈ R′. The actual quantity we need to estimate is obtained by replacing ‘X’ with ‘Y’, and
so differs in size by at most 2sn3/4. For each u ∈ U , we have independently P(u ∈ Xg

w) = pgw,K for

all w ∈ R and P(u ∈ Xw) = pw for all w ∈ R′, so EN = |U |∏w∈R p
g
w,K

∏
w∈R′ pw. Indeed, given

choices of i = i(w) and j = j(w), letting I be the unique interval in Iij whose successor is u, we have

P(u ∈ Xw) = 1−∑2
g=1(P(u ∈ Xg

w) + P(I ∈ X gw)) = pw. Now (iv) follows from Lemma 5.3, as N is a
3d-Lipschitz function of ≤ 2n independent random decisions in INTERVALS.

For (v), we will estimate H ′ =
∑{h(w) : S ⊆ Xg

w, S′ ⊆ Xw}. The actual quantity H we need to
estimate is obtained from H ′ by replacing ‘X’ with ‘Y’. We have |H −H ′| < 4sn3/4, as for each i, j
there are ≤ 2s intervals I ∈ Iij with I ∩ (S ∪ S′) 6= ∅ each with < 2n.51 choices of w ∈ X g(I) \ Yg(I)

each with |h(w)| < n.01. If S ∪ S′ is 3d-separated then independently for all w ∈ W we have
P(x ∈ Xg

w) = pgw,K for all x ∈ S and P(x ∈ Xw) = pw for all x ∈ S′; the required estimates on H ′

and so H follow whp from Lemma 5.1.

Finally, we consider (v) when (S, S′) is 3d-separated. We fix w ∈ W , condition on i(w) = i
and j(w) = j, and recall P(S ⊆ Xg

w, S′ ⊆ Xw) = P(S ⊆ Xg
w)P(S′ ⊆ Xw). We have the bound
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P(S′ ⊆ Xw) ≥ 2−s from the event I /∈ Aw for all I ∈ Iij with I ∩ S′ 6= ∅. We claim that P(S ⊆
Xg
w) > (5s)−1(pgw,K)|S|, which by Lemma 5.1 suffices to complete the proof.

To prove the claim, we first note that if for some Iij no two vertices of S lie in consecutive

intervals then P(S ⊆ Xg
w | i(w) = i, j(w) = j) ≥ (pgw,K)|S|: indeed, the events {I ∈ X gw} for I ∈ Iij

with I ∩ S 6= ∅ are positively correlated. For i ∈ [2s+ 1] let J is be the set of j ∈ [di] for which some
pair x, x′ of S lie in consecutive intervals of Iij : we say j is i-bad for x, x′. We note that if j is i-bad
for some pair in S then it is i-bad for some consecutive pair x, x′ in S (i.e. {x, x′}∩S = ∅). It suffices
to show that some |J is| < di/2. For this, we note that as |S| ≤ s we can fix i ∈ [2s + 1] so that the
cyclic distance between any pair of vertices in S is either < di+1 or ≥ di−1. There are no i-bad j for
any pair x, x′ with d(x, x′) ≥ di−1 = 2sdi. Also, if d(x, x′) < di+1 then j is i-bad for x, x′ only if Iij
contains an interval with an endpoint in the cyclic interval [x, x′], so there are at most di+1 such j.
We deduce |J is| < sdi+1 = di/2, which completes the proof of the claim, and so of the lemma. �

The next lemma contains similar statements to those in the previous one concerning the colours
and directions introduced in DIGRAPH. In (iii) we define JK

′
g by JK

′
g [V,W ] = JKg [V,W ] and −→uv ∈

JK
′

g [V ] ⇔ −→uv− ∈ JKg [V ], thus removing the twist: if for some arc −→uv of Gg we add −→uv− to JKg then

we add −→uv to JK
′

g .

Lemma 5.5. Let g ∈ [2]. Write qg0 = pg∗, q
g
K′ = pgK and qgc = 0 otherwise. Then whp:

i. For every v ∈ V and c ∈ [3,K] ∪ {0} we have d±Jg(v, V ) = pg(1 ± ε)αn ± n.6, d±Jc
g
(v, V ) =

pgc(1± ε)αn± n.6, d+Jc
g
(v,W ) = pgcαn± 2n3/4.

ii. For every w ∈W and c ∈ [3,K] ∪ {0} we have d−Jc
g
(w, V ) = pgw,cn± 2n3/4.

iii. For any mutually disjoint sets Rc ⊆ W and S+
c , S

−
c ⊆ V for c ∈ [3,K − 1] ∪ {0,K ′} with∑

c |Rc| ≤ s and
∑

c |S±c | ≤ s we have∣∣∣⋂
c

(
N−Jc

g
(Rc) ∩N+

Jc
g
(S+
c ) ∩N−Jc

g
(S−c )

)∣∣∣
= |N+

G (∪cS+
c ) ∩N−G (∪cS−c )|

∏
c

(
(qgc )|S

+
c |+|S−c |

∏
w∈Rc

pgw,c

)
± 4sn3/4.

iv. Consider H ′ :=
∣∣W∩N+

JK
g

(S)∩⋂cN
+
Jc
g
(Sc)

∣∣ for disjoint S, S′ ⊆ V of sizes ≤ s with S′ partitioned
as (Sc : c ∈ [3,K − 1] ∪ {0}).

If S ∪ S′ is 3d-separated then H ′ =
∑
w∈W

(pgw,K)|S|
∏
c

(pgw,c)
|Sc| ± 6sn3/4.

If (S, S′) is 3d-separated then H ′ + n.6 ≥ 2−2s
∑
w∈W

(pgw,K)|S|
∏
c

(pgw,c)
|Sc|.

Proof. All quantities considered are 1-Lipschitz functions of the random choices in DIGRAPH, so
by Lemma 5.3 it suffices to estimate the expectations. For (i), we recall that G has vertex in- and
outdegrees (1± ε)αn, and for each −→xy in G we have P(−→xy ∈ Jg) = pg, so Ed+Jg(v, V ) = pg(1± ε)αn.
The other expectations are similar, with slightly modified calculations due to the twisting in colour
K and avoiding loops; for example, Ed−

JK
g

(v, V ) = pgK(d−G(v+) ± 1) = pgK(1 ± ε)αn ± 1. For (ii), we

recall d−
J

(w) = pwn ± n3/4 from Lemma 5.4.iii, so for c 6= K we have Ed−
JK
c

(w) = pgw,cp−1w d−
J

(w) =
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pgw,cn± n3/4. (The estimate for c = K was already given in Lemma 5.4.iii.) For (iii), we first apply
Lemma 5.4.iv with U = N+

G (∪cS+
c ) ∩N−G (∪cS−c ), R = RK and R′ = ∪c 6=KRc to obtain∣∣∣N+

G (∪cS+
c ) ∩N−G (∪cS−c ) ∩N−

JK
g

(RK) ∩N−
J

(∪c6=KRc)
∣∣∣

= |N+
G (∪cS+

c ) ∩N−G (∪cS−c )|
∏

w∈RK

pgw,K

∏
w∈∪c6=KRc

pw ± 3sn3/4.

For each vertex v counted here independently we have P(−→vw ∈ Jcg | −→vw ∈ J) = pgw,c/pw for all w ∈ Rc,
P(−→vx ∈ Jcg | −→vx ∈ G) = qgc for all x ∈ S−c and P(−→xv ∈ Jcg | −→xv ∈ G) = qgc for all x ∈ S+

c , so whp the

stated bound for (iii) holds. For (iv) we first consider H := |N+
JK
g

(S) ∩ N+
J

(S′)|. By Lemma 5.4.v

with h(w) = 1, if S ∪ S′ is 3d-separated then H =
∑

w∈W (pgw,K)|S|p
|S′|
w ± 5sn3/4, and if (S, S′) is

3d-separated then H ≥ 2−2s
∑

w∈W (pgw,K)|S|. For each vertex w counted here independently we have

P(−→vw ∈ Jcg | −→vw ∈ J) = pgw,c/pw for all v ∈ Sc, so whp the stated bound for (iv) holds. �

6 Analysis II: wheel regularity

In this section we show how to assign weights to wheels in each Jg so that for any arc −→e there is total
weight about 1 on wheels containing −→e , and furthermore all weights on wheels with c + 1 vertices
are of order n1−c. This regularity property is an assumption in the wheel decomposition results of
section 3, and is also sufficient in its own right for approximate decompositions by a result of Kahn
[10]. The estimate for the total weight of wheels on an arc will hold even if we add any new arc to Jg,
which is useful as we will need to consider small perturbations of J1 due to arcs of G not allocated
to G1 or G2 or not covered in the approximate decomposition of G2.

