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Abstract The generalization performance is the main concern of machine learning theoreti-
cal research. The previous main bounds describing the generalization ability of the Empirical
Risk Minimization (ERM) algorithm are based on independent and identically distributed
(i.i.d.) samples. In order to study the generalization performance of the ERM algorithm with
dependent observations, we first establish the exponential bound on the rate of relative uni-
form convergence of the ERM algorithm with exponentially strongly mixing observations,
and then we obtain the generalization bounds and prove that the ERM algorithm with expo-
nentially strongly mixing observations is consistent. The main results obtained in this paper
not only extend the previously known results for i.i.d. observations to the case of exponen-
tially strongly mixing observations, but also improve the previous results for strongly mixing
samples. Because the ERM algorithm is usually very time-consuming and overfitting may
happen when the complexity of the hypothesis space is high, as an application of our main
results we also explore a new strategy to implement the ERM algorithm in high complexity
hypothesis space.
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1 Introduction

Recently there has been a great increase in the interest for theoretical issues in the ma-
chine learning community, which is mainly due to the fact that statistical learning the-
ory has demonstrated its usefulness by providing the ground for developing successful
and well-founded learning algorithms such as Support Vector Machines (SVMs) (Vap-
nik 1998). This renewed interest for theory naturally boosted the development of perfor-
mance bounds for learning machines (see e.g. Bartlett and Long 1998; Bousquet 2003;
Cesa-Bianchi et al. 2004; Cucker and Zhou 2007; Lugosi and Pawlak 1994; Smale and Zhou
2003, 2004; Wu and Zhou 2005; Zhou 2003 and references therein). In order to measure the
generalization ability of the empirical risk minimization algorithm with i.i.d. observations,
Vapnik (1998) first established the bound on the rate of uniform convergence and that on the
rate of relative uniform convergence for i.i.d. observations respectively. Bousquet (2003) ob-
tained a generalization of Vapnik and Chervonenkis’ bounds by using a new measure of the
size of function classes, local Rademacher average (Bartlett and Mendelson 2002). Cucker
and Smale (2002a) considered the least squares error and decomposed the error (or gener-
alization error) into two parts: the sample error and the approximation error, and then they
bounded the sample error and the approximation error based on i.i.d. observations respec-
tively for a compact hypothesis space. Chen et al. (2004) obtained the bound on the excess
expected risk for pattern recognition with i.i.d. observations by introducing a projection
operator.

However, independence is a very restrictive concept in several ways (Vidyasagar 2002).
First, it is often an assumption, rather than a deduction on the basis of observations. Second,
it is an all or nothing property, in the sense that two random variables are either indepen-
dent or they are not—the definition does not permit an intermediate notion of being nearly
independent. As a result, many of the proofs based on the assumption that the underlying
stochastic sequence is i.i.d. are rather “fragile”. The notion of mixing allows one to put the
notion of “near independence” on a firm mathematical foundation, and moreover, permits
one to derive a robust rather than a “fragile” theory. In addition, the i.i.d. assumption can not
be strictly justified in real-world problems, for example, many machine learning applications
such as market prediction, system diagnosis, and speech recognition are inherently temporal
in nature, and consequently not i.i.d. processes (Steinwart et al. 2006). Therefore, relaxations
of such i.i.d. assumption have been considered for quite a while in both machine learning
and statistics literatures. For example, Yu (1994) established the rates on the uniform conver-
gence of the empirical means to their means for stationary mixing sequences. White (1989)
considered cross-validated regression estimators for strongly mixing processes and estab-
lished convergence, without rates, of their estimators. Modha and Masry (1996) established
the minimum complexity regression estimation with m-dependent observations and strongly
mixing observations respectively. Vidyasagar (2002) considered several notions of mixing
(e.g. α-mixing, β-mixing and ϕ-mixing) and proved that most of the desirable properties
(e.g. PAC property or UCEMUP property) of i.i.d. sequences are preserved when the un-
derlying sequence is mixing sequence. Nobel and Dembo (1993) proved that, if a family
of functions has the property that the empirical means, based on i.i.d. sequences, converge
uniformly to their expected values as the number of samples approaches infinity, then the
family of functions continues to have the same property if the i.i.d. sequence is replaced
by β-mixing sequence. Karandikar and Vidyasagar (2002) extended this result to the case
where the underlying probability is itself not fixed, but varies over a family of measures.
Vidyasagar (2002) obtained the bound on the rate of uniform convergence of the empirical
means to their means for mixing sequences. Steinwart et al. (2006) proved that the SVMs
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for both classification and regression are consistent if the data-generating process (e.g. mix-
ing process, Markov process) satisfies a certain type of law of large numbers (e.g. WLLNE,
SLLNE). Zou and Li (2007) established the bound on the rate of uniform convergence of
learning machines with exponentially strongly mixing observations.