We start by considering wheels
−→
Wc with c < K. Let

W g
w,c = ncpgw,c(p

g
w,0)

c−1(αpg∗)
c.

The motivation for this formula is that it is about the expected number of
−→
Wc’s in Jg using w. For

any arc −→e let W g
c (−→e ) be the set of copies of

−→
Wc in Jg with hub in W using −→e . Let

Ŵ g
c (−→e ) =

∑
{pgw,cn(W g

w,c)
−1 :W ∈W g

c (−→e ), w ∈ V (W)}.

(If pgw,c = 0 there are no such W, so (W g
w,c)−1 is always defined when used.) In the following lemma

we calculate the total weights on arcs due to copies of
−→
Wc, although we note that we do not have

a good estimate for −→xy ∈ J0
g [V ] if d(x, y) < 3d. In J2 we can ignore such arcs, as we only need an

approximate decomposition, whereas in J1 we will cover these by wheels greedily before finding the
exact decomposition – this forms part of the perturbation referred to above.

Lemma 6.1. Let c′ ∈ {0, c}, Nc = 1 and N0 = c− 1. Then whp:

i. If pgw,c′ 6= 0 and we add −→xw to Jc
′
g [V,W ] then Ŵ g

c (−→xw) = (1± 4ε)Nc′p
g
w,c/p

g
w,c′ ± n−.2.

ii. If d(x, y) ≥ 3d and we add −→xy to J0
g [V ] then Ŵ g

c (−→xy) = (1± 4ε)cpgc/p
g
∗ ± n−.2.

Proof. As a preliminary step for counting copies of
−→
Wc we count c-prewheels, which we define to

consist of a wheel with oriented rim cycle in G and all spokes in J . For any arc −→e we let Pc(
−→e )
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be the set of c-prewheels using −→e ; we will estimate |Pc(−→e )| using the analysis of INTERVALS in
Lemma 5.4.

For (i), we estimate |Pc(−→xw)| as follows. We let x = xc and choose the other rim vertices
x1, . . . , xc−1 sequentially in cyclic order. At c− 2 steps we choose xi+1 ∈ N+

G (xi)∩N−J (w): each has

αnpw ± 3sn3/4 options by Lemma 5.4.iv with U = N+
G (xi), R = ∅, R′ = {w}, using |N+

G (xi)| = αn
(G is αn-regular). At the last step we choose xc−1 ∈ N+

G (xc−2)∩N−G (xc)∩N−J (w), so similarly there

are |N+
G (xc−2)∩N−G (xc)|pw±3sn3/4 options, where |N+

G (xc−2)∩N−G (xc)| = ((1±ε)α)2n by typicality
of G. Thus |Pc(−→xw)| = (1± 3ε)αc(pwn)c−1.

Now consider the case c′ = c, i.e. −→xw is added to Jc[V,W ]. For any c-prewheel containing −→xw,
independently we include the cycle arcs in J0

g with probability pg∗ and give each −−→xiw with i 6= c
colour 0 with probability pgw,0/pw, so E|W g

c (−→xw)| = (1 ± 3ε)(αpg∗)
c(pgw,0n)c−1 = (1 ± 3ε)W g

w,c/p
g
w,cn.

Of these random decisions, ≤ 2n concern an arc containing one of x,w, which affect |W g
c (−→xw)| by

O(nc−2), and the others have effect O(nc−3). Thus |W g
c (−→xw)| is O(n2c−3)-varying, so by Lemma 5.3

whp |W g
c (−→xw)| = (1 ± 4ε)W g

w,c/p
g
w,cn, i.e. Ŵ g

c (−→xw) = 1 ± 4ε. When c′ = 0 we argue similarly. Now
x can be any xi with i 6= c, for which we have c − 1 choices. The probability factors are the same
as in the previous calculation, except that for −−→xcw we replace pgw,0/pw by pgw,c/pw. Again, the stated
estimate holds whp by Lemma 5.3, so (i) holds.

For (ii), we write Ŵ g
c (−→xy) =

∑
w∈W Ŵ g

c (xyw), where Ŵ g
c (xyw) is the sum of (W g

w,c)−1 over the

set W g
c (xyw) of copies of

−→
Wc in Jg using −→xy, −→xw and −→yw. Fix w ∈ N+

J
(x) ∩N+

J
(y) and consider the

number |Pc(xyw)| of c-prewheels using {−→xy,−→xw,−→yw}. Choosing rim vertices sequentially as in (i),
now there are c− 3 steps with αnpw ± 3sn3/4 options and again ((1± ε)α)2pwn± 3sn3/4 options at
the last step, so |Pc(xyw)| = (1± 3ε)αc−1(pwn)c−2.

Now we consider which of these c-prewheels extend to wheels in W g
c (xyw): there are c choices for

the position of −→xy on the rim, then some probabilities determined by independent random decisions:
the c−1 rim edges are each correct with probability pg∗, the spoke of colour c with probability pgw,c/pw,
and the other c− 1 spokes each with probability pgw,0/pw. Therefore

EŴ g
c (xyw) = (1± 3ε)c(αpg∗)

c−1pgw,c(p
g
w,0)

c−1p−2w nc−2pgw,cn(W g
w,c)

−1 = (1± 3ε)c(αpg∗)
−1pgw,cn(pwn)−2.

By Lemma 5.3 whp Ŵ g
c (−→xy) = (1± 3.1ε)c(αpg∗n)−1H, with H =

∑{pgw,cp−2w : w ∈ N+
J

(x) ∩N+
J

(y)}.
We estimate H by Lemma 5.4.v with S = ∅, S′ = {x, y} and h(w) = pgw,cp−2w (each 7/8 ≤ pw ≤ 1).

As S ∪ S′ is 3d-separated, whp H = |W |pgc ± 5sn3/4, giving Ŵ g
c (−→xy) = (1± 4ε)cpgc/p

g
∗ ± n−.2. �

Now we apply a similar analysis for
−→
WK

8 . Let

W g
w,K = n8αpgKp

g
w,K(αpg∗p

g
w,0)

7.

For any arc −→e let W g
K(−→e ) be the set of copies of

−→
WK

8 in Jg using −→e . We define Ŵ g
K(−→e ) by setting

c = K in Ŵ g
c (−→e ). Now we calculate the total weights on arcs due to copies of

−→
WK

8 . Note that
we cannot give a good estimate for −→xy ∈ JKg [V ] if d(x, y) < 3d. We can ignore such arcs in J2 (as
mentioned above), but in J1 we will replace such arcs by arcs of colour 0 (modified by twisting) –
this also forms part of the perturbation.

Lemma 6.2. Let c′ ∈ {0,K}, NK = 1, N0 = 7, qgK = pgK , qg0 = pg∗. Then whp:

i. If we add −→xw to Jc
′
g [V,W ] then Ŵ g

K(−→xw) = (1± 4ε)Nc′p
g
w,K/p

g
w,c′.
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ii. Suppose we add −→xy to Jc
′
g [V ]. If d(x, y) ≥ 3d then Ŵ g

c (−→xy) = (1± 4ε)Nc′q
g
K/q

g
c′.

If c′ = 0 then Ŵ g
K(−→xy) > 2−2s−1pgK/p

g
∗.

Proof. For (i), we start by counting (K, g)-prewheels, which we define to consist of a hub w ∈ W
and an oriented 8-path in G between z and z+ for some z such that −→zw ∈ JKg and

−→
z′w ∈ J for all

internal vertices z′ of the path. For any arc −→e we let P gK(−→e ) be the set of (K, g)-prewheels using −→e .

To estimate |P gK(−→xw)|, suppose first that c′ = K. We require z = x. We choose the vertices of the
path one by one. At 6 steps there are αnpw ± 3sn3/4 options, and at the last step ((1± ε)α)2pwn±
3sn3/4 options of a common outneighbour of some vertex and z+, so |P gK(−→xw)| = (1± 3ε)α8(pwn)7.
On the other hand, if c′ = 0 then there are 7 choices for the position of x as an internal vertex,
dividing the path into two segments. We construct one segment by choosing its vertices one by one,
and then do the same for the other segment, starting with one of length ≤ 4 so that {z, z+} is not
the last choice. At the step where we choose {z, z+}, there is some vertex v on the path for which
we need the arc −→vz or −→vz+. We also require z ∈ N−

JK
g

(w). The number of options is αnpgw,K ± 3sn3/4

by Lemma 5.4.iv, with R = {w}, R = ∅ and U = N+
G (v) or U = N+

G (v)− = {z : −→vz+ ∈ G}. There
are also 5 steps with αnpw ± 3sn3/4 options, and at the last step ((1± ε)α)2pwn± 3sn3/4 options, so
|P gK(−→xw)| = (1± 3ε)7α8pgw,K(pw)6n7 (as pgw,K ≥ n−.2/8).

To estimate |W g
K(−→xw)|, we first consider c′ = K. For any (K, g)-prewheel containing −→xw, inde-

pendently we include the last path arc (to z+) in JKg with probability pgK , the other 7 path arcs in
J0
g with probability pg∗, and give ←−wz′ for each internal vertex z′ colour 0 with probability pgw,0/pw, so

E|W g
K(−→xw)| = (1± 3ε)αpgK(αpg∗p

g
w,0n)7 = (1± 3ε)W g

w,K/p
g
w,Kn.

As |W g
K(−→xw)| is O(n13)-varying, by Lemma 5.3 whp |W g

K(−→xw)| = (1± 3.1ε)W g
w,K/p

g
w,Kn± n6.51, so

Ŵ g
K(−→xw) = 1± 4ε (using pgK > n−.2).

For c′ = 0 we have a similar calculation. Indeed, the path arcs are again correct with probability
(pg∗)

7pgK , and the arcs ←−wz′ (now excluding z′ = x) are correct with probability (pgw,0/pw)6, so

E|W g
K(−→xw)| = (1± 3ε)7αpgKp

g
w,K(pgw,0)

6(αpg∗n)7 = (1± 3ε)7W g
w,K/p

g
w,0n.

By Lemma 5.3 whp |W g
K(−→xw)| = (1± 4ε)7W g

w,K/p
g
w,0n± n6.51, so Ŵ g

K(−→xw) = (1± 4ε)7pgw,K/p
g
w,0.

For (ii), we write Ŵ g
K(−→xy) =

∑
w∈W |Ŵ

g
K(xyw)|, where Ŵ g

K(xyw) is the sum of (W g
w,K)−1 over

the set W g
K(xyw) of copies of

−→
WK

8 in Jg using −→xy, −→xw and −→yw. For each w we consider the set
P gK(xyw) of (K, g)-prewheels using {−→xy,−→xw,−→yw}

Suppose first that −→xy has colour c′ = K. We assume d(x, y) ≥ 3d (or there is nothing to prove).
We must have y = z and in our prewheels the oriented 8-paths from z to z+ must end with the arc
−→xz+, corresponding to −→xy ∈ JK under twisting. We need w ∈ N+

J
(x)∩N+

JK
g

(y) so that −→yw has colour

K and −→xw can receive colour 0. Choosing rim vertices sequentially, now {z, z′} is already fixed, there
are 5 steps with αnpw ± 3sn3/4 options, and at the last step ((1 ± ε)α)2pwn ± 3sn3/4 options, so
|P gK(−→xw)| = (1± 3ε)α7(pw)6n6.

Now consider which of these prewheels extend to wheels in W g
K(xyw), according to the following

independent random decisions: the other 7 arcs of the oriented 8-path excluding −→xy are each correct

with probability pg∗, we already have −→yw ∈ JKg , and for each of the 7 internal vertices z′ we have
−→
z′w

correct with probability pgw,0/pw. Therefore

EŴ g
K(xyw) = (1± 3ε)(αpg∗)

7(pgw,0)
7p−1w n6pgw,Kn(W g

w,K)−1 = (1± 3ε)(αpgKpwn)−1.
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By Lemma 5.3 whp Ŵ g
K(−→xy) = (1 ± 3.1ε)(αpgKn)−1H ± n−.2, with H =

∑{p−1w : w ∈ N+
J

(x) ∩
N+
JK
g

(y)}. We estimate H by Lemma 5.4.v with S = {y} and S′ = {x}. As d(x, y) ≥ 3d, whp

H = |W |pgK ± 5sn3/4, giving Ŵ g
K(−→xy) = 1± 4ε.

Now suppose that −→xy has colour c′ = 0. For the hub w we require −→yw ∈ J0 and −→xw in JK or J0.
We first consider the contribution from −→xw ∈ JK , when the first vertex of the oriented 8-path must
be z = x. The estimate of |P gK(−→xw)| is the same as when c′ = K, and the probability factors are the
same except that the factor for the last path edge (to z+) is now pgK instead of pg∗. If d(x, y) ≥ 3d

then the same calculation with Lemma 5.3 and Lemma 5.4.v shows that the contribution to Ŵ g
K(−→xy)

from w ∈ N+
J

(x) ∩N+
JK
g

(y)} is (1± 4ε)(pg∗n)−1.

Now we consider the contribution from −→xw ∈ J0. There are 6 positions for −→xy on the path avoiding
{z, z′}. The estimate of |P gK(−→xw)| is the same as before except that one factor of pw is replaced by
pgw,K (at the choice of {z, z′}). The probability factors are the same as in the previous calculation for
−→xw ∈ JK , so EŴ g

K(xyw) = (1±3ε)pgw,K(αpg∗p
2
wn)−1. By Lemma 5.3 whp the contribution to Ŵ g

K(−→xy)

from such w is (1±3.1ε)6(αpg∗n)−1H, with H =
∑{h(w) : w ∈ N+

J
(x)∩N+

J
(y)}, h(w) = pgw,K(pw)−2.

We estimate H by Lemma 5.4.v with S = ∅, S′ = {x, y}. As (S, S′) is 3d-separated (vacuously)
whp H ≥ 2−2s

∑
w∈W h(w) = 2−2s|W |pgK , so Ŵ g

K(−→xy) > 2−2s−1pgK/p
g
∗. Now suppose d(x, y) ≥ 3d.

Then S ∪ S′ is 3d-separated, so whp H = |W |pgK ± 5sn3/4. The contribution here to Ŵ g
K(−→xy) is

(1± 4ε)6pgK/p
g
∗, so altogether Ŵ g

K(−→xy) = (1± 4ε)7pgK/p
g
∗. �

We combine the above estimates to deduce the main lemma of this section, establishing wheel
regularity. Let

Ŵ g(−→e ) =
∑
{Ŵ g

c (−→e ) : c ∈ [3,K]}.

Lemma 6.3. Suppose we add −→e to J in any colour, such that if −→e ∈ J [V ] then −→e = −→xy with
d(x, y) ≥ 3d, and if −→e has a vertex in W then it is an endvertex. Then Ŵ g(−→e ) = 1± 5ε.

Proof. By Lemmas 6.1 and 6.2 we can analyse the various cases as follows.

• If −→e ∈ Jcg [V,W ] with c 6= 0 then Ŵ g(−→e ) = Ŵ g
c (−→e ) = 1± 5ε.

• If −→xy ∈ JKg [V ] with d(x, y) ≥ 3d then Ŵ g(−→e ) = Ŵ g
K(−→e ) = 1± 5ε.

• If −→e ∈ J0
g [V,W ] then

Ŵ g(−→e ) = (1± 4ε)7pgw,K/p
g
w,0 +

∑K−1
c=3

(
(1± 4ε)(c− 1)pgw,c/p

g
w,0 ± n−.2

)
= 1± 5ε,

as pgw,0 = 7pgw,K +
∑K−1

c=3 (c− 1)pgw,c.

• If −→xy ∈ J0
g [V ] with d(x, y) ≥ 3d then

Ŵ g(−→e ) = (1± 4ε)7pgK/p
g
∗ +

∑K−1
c=3

(
(1± 4ε)cpgc/p

g
∗ ± n−.2

)
= 1± 5ε,

as pg∗ = pg − pgK = 7pgK +
∑K−1

c=3 cpgc . �

7 Approximate decomposition

Here we describe the approximate decomposition of G2. Recall that at the start of section 4 we
partitioned each factor Fw into subfactors F 1

w and F 2
w, that each F gw has qgw,cn cycles of length

c ∈ [3,K − 1], and pgw,c = (1− η)qgw,c. We will embed almost all of each F 2
w in G2. We say F ′w ⊆ F 2

w
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is valid if F 2
w \F ′w does not have any independent arcs (i.e. arcs −→xy such that both x and y have total

degree 1 in F 2
w \F ′w) and if F 2

w contains a path then F 2
w \F ′w contains the arcs incident to each of its

ends.