To extend the previous bounds in Bousquet (2003), Cucker and Smale (2002a), Vapnik
(1998) on the rate of relative uniform convergence to the case where the i.i.d. observations
are replaced by exponentially strongly mixing observations, and to improve the results in
Vidyasagar (2002), Zou and Li (2007) based on strongly mixing sequences, in this paper
we first establish the bound on the rate of relative uniform convergence of the ERM algo-
rithm with exponentially strongly mixing samples, and then we obtain the generalization
bounds of the ERM algorithm with exponentially strongly mixing samples. Because when
the complexity of the given function set is high, the problem of solving ERM algorithm is
usually very time-consuming and overfitting may happen, as an application of our main re-
sults we also explore a new method to solve the problem of ERM learning with exponentially
strongly mixing samples.

The rest of this paper is organized as follows: In Sect. 2, we introduce some notions and
notations. In Sect. 3, we present the main results of this paper. In Sect. 4 we establish the
bound on the rate of relative uniform convergence of the ERM algorithm with exponentially
strongly mixing observations. We prove the generalization bounds of the ERM algorithm
with exponentially strongly mixing sequences in Sect. 5. Finally, we conclude the paper
with some useful remarks in Sect. 6.

2 Preliminaries

In this section we introduce the definitions and notations used throughout the paper.
Let Z = {zi = (xi, yi)}∞

i=−∞ be a stationary real-valued sequence on a probability space
(Ω, B,P ). For −∞ < i < ∞, let σ∞

i and σ i−∞ denote the σ -algebra events generated by
the random variables zj , j ≥ i and zj , j ≤ i respectively. With these notations, there are
several definitions of mixing, but we shall be concerned with only one, namely, α-mixing in
this literature (see Ibragimov and Linnik 1971; Modha and Masry 1996; Rosenblatt 1956;
Vidyasagar 2002; Yu 1994).

Definition 1 (Vidyasagar 2002) The sequence Z is called α-mixing, or strongly mixing (or
strongly regular), if

sup
A∈σ 0−∞,B∈σ∞

k

{|P (A ∩ B) − P (A)P (B)|} = α(k) → 0 as k → ∞.

Here α(k) is called the α-mixing coefficient.

Assumption 1 (Exponentially strongly mixing) (Modha and Masry 1996) Assume that the
α-mixing coefficient of the sequence Z satisfies

α(k) ≤ α exp(−ckβ), k ≥ 1,

for some α > 0, β > 0, and c > 0, where the constants β and c are assumed to be known.

Remark 1 (Modha and Masry 1996) Assumption 1 is satisfied by a large class of processes,
for example, certain linear processes (which includes certain ARMA processes) satisfy
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the assumption with β = 1 (Withers 1981), and certain aperiodic, Harris-recurrent Markov
processes (which includes certain bilinear processes, nonlinear ARX processes, and ARH
processes) satisfy the assumption (Davydov 1973). As a trivial example, i.i.d. random vari-
ables satisfy the assumption with β = ∞.

Denote by z the sample set of size n observations

z = {z1, z2, . . . , zn}
drawn from the exponentially strongly mixing sequence Z . Set

n(α) = �n	{8n/c}1/(β+1)
−1�,
where n denotes the number of observations drawn from Z and �u�(	u
) denotes the great-
est (least) integer less (greater) than or equal to u.

The goal of machine learning from random sampling is to find a function f that as-
signs values to objects such that if new objects are given, the function f will forecast them
correctly. Let

E (f ) = E[�(f, z)] =
∫

�(f, z)dP

be the expected risk (or expected error) of function f , where the function �(f, z), which is
integrable for any f and depends on f and z, called loss function. In this paper, we would
like to establish a general framework which includes pattern recognition and regression
estimation, so we consider the loss function of general form �(f, z). The important feature
of the regression estimation problem is that the loss function �(f, z) can take arbitrary non-
negative values whereas in pattern recognition problem it can take only two values.

A learning task is to find the minimizer of the expected risk E (f ) over a given hypothesis
space H. Since one knows only the set z of random samples instead of the distribution P ,
the minimizer of the expected risk E (f ) can not be computed directly. According to the
principle of Empirical Risk Minimizing (ERM) (Vapnik 1998), we minimize, instead of the
expected risk E (f ), the so called empirical risk (or empirical error)

En(f ) = 1

n

n∑
i=1

�(f, zi).

Let fH be a function minimizing the expected risk E (f ) over f ∈ H, i.e.,

fH = arg min
f ∈H

E (f ) = arg min
f ∈H

∫
�(f, z)dP .