Lemma 7.1. There are arc-disjoint digraphs G2
w ⊆ G2 for w ∈W , where each G2

w is a copy of some
valid F ′w ⊆ F 2

w with V (G2
w) ⊆ N−J2(w), such that

i. G−2 = G2 \
⋃
w∈W G2

w has maximum degree at most 5d−1/3n,
ii. the digraph J−2 obtained from J2[V,W ] by deleting all −→xw with x ∈ V (G2

w) has maximum degree
at most 5d−1/3n, and

iii. any x ∈ V has degree 1 in F ′w for at most n/
√
d choices of w.

Proof. Say that an arc −→vw with v ∈ V and w ∈ W is bad there is some c ∈ [3,K − 1] such that
−→vw ∈ Jc and p2w,c < n−.1, or −→vw ∈ JK and p2w,K < d−1/3. The expected bad degree of v ∈ V

is at most (Kn−.1 + d−1/3)n so by Chernoff bounds we can assume that every v ∈ V has bad
degree at most 2d−1/3n. Let J ′2 be obtained from J2 by deleting all bad arcs and all −→xy ∈ JK2 [V ]
with d(x, y) < 3d. We consider the auxiliary hypergraph H whose vertices are all arcs of J ′2 and

whose edges correspond to all copies of the coloured wheels
−→
WK

8 or
−→
Wc with c ∈ [3,K − 1]. We

recall that W g
w,c = ncpgw,c(p

g
w,0)

c−1(αpg∗)
c and W g

w,K = n8αpgKp
g
w,K(αpg∗p

g
w,0)

7. We assign weights

(1 − 5ε)pgw,cn/(W
g
w,c)−1 to each copy of any

−→
Wc (and to

−→
WK

8 for c = K). By Lemma 6.3, the total
weight of wheels in J2 on any arc −→e satisfies 1− 10ε < Ŵ g(−→e ) < 1. Thus the total weight of wheels
in J ′2 on any arc −→e satisfies 1− d−1/4 < Ŵ g(−→e ) < 1, as we deleted at most 2d−1/3n7 (say) copies of−→
WK

8 on −→e using a deleted arc. Note also that for any two arcs the total weight of wheels containing
both is at most n−.7 (as pgK ≥ n−1/4).

Thus H satisfies the hypotheses of a result of Kahn [10] on almost perfect matchings in weighted
hypergraphs that are approximately vertex regular and have small codegrees. A special case of this
result (slightly modified) implies that for any collection F of at most n100 (say) subsets of V (H) = J
each of size at least

√
n (say) we can find a matching M in H such that |F \⋃M | < d−1/5|F | for all

F ∈ F . (This is immediate from [10] if F has constant size, and a slight modification using better
concentration inequalities implies the stated version. Alternatively, one can reduce to the problem
to an unweighted version via a suitable random selection of edges and then apply a result of Alon
and Yuster [2].) This is also implied by a recent result of Ehard, Glock and Joos [7].

We choose such a matching M for the family F where for each v ∈ V ∪ W we include sets
Fv = {−→e ∈ J2[V,W ] : v ∈ −→e }, FKv = {−→e ∈ JK2 [V,W ] : v ∈ −→e }, and F ′v = {−→e ∈ J2[V ] : v ∈ −→e }
(the last just for v ∈ V ). This F is valid as all |F | > √n by Lemma 5.5. By construction for all

c ∈ [3,K − 1] every copy of
−→
Wc in M with hub w has p2w,c ≥ n−.1 and every copy of

−→
WK

8 in M with

hub w has p2w,K ≥ nd−1/3.
For each w we define G2

w to be the subgraph of G corresponding to the wheels in M containing
w, where we take account of the twisting in colour K. Thus G2

w contains the rim c-cycle of any

c-wheel in M containing w, and for any copy of
−→
WK

8 in M containing −→xw ∈ JK [V,W ] we obtain an
oriented path of length 8 from x to x+. The maximum degree bounds in (i) and (ii) clearly hold.

Recalling that N−J2(w) is disjoint from the set of interval successors (Y 2
w)+, we see that these

cycles and paths are vertex-disjoint, except that some paths may connect up to form longer paths,
which can be described as follows. Let Y ′w be the set of maximal cyclic intervals I such that for every

x ∈ I there is a copy of
−→
WK

8 in M containing −→xw ∈ JK [V,W ]. Then for each [a, b] ∈ Y ′w we have a
component of G2

w that is a path of length 8d(a, b) from a to b+. All these paths have length at most
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8d, as each such I is contained within an interval of Y2
w. Furthermore, if x ∈ V is an endpoint of

some path in G2
w then either x is a startpoint or successor of some interval in Y2

w, for which there
are at most 2t2 choices of w by Lemma 5.4, or x+w ∈ FKx+ \

⋃
M , or x−w ∈ FKx− \

⋃
M , giving at

most 2n/K more choices of w, for a total of at most n/
√
d (say).

It remains to show that each G2
w is isomorphic to some valid F ′w ⊆ Fw. First we show for any

c ∈ [3,K − 1] that whp each G2
w has at most q2w,cn cycles of length c. The number of c-cycles is in

G2
w is at most |N−Jc

2
(w)|, which by Chernoff bounds is whp < p2w,cn+n.6 = (1−η)q2w,cn+n.6 < q2w,cn,

recalling that p2w,c ≥ n−.1. Next we bound the total length Lw of paths in G2
w. By Lemma 5.4 we have

Lw ≤ 8|Y 2
w | < 8p2w,Kn+8n3/4. Writing L′w for the total length of long (length ≥ K) cycles and paths

in F 2
w, we recall that 8p2w,Kn = p2wn−

∑K−1
c=3 cp2w,cn = (1− η)(L′w +n.8). So since p2w,K ≥ d−1/3n, we

have L′w > 8d−1/3n and Lw < (1− η/2)L′w.

We embed the paths of G2
w into the long cycles and paths in F 2

w according to a greedy algorithm,
where in each step that we embed some path P of G2

w we delete a path of length |P | + 4 from F 2
w,

which we allocate to a copy of P surrounded on both sides by paths of length 2 that we will not
include in F ′w (so that F ′w will be valid). We choose such a path (if it exists) within a remaining cycle
or path of G2

w, using an endpoint if it is a path (so that we preserve the number of components).
Recalling that there are at most n/

√
d endpoints of paths in G2

w, we thus allocate a total of at most
2n/
√
d edges to the surrounding paths of length 2. Suppose for a contradiction that the algorithm

gets stuck, trying to embed some path P in some remainder R. Then all components of R have size
≤ |P |+5 ≤ 8d+5. All components of G2

w have size ≥ K, so |R| ≤ (8d+5)|L′w|/K. However, we also
have |R| ≥ |L′w| − |Lw| − 2n/

√
d ≥ η|L′w|/2 − 2n/

√
d, which is a contradiction, as K−1 � d−1 � η

and L′w > 8d−1/3n. Thus the algorithm succeeds in constructing a valid copy F ′w of G2
w in F 2

w. �

8 Exact decomposition

This section contains the two exact decomposition results that will conclude the proof in both Case K
and Case `∗. We start by giving a common setting for both cases. We say that G′1 is a γ-perturbation
of G1 if |N±G1

(x)4 N±
G′1

(x)| < γn for any x ∈ V . We say that J ′1 is a γ-perturbation of J1 if J ′1 is

obtained from J1 by adding, deleting or recolouring at most γn arcs at each vertex. We will only
consider perturbations which are compatible in the sense that arcs added between V and W will
point towards W , and existing colours will be used.

Setting 8.1. Let G′1 be an η.9-perturbation of G1. Suppose for each w ∈ W that Zw ⊆ V with
|Zw 4 (V \N−

J1(w))| < 5ηn. For x ∈ V we write Z(x) = {w ∈W : x ∈ Zw}.

We start with the exact result for Case `∗, where we recall that F 1
w consists of exactly L−3n

cycles of length `∗, so p1w = (1− η)`∗L−3 + n−.2, p1w,`∗ = (1− η)L−3, p1w,K = n−.2/8 and p1w,c = 0 for
c ∈ [3,K − 1].

Lemma 8.2. Suppose in Setting 8.1 and Case `∗ that d±
G′1

(x) = |W | − |Z(x)| for all x ∈ V and `∗

divides n− |Zw| for all w ∈ W . Then G′1 can be partitioned into graphs (G1
w : w ∈ W ), where each

G1
w is an oriented C`∗-factor with V (G1

w) = V \ Zw.

Proof. We will show that there is a perturbation J ′1 of J1 such that J ′1[V ] = G′1, eachN−
J ′1

(w) = V \Zw,

and Theorem 3.1 applies to give a
−→
W`∗-decomposition of J ′1. This will suffice, by taking each G1

w to

consist of the rim `∗-cycles of the copies of
−→
W`∗ containing w.
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We construct J ′1 by starting with J ′1 = J1 and applying a series of modifications as follows. First
we delete all arcs of J ′1[V ] corresponding to arcs of G1 \G′1 and add arcs of colour 0 corresponding to
arcs of G′1 \G1. Similarly, we delete all arcs −→vw ∈ J ′1[V,W ] with v ∈ N−J1(w)∩Zw and add arcs −→vw of

colour 0 for each v ∈ (V \Zw)\N−J1(w). We also recolour any −→vw ∈ J ′1[V,W ] of colour K to have colour

0 and replace any −→xy of colour K in J ′1[V ] by −→xy+ of colour 0. As each p1w,K = n−.2/8 in this case,

whp this affects at most n.8 arcs at any vertex. Now J ′1[V ] = G′1, each N−
J ′1

(w) = V \Zw and J ′1 is a

η.8-perturbation of J1. We note for each x ∈ V that d±
J ′1

(x, V ) = d±
G′1

(x) = |W |− |Z(x)| = d+
J ′1

(x,W ),

so the divisibility conditions for x ∈ V are satisfied.

Finally, to satisfy the divisibility conditions for all w ∈ W we recolour so that d−
(J ′1)

`∗ (w) =

d−
J ′1

(w)/`∗, which is an integer, as `∗ divides d−
J ′1

(w) = n − |Zw|. By Lemma 5.5 each d−J1(w) =

p1wn ± 2n3/4 and d−
J`∗
1

(w) = p1w,`∗n ± 2n3/4, where p1w = `∗p1w,`∗ + n−.2 in this case. As J ′1 is an

η.8-perturbation of J1, we only need to recolour at most 2η.8n arcs at any vertex, so our final digraph
J ′1 is a 3η.8-perturbation of J1.

Next we consider the regularity condition of Theorem 3.3. To each copy of
−→
W`∗ in J ′1 with hub w

we assign weight p1w,`∗n/W
g
w,`∗ = p1w,0n(αp1w,0p

1
∗n)−`

∗
, which lies in [n1−`

∗
, LLn1−`

∗
]. We claim that

for any arc −→e of P ′ there is total weight 1±η.6 on wheels containing −→e . To see this, we compare the
weight to Ŵ 1

`∗(
−→e ) as defined in section 6, which is 1± 4ε by Lemma 6.1 (as p1w,0 = (`∗− 1)p1w,`∗ and

p1∗ = (`∗ − 1)p1`∗). The actual weight on −→e differs from this estimate only due to wheels containing
−→e that have another arc in J ′1 4 J1. There are at most 40η.7n`

∗−1 such wheels, each affecting the
weight by at most LLn`

∗−1, so the claim holds. Thus regularity holds with δ = η.6 and ω = L−L.

It remains to show that J ′1 satisfies the extendability condition of Theorem 3.1. Consider any
disjoint A,B ⊆ V and C ⊆W each of size ≤ h, where h = 250(`

∗)3 . By Lemma 5.5.iii, for c ∈ {0, `∗}
we have

|N+
J0
1
(A) ∩N−

J0
1
(B) ∩N−Jc

1
(C)| = |N+

G (A) ∩N−G (B)|(p1∗)|A|(p1∗)|B|
∏
w∈C

p1w,c ± 4sn3/4 > (L−5α)2hn,

by typicality of G. Also, by Lemma 5.5.iv (with S = ∅ and S′ = A ∪ B) we have |N+
J0
1
(A) ∩

N+
J`∗
1

(B) ∩W | ≥ 2−2sL−7h|W |, say. The perturbation from J1 to J ′1 affects these estimates by at

most 6hη.7n < η.6n, so J ′1 satisfies extendability with ω = L−L as above. Now Theorem 3.1 applies

to give a
−→
W`∗-decomposition of J ′1, which completes the proof. �

Our second exact decomposition result concerns the path factors with prescribed ends required
for Case K. We recall that each F 1

w consists of cycles of length ≥ K and at most one path of
of length ≥ K with |F 1

w| − n/2 ∈ [0, 2K], and that (Y 1
w)− and (Y 1

w)+ are the sets of startpoints
and successors of intervals in Y1

w. We also recall from Lemma 5.4 that for each x ∈ V , letting
t±1 (x) = |{w : x ∈ (Y 1

w)±}|, we have t+1 (x) = t−1 (x) = t1. After embedding F 2
w, and a greedy

embedding connecting the paths to (Y 1
w)− and (Y 1

w)+, we will need path factors G1
w as follows.

Lemma 8.3. Suppose in Setting 8.1 and Case K that Zw is disjoint from Y 1
w ∪ (Y 1

w)+ and 8|Y 1
w | =

n − |Zw| − |(Y 1
w)+| for all w ∈ W , and d±

G′1
(x) = |W | − t1 − |Z(x)| for all x ∈ V . Then G′1 can be

partitioned into graphs (G1
w : w ∈W ), such that each G1

w is a vertex-disjoint union of oriented paths
with V (G1

w) = V \ Zw, where for each [a, b] ∈ Y1
w there is an ab+-path of length 8d(a, b).

Proof. We will show that there is a perturbation P of J1 such that each N−P (w) = V \Zw and P [V ]

corresponds to G′1 under twisting, and a set E of arc-disjoint copies of
−→
WK

8 in P , such that Theorem
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3.3 applies to give a
−→
WK

8 -decomposition of P ′ := P \⋃E. This will suffice, by taking each G1
w to

consist of the union of the oriented 8-paths that correspond under twisting to the rim 8-cycles of the

copies of
−→
WK

8 containing w.

We construct P by starting with P = J1 and applying a series of modifications as follows. First
we delete all arcs of P [V ] corresponding to arcs of G1 \G′1 and add arcs of colour 0 corresponding to
arcs of G′1 \G1. Similarly, we delete all arcs −→vw ∈ P [V,W ] with v ∈ N−J1(w)∩Zw and add arcs −→vw of

colour 0 for each v ∈ V \(Zw∪(Y 1
w)+∪N−J1(w)). We also replace any −→xy of colour K with d(x, y) < 3d

by an arc −→xy+ of colour 0; this affects at most 6d arcs at each vertex. Now P [V ] corresponds to G′1
under twisting, each N−P (w) = V \ (Zw ∪ (Y 1

w)+) and P is a 2η.9-perturbation of J1.

We note that P now satisfies the divisibility condition d−P (w) = 8|Y 1
w | = 8d−

PK (w), and for each

v ∈ V that d+P (v,W ) = |W |−t1−|Z(x)| = dP (v, V )/2, so |P [V,W ]| = |P [V ]|. We continue to modify
P to obtain |P 0[V,W ]| = |P 0[V ]| and |PK [V,W ]| = |PK [V ]|. To do so, we will recolour arcs of P [V ]
according to a greedy algorithm, where if |P 0[V ]| > |P 0[V,W ]| we replace some −→xy ∈ P 0[V ] by −→xy− ∈
PK [V ], or if |P 0[V ]| < |P 0[V,W ]| we replace some −→xy ∈ PK [V ] by −→xy+ ∈ P 0[V ]. This preserves P [V ]
corresponding to G′1 under twisting and |P [V ]| = |P [V,W ]|, so if we ensure |P 0[V,W ]| = |P 0[V ]|,
we will also have |PK [V,W ]| = |PK [V ]|. During the greedy algorithm, we choose the arc to recolour
arbitrarily, subject to avoiding the set S of vertices at which we have recoloured more than η.8n/2 arcs.
The total number of recoloured arcs is at most ||P [V,W ]|− |P [V ]|| ≤ ||J1[V,W ]|− |J1[V ]||+2η.9n2 <
3η.9n2 (by Lemma 5.5), so |S| < 12η.1n. Thus the algorithm can be completed, giving P that is an
η.8-perturbation of J1 with |P 0[V,W ]| = |P 0[V ]| and |PK [V,W ]| = |PK [V ]|.

We will continue modifying P [V ] until it satisfies the remaining degree divisibility conditions
for each v ∈ V , i.e. d+P (v, V ) = d−P (v, V ) = d+P (v,W ) and d−

PK (v, V ) = d+
PK (v,W ). To do so,

we will reduce to 0 the imbalance ∆′ =
∑

v∈V ∆′(v) with each ∆′(v) = |d+
PK (v, V ) − d+

PK (v,W )| +
|d−
PK (v, V )−d+

PK (v,W )|. We do not attempt to control any d±
P 0(v, V ), but nevertheless the divisibility

conditions will be satisfied when ∆′ = 0. To see this, note that if ∆′ = 0 then clearly all d+
PK (v, V ) =

d−
PK (v, V ) = d+

PK (v,W ), so it remains to show that d−P (v, V ) = d+P (v, V ) = d+P (v,W ). Here we
recall the discussion in section 4 relating the choice of intervals to degree divisibility, where (setting
H = G′1 and J = P ) we noted that d+

G′1
(v) = d+P (v, V ) and d−

G′1
(v) = d−P (v, V ) + ∆(v), with

∆(v) = d−
PK (v−, V )−d−

PK (v, V ) = d+
PK (v−,W )−d+

PK (v,W ). By our choice of intervals all d+
PK (v,W )

are equal to t1, so ∆(v) = 0 and d±P (v, V ) = d±
G′1

(v) = |W | − t1 − |Z(x)| = d+P (v,W ), as required.

We have two types of reduction according to the two types of term in the definition of ∆′(v):

i. If
∑

v |d−PK (v, V )− d+
PK (v,W )| > 0 then we can choose x, y in V with d−

PK (x, V ) > d+
PK (x,W )

and d−
PK (y, V ) < d+

PK (y,W ). We will find z ∈ V such that −→zx ∈ PK , −→zy+ ∈ P 0 and replace

these arcs by −→zx+ ∈ P 0, −→zy ∈ PK .
ii. If

∑
v |d+PK (v, V )− d+

PK (v,W )| > 0 then we can choose x, y in V with d+
PK (x, V ) > d+

PK (x,W )

and d+
PK (y, V ) < d+

PK (y,W ). We will find z ∈ V such that −→xz ∈ PK , −→yz+ ∈ P 0 and replace

these arcs by −→yz ∈ PK , −→xz+ ∈ P 0.
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i. (−, K)

z

x yx+ y+

ii. (+, K)

z

x y

z+

Each of these operations preserves P [V ] corresponding to G′1 under twisting and reduces ∆′.

To reduce ∆′ to 0 we apply a greedy algorithm where in each step we apply one of the above
operations. We do not allow z with d(x, z) < 3d+ 2 or d(y, z) < 3d+ 2 (to avoid creating close arcs
in colour K) or z in the set S′ of vertices that have played the role of z at η.7n/2 previous steps.
The total number of steps is at most 2η.8n2, so |S′| < 4η.1n. To estimate the number of choices for z
at each step, we apply Lemma 5.5.iii to |N−

JK′
1

(x+) ∩N−
J0
1
(y+)| for operation (i), |N+

JK′
1

(x) ∩N+
J0
1
(y)|

to find z+ for (ii). By typicality of G this gives at least α2n/9 choices, of which at most 5η.1n are
forbidden by lying in S or too close to x or y, or due to requiring an arc of J1 \ P , so some choice
always exists. Thus the algorithm can be completed, giving P that is an η.7-perturbation of J1,
satisfies the divisibility conditions, and has P [V ] corresponding to G′1 under twisting.

Next we construct E as a set of arc-disjoint copies of
−→
WK

8 that cover all −→xy ∈ P [V ] with d(x, y) <
3d. Note that all such −→xy have colour 0. We apply a greedy algorithm, where in each step that we

consider some −→xy we choose a copy of
−→
WK

8 that is arc-disjoint from all previous choices and does not
use any vertex in the set S of vertices that have been used .1d2 times. Then |S|.1d2 < 27dn, so this

forbids at most 270n7/d choices of
−→
WK

8 . By Lemma 6.2 we have Ŵ 1
K(−→xy) > 2−2s−1p1K/p

1
∗ > 2−3s, so

the number of choices is at least 2−3s minw∈W W 2
w,K/p

2
w,Kn > 2−4sn7, say. Thus there is always some

choice that is not forbidden, so the algorithm can be completed. We note that
⋃
E has maximum

degree at most d2 by definition of S, so P ′ := P \⋃E is a 2η.7-perturbation of J1. Furthermore, P ′

satisfies the divisibility conditions, as P does and so does each
−→
WK

8 in E.

Next we consider the regularity condition of Theorem 3.3. To each 3d-separated copy of
−→
WK

8 in
P ′ with hub w we assign weight p1w,Kn/W

1
w,K = (αp1K(αp1∗p

1
w,0n)7)−1, which lies in [n−7, Ln−7]. We

claim that for any arc −→e of P ′ there is total weight 1 ± η.6 on wheels containing −→e . To see this,
we compare the weight to Ŵ 1

K(−→e ) as defined in section 6, which is 1 ± 4ε by Lemma 6.2 (as −→e is
3d-separated, p1w,0 = 7p1w,K and p1∗ = 7p1K). The actual weight on −→e differs from this estimate only

due to wheels containing −→e that have another arc in P ′4J1. There are at most 40η.7n7 such wheels,
each affecting the weight by at most Ln−7, so the claim holds. Thus regularity holds with δ = η.6

and ω = L−1.

It remains to show that P ′ satisfies the extendability condition of Theorem 3.3. Consider any
disjoint A,B ⊆ V and L ⊆ W each of size ≤ h and a, b, ` ∈ {0,K}. By Lemma 5.5.iii we have
|N+

Ja
1
(A)∩N−

Jb
1
(B)∩N−

J`
1
(L)| = |N+

G (A)∩N−G (B)|(pa1)|A|(pb1)
|B|∏

w∈L p
1
w,`±4sn3/4 > (10−3α)2hn, say.

Also, if (A,B) is 3d-separated then by Lemma 5.5.iv we have |N+
J0
1
(A)∩N+

JK
1

(B)∩W | ≥ 2−2s+10h|W |,
say. The perturbation from J1 to P ′ affects these estimates by at most 6hη.7n < η.6n, so P ′ satisfies

extendability with ω = L−1 as above. Now Theorem 3.3 applies to give a
−→
WK

8 -decomposition of P ′,
which completes the proof. �
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9 The proof

This section contains the proof of our main theorem. We give the reduction to cases in the first
subsection and then the proof for both cases in the second subsection.

9.1 Reduction to cases

In this subsection we formalise the reduction to cases discussed in section 2. For Theorem 1.2, we
are given an (ε, t)-typical αn-regular digraph G on n vertices, where n−1 � ε � t−1 � α, and we
need to decompose G into some given family F of αn oriented one-factors on n vertices. We prove
Theorem 1.2 assuming that it holds in the following cases with t−1 � K−1 � α:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least K,

Case ` for all ` ∈ [3,K − 1]: each F ∈ F has ≥ K−3n cycles of length `.

We will divide into subproblems via the following partitioning lemma.

Lemma 9.1. Let n−1 � ε � t−1 � α0. Suppose G is an (ε, t)-typical αn-regular digraph on n
vertices and α =

∑
i∈I αi with each αi > α0. Then G can be decomposed into digraphs (Gi : i ∈ I)

on V (G) such that each Gi is (2ε, t)-typical and αin-regular.

Proof. We start by considering a random partition of G into graphs (G′i : i ∈ I) where for each
arc −→e independently we have P(−→e ∈ G′i) = αi/α. We claim that whp each G′i is (1.1ε, t)-typical.
Indeed, this holds by Chernoff bounds, as Ed(G′i) = αid(G)/α for each i, so whp d(G′i) = αi ± n−.4
(say), and for any set S = S− ∪ S+ of at most t vertices, by typicality of G we have E|N−

G′i
(S−) ∩

N+
G′i

(S+)| = (αi/α)|S||N−G (S−) ∩N+
G (S+)| = ((1 ± ε)d(G)αi/α)|S|n, so whp |N−

G′i
(S−) ∩N+

G′i
(S+)| =

((1± 1.1ε)d(G′i))
|S|n,

Now we modify the partition to obtain (Gi : i ∈ I), by a greedy algorithm starting from all
Gi = G′i. First we ensure that all |Gi| = αin

2. At any step, if this does not hold then some
|Gi| > αin

2 and |Gj | < αjn
2. We move an arc from Gi to Gj , arbitrarily subject to not moving more

than n.7 arcs at any vertex. We move at most n1.6 arcs, so at most 2n.9 vertices become forbidden
during this algorithm. Hence the algorithm can be completed to ensure that all |Gi| = αin

2. Each
|N−

G′i
(S−) ∩N+

G′i
(S+)| changes by at most tn.7, so each Gi is now (1.2ε, t)-typical.

Let G̃i be the undirected graph ofGi (which could have parallel edges). We will continue to modify

the partition until each G̃i is 2αin-regular, maintaining all |Gi| = αin
2. At each step we reduce the

imbalance
∑

i,x |dG̃i
(x) − 2αin|. If some G̃i is not 2αin-regular we have some d

G̃i
(x) > 2αin and

d
G̃i

(y) < 2αin. Considering the total degree of x, there is some j with d
G̃j

(x) < 2αjn. We will

choose some z with xz ∈ G̃i and yz ∈ G̃j , then move xz to G̃j and yz to G̃i, thus reducing the
imbalance by at least 2. We will not choose z in the set L of vertices that have played the role of z
at n.8 previous steps. We had all d

G̃i
(x) = 2(αin ± n.7) after the first algorithm, so this algorithm

will have at most 2n1.7 steps, giving |L| < n.9. By typicality, there are at least 3αiαjn choices of z,
of which at most 2n.9 are forbidden by L or requiring an edge that has been moved, so the algorithm
to make each G̃i be 2αin-regular can be completed. Each |N−Gi

(S−) ∩N+
Gi

(S+)| changes by at most

tn.8, so each Gi is now (1.1ε, t)-typical.

We will continue to modify the partition until each Gi is αin-regular, maintaining all d
G̃i

(x) =

2αin. At each step we reduce the imbalance
∑

i,x |d+Gi
(x) − αin| (if it is 0 then since total degrees

d
G̃i

(x) are correct, Gi is regular). If it is not 0 we have some d+Gi
(x) > αin and d+Gi

(y) < αin. Again
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there is some j with d+Gj
(x) < αjn and we choose some z with −→xz ∈ Gi and −→yz ∈ Gj , then move −→xz to

Gj and −→yz to Gi, avoiding vertices z which have played this role at n.9 previous steps. By typicality
we can find such z at every step and complete the algorithm. Each |N−Gi

(S−)∩N+
Gi

(S+)| changes by

at most tn.9, so each Gi is now (2ε, t)-typical. �

Factors of a type that is too rare will be embedded greedily via the following lemma.

Lemma 9.2. Let n−1 � ε � t−1 � α. Suppose G is an (ε, t)-typical αn-regular digraph on n
vertices and F is a family of at most εn oriented one-factors. Then we can remove from G a copy
of each F ∈ F to leave a (

√
ε, t)-typical (αn− |F|)-regular graph.

Proof. We embed the one-factors one by one. At each step, the remaining graph G′ is obtained from
G by deleting a graph that is regular of degree at most 2εn, so is (

√
ε, t)-typical. It is a standard

argument (which we omit) using the blow-up lemma of Komlós, Sárközy and Szemerédi [16] to show
that any one-factor can be embedded in G′, so the process can be completed. �

Now we prove Theorem 1.2 assuming that it holds in the above cases. We introduce new parame-
ters α1, α2,M

′
1,M1,M2,M3 with ε� t−1 �M−13 � α2 �M−12 � α1 � (M ′1)

−1 �M−11 � α. For
` ∈ [3,M2] let F` consist of all factors F ∈ F such that F has ≥M−32 n cycles of length ` but < M−32 n
cycles of each smaller length. Let F2 consist of all remaining factors in F . Note that each F ∈ F2

has fewer than n/M2 vertices in cycles of length less than M2, so at least (M2 − 1)n/M2 in cycles of
length at least M2. Let B be the set of ` ∈ [3,M2] such that |F`| < α2n. Then for ` ∈ I ′ := [3,M2]\B
we have β` := n−1|F`| ≥ α2. Also, writing FB =

⋃
`∈B F`, we have βB := n−1|FB| < M2α2 <

√
α2.

Let F1 be the set of F in F with at least n/2 vertices in cycles of length> M1. We first consider the
case η := n−1|F1| ≥ α/2. Let B1 = B∩ [3,M1], FB1 =

⋃
`∈B1 F`, and βB1 := n−1|FB1 | < βB <

√
α2.

We apply Lemma 9.1 with I = (I ′ ∩ [3,M1]) ∪ {1}, letting α` = β` for all ` ∈ I ′ ∩ [3,M1] and
α1 = η + βB1 , thus decomposing G into (2ε, t)-typical αin-regular digraphs Gi on V (G). For each
` ∈ I ′∩ [3,M1] we decompose G` into F` by Case ` of Theorem 1.2, where in place of the parameters
n−1 � ε� t−1 � K−1 � α we use n−1 � 2ε� t−1 �M−13 � α2. For G1, we first embed FB1 via
Lemma 9.2, leaving an ηn-regular digraph G′1 that is (ε′, t)-typical with α2 � ε′ � t−1 �M−12 . We
then conclude the proof of this case by decomposing G′1 into F1 by Case K of Theorem 1.2, where
in place of the parameters n−1 � ε� t−1 � K−1 � α we use n−1 � ε′ � t−1 �M−11 � η.

It remains to consider the case η < α/2. Here there are at least αn/2 factors F ∈ F with at least
n/2 vertices in cycles of length ≤ M1, so we can fix `∗ ∈ [M1] ∩ I ′ with β`∗ > α/2M1. We consider
two subcases according to β2 := n−1|F2|.

Suppose first that β2 < α1n. We apply Lemma 9.1 with I = I ′, letting α` = β` for all ` ∈ I \{`∗}
and α`∗ = β`∗ + βB1 + β2. For each ` ∈ I \ {`∗} we decompose G` into F` by Case ` of Theorem 1.2,
where (as before) in place of the parameters n−1 � ε� t−1 � K−1 � α we use n−1 � 2ε� t−1 �
M−13 � α2. For G`∗ we first embed FB∪F2 by Lemma 9.2, leaving a β`∗n-regular digraph G′`∗ that is
(ε′, t)-typical with α1 � ε′ � t−1 �M−11 . We then complete the decomposition by decomposing G′`∗
into F`∗ by Case `∗ of Theorem 1.2, where in place of the parameters n−1 � ε � t−1 � K−1 � α
we use n−1 � ε′ � t−1 � (M ′1)

−1 � β`∗ .

It remains to consider the subcase β2 ≥ α1n. We apply Lemma 9.1 with I = I ′ ∪ {2}, letting
α` = β` for all ` ∈ I \ {`∗} and α`∗ = β`∗ + βB1 . The same argument as in the first subcase
applies to decompose G` into F` for all ` ∈ I ′ \ {`∗}, and also to embed FB in G`∗ by Lemma 9.2
and decompose the leave G′`∗ into F`∗ . We complete the proof of this case, and so of the entire
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reduction, by decomposing G2 into F2 by Case K of Theorem 1.2, where in place of the parameters
n−1 � ε� t−1 � K−1 � α we use n−1 � 2ε� t−1 �M−12 � β2.

9.2 Proof of Theorem 1.2

We are now ready to prove our main theorem. We are given an (ε, t)-typical αn-regular digraph G
on n vertices, where n−1 � ε� t−1 � α, and we need to decompose G into some given family F of
αn oriented one-factors on n vertices. By the reductions in section 9.1, we can assume that we are
in one of the following cases with t−1 �M−1 � α:

Case K: each F ∈ F has at least n/2 vertices in cycles of length at least M ,

Case `∗ with `∗ ∈ [3,M − 1]: each F ∈ F has ≥M−3n cycles of length `∗.

Here the parameters of section 9.1 are renamed: ` is now `∗ so that ‘`’ is free to denote generic
cycle lengths; K is now M , as we want K to take different values in each case: we introduce M ′ with
t−1 �M ′−1 �M−1 and define

K =

{
M in Case K,
M ′ in Case `∗.

We define a parameter L by L = M in Case `∗ (so K−1 � L−1 � (`∗)−1), or as a new parameter
with K−1 � L−1 � α in Case K. We use these parameters to apply the algorithm of section 4 as
in (1), so we can apply the conclusions of the lemmas in sections 5 to 8.

We recall that each factor Fw is partitioned as F 1
w ∪F 2

w, where F 1
w either consists of exactly L−3n

cycles of length `∗ in Case `∗, or in Case K we have |F 1
w| − n/2 ∈ [0, 2K] and F 1

w consists of cycles
of length ≥ K and at most one path of length ≥ K (and then F 2

w = Fw \ F 1
w).

By Lemma 7.1, there are arc-disjoint digraphs G2
w ⊆ G2 for w ∈ W , where each G2

w is a copy of
some valid F ′w ⊆ F 2

w with V (G2
w) ⊆ N−J2(w), such that

i. G−2 = G2 \
⋃
w∈W G2

w has maximum degree at most 5d−1/3n,
ii. the digraph J−2 obtained from J2[V,W ] by deleting all −→xw with x ∈ V (G2

w) has maximum
degree at most 5d−1/3n,

iii. any x ∈ V has degree 1 in F ′w for at most n/
√
d choices of w.

(Recall that ‘valid’ means that F 2
w \ F ′w does not have any independent arcs, and if F 2

w contains a
path then F 2

w \ F ′w contains the arcs incident to each of its ends.)

Note that (ii) implies for each w ∈ W that |F ′w| ≥ |N−J2(w)| − 5d−1/3n > p2wn − 6d−1/3n (by

Lemma 5.5), so as p2wn = (1− η)|F 2
w|+ n.8 we have |F 2

w \ F ′w| < ηn.

Next we will embed oriented graphs Rw = (F 2
w \ F ′w) ∪Lw for w ∈W , where Lw ⊆ F 1

w is defined
as follows. In Case `∗ we let each Lw consist of 2ηL−3n cycles of length `∗. In Case K we partition
each F 1

w as Pw ∪Lw, where Pw is a valid vertex-disjoint union of paths, such that for each [a, b] ∈ Y1
w

we have an oriented path P abw in Pw of length 8d(a, b) (which we will embed as an ab+-path). To
see that such a partition exists, we apply the same argument as at the end of the proof of Lemma
7.1. We consider a greedy algorithm, where at each step that we consider some path P abw we delete
a path of length 8d(a, b) + 4 from F 1

w, which we allocate as P abw surrounded on both sides of paths of
length 2 that we add to Lw. As |Y1

w| < n/2d2s+1 = (2s)2sn/2d we thus allocate < (2s)2sn/d edges to
Lw. Suppose for contradiction that the algorithm gets stuck, trying to embed some path P in some
remainder Qw. Then all components of Qw have size ≤ 8d+ 5. All components of F 1

w have size ≥ K,
so |Qw| ≤ (8d + 5)|F 1

w|/K < 5dn/K. However, we also have |Qw| ≥ |F 1
w| − |Y 1

w | − |Lw| ≥ ηn/3, as
|F 1
w| ≥ n/2 and |Y 1

w | = (1− η)n/2± 2n3/4 by Lemma 5.4. This is a contradiction, so the algorithm
finds a partition F 1

w = Pw ∪ Lw with Pw valid. We note that each |Rw| < 2ηn.
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Now we apply a greedy algorithm to construct arc-disjoint embeddings (φw(Rw) : w ∈ W ) in
G1. At each step we choose some φw(x) ∈ N−

J1(w) (which is disjoint from G2
w ⊆ N−J2(w)). We

require φw(x) to be an outneighbour of some previously embedded φw(x1) or both an outneighbour
of φw(x1) and an inneighbour of φw(x2) for some previously embedded images; the latter occurs
when we finish a cycle or a path (the image under φw of the ends of the paths in Rw have already
been prescribed: they are either images of endpoints of paths in F ′w or startpoints / successors of
intervals in Y1

w). We also require φw(x) to be distinct from all previously embedded φw(x1) and not
to lie in the set S of vertices that are already in the image of φw′ for at least η.9n/2 choices of w′. As
η.9n|S|/2 ≤∑w∈W |Rw| < 2ηn2 we have |S| < 4η.1n. To see that it is possible to choose φw(x), first
note for any v, v′ in V and w ∈W that |N+

G1
(v)∩N−G1

(v′)∩N−
J1(w)| > α2n/3, by Lemma 5.5.iii and

typicality of G. At most |Rw| + |S| < 5η.1n choices of φw(x) are forbidden due to using S or some
previously embedded φw(x1). Also, by definition of S, we have used at most η.9n arcs at each of v
and v′ for other embeddings φw′ , so this forbids at most 2η.9n choices of φw(x). Thus the algorithm
never gets stuck, so we can construct (φw(Rw) : w ∈W ) as required.

Let G′1 = G\⋃w∈W (G2
w∪Rw). For each w ∈W let Zw be the set of vertices of in- and outdegree

1 in G2
w ∪Rw. We claim that G′1 and Zw satisfy Setting 8.1. To see this, first note that by definition

of S above each |N±G1
(x)\N±

G′1
(x)| < η.9n/2. As d±

G−2
(x) < 5d−1/3n by (i) above and (by Lemma 5.5)

d±G(x)− d±G1
(x)− d±G2

(x) < (1− p1− p2)d±G(x) +n.6 < 2ηn we have |N±G1
(x)4N±

G′1
(x)| < η.9n, so G′1

is an η.9-perturbation of G1. Also, as |N−J2(w) \ F ′w| ≤ 5d−1/3n, |Rw| < 2ηn and |V \N−J (w)| < 2ηn

(the last by Lemma 5.5) we have |Zw 4 (V \N−
J1(w))| < 5ηn, as claimed.

In Case `∗, every vertex has equal in- and outdegrees 0 or 1 in G2
w ∪ Rw (it is a vertex-disjoint

union of cycles) so d±
G′1

(x) = |W | − |Z(x)| for all x ∈ V and `∗ divides n− |Zw| for all w ∈W . Thus

Lemma 8.2 applies to partition G′1 into graphs (G1
w : w ∈ W ), where each G1

w is a C`∗-factor with
V (G1

w) = V \ Zw, thus completing the proof of this case.

In Case K, a vertex x has indegree (respectively outdegree) 1 in G2
w∪Rw exactly when x ∈ (Y 1

w)−

(respectively (Y 1
w)+), for which there are each t1 choices of w, so d±

G′1
(x) = |W | − t1 − |Z(x)| for all

x ∈ V . By construction, Zw is disjoint from (Y 1
w)−∪ (Y 1

w)+, and the total length of paths required in
the remaining path factor problem satisfies 8|Y 1

w | = n− |Zw| − |(Y 1
w)+| for all w ∈W . Thus Lemma

8.3 applies to partition G′1 into graphs (G1
w : w ∈ W ), such that each G1

w is a vertex-disjoint union
of oriented paths with V (G1

w) = V \ Zw, where for each [a, b] ∈ Y1
w there is an ab+-path of length

8d(a, b). This completes the proof of this case, and so of Theorem 1.2.

10 Concluding remarks

As mentioned in the introduction, our solution to the generalised Oberwolfach Problem is more
general than the result of [9] in three respects: it applies to any typical graph (theirs is for almost
complete graphs) and to any collection of two-factors (they need some fixed F to occur Ω(n) times),
and it applies also to directed graphs. Although there are some common elements in both of our
approaches (using [12] for the exact step and some form of twisting), the more general nature of
our result reflects a greater flexibility in our approach that has further applications. One such
application is our recent proof [14] that every quasirandom graph with n vertices and rn edges can
be decomposed into n copies of any fixed tree with r edges. The case of the complete graph solves
Ringel’s tree-packing conjecture [19] (solved independently via different methods by Montgomery,
Pokrovskiy and Sudakov [18]).

30



A natural open problem raised in [9] is whether the generalised Oberwolfach problem can be
further generalised to decompositions of Kn into any family of regular graphs of bounded degree
(where the total of the degrees is n− 1).

We are grateful to the referee for their helpful comments on our paper.
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