We define the empirical target function fz to be a function minimizing the empirical risk
En(f ) over f ∈ H, i.e.,

fz = arg min
f ∈H

En(f ) = arg min
f ∈H

1

n

n∑
i=1

�(f, zi). (1)

According to the principle of ERM, we shall consider the function fz as an approxima-
tion function of the target function fH . Thus a central question of ERM learning is how well
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fz really approximate fH . If this approximation is good, then the ERM algorithm is said
to generalize well. A ERM algorithm with generalization capability implies that although
it is found via minimizing the empirical risk En(f ), it can eventually predict as well as the
optimal predictor fH. To characterize the generalization capability of a learning algorithm
requires in essence to decipher how close fz is from fH . This is a very difficult issue in
general (Vapnik 1998). In the framework of statistical learning, however, this is then relaxed
to considering how close the expected risk E (fz) is from E (fH), or equivalently, how small
can we expect the difference E (fz) − E (fH) to be. We call the refined upper bound estima-
tions on E (fz) or on the deviation between E (fz) and E (fH) the generalization bounds of
the ERM algorithm.

Since fz is dependent on the sample set z, in other words, the minimization (1) is taken
over the discrete quantity En(f ), intuitively, we have to estimate the capacity of the func-
tion set H. It has been shown that VC-dimension is not suitable for real-valued function
classes (Evgeniou and Pontil 1999). As for the Vγ -dimension or Pγ -dimension, though their
finiteness is sufficient and necessary for a function class to be a uniform Glivenko-Cantelli
(Alon et al. 1997), no satisfactory relationship has been found between them and the cov-
ering numbers in order to derive sharp estimates. So the capacity of the function set H is
measured by the covering number in this paper.

Definition 2 (Cucker and Smale 2002a) For a subset F of a metric space and ε > 0, the
covering number N (F , ε) of the function set F is the minimal integer b ∈ N such that there
exist b disks with radius ε covering F .

To estimate the generalization ability of the ERM algorithm (1) with exponentially
strongly mixing samples, we give some basic assumptions on the hypothesis space H and
the loss function �(f, z):

(i) Assumption on the hypothesis space: We suppose that H is contained in a ball of a
Hölder space Cp on a compact subset of a Euclidean space Rd for some p > 0, that is,

H = {f ∈ BR(Cp) : r < E (f ) ≤ s },
where R is the radius of ball BR(Cp).

(ii) Assumption on the loss function: We define

M = sup
f ∈H

max
z∈Z

|�(f, z)|

and

L = sup
g1,g2∈H,g1 �=g2

max
z∈Z

|�(g1, z) − �(g2, z)|
|g1 − g2| .

We assume that M and L are finite in this paper.
Because the function set H is assumed to be compact, the covering number N (H, ε) is

finite for a fixed ε > 0. Then there exists constant C0 > 0 such that (Zhou 2003)

N (H, ε) ≤ exp{C0ε
−2d
p }. (2)

3 Main results

To measure the generalization performance of a learning machine, Bousquet (2003), Cucker
and Smale (2002a), Vapnik (1998) obtained the bound on the rate of the empirical risks
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uniform convergence to their expected risks in a given set H (or Q) based on i.i.d. sequences,
that is, for any ε > 0, they bounded the term

Prob
{

sup
f ∈H

|E (f ) − En(f )| > ε
}
. (3)

Vidyasagar (2002) also established the bounds on the term (3) based on β-mixing sequences
and α-mixing sequences respectively. Yu (1994) obtained the convergence rates of the term
(3) for mixing sequences. Zou and Li (2007) established the bound on the term (3) based
on exponentially strongly mixing observations. The interested reader can consult (Zou and
Li 2007; Vidyasagar 2002; Yu 1994) for the details. For more inequalities on probabilities
of uniform deviations, see, for example, Alexander (1984), Bartlett and Lugosi (1999), De-
vroye (1982), Pollard (1984), Talagrand (1994).

However, the term (3) fails to capture the phenomenon that for those functions f ∈ H
for which the expected risk E (f ) is small, the deviation E(f ) − En(f ) is also small with
large probability (see Bartlett and Lugosi 1999; Bousquet 2003; Vapnik 1998). In order
to extend these results in Bousquet (2003), Cucker and Smale (2002a), Vapnik (1998) to
the case where the i.i.d. sequence is replaced by α-mixing sequence, and to improve these
estimations in Zou and Li (2007), Vidyasagar (2002), our purpose in this paper is to bound
the term (for any ε > 0)

Prob

{
sup
f ∈H

E(f ) − En(f )√
E (f )

> ε

}
(4)

for the ERM algorithm (1) with exponentially strongly mixing samples. Our main results
are stated as follows.

Theorem 1 Let Z be a stationary α-mixing sequence with the mixing coefficient satisfying
Assumption 1, that is

α(k) ≤ α exp(−ckβ), k ≥ 1, α > 0, β > 0, c > 0.

Set n(α) = �n	{8n/c}1/(β+1)
−1�, and assume that the variance D[�(f, z)] ≤ σ 2 for all z ∈ Z
and for all functions in H. Then for any ε, 0 < ε ≤ 2r, the inequality

Prob

{
sup
f ∈H

E (f ) − En(f )√
E (f )

≥ ε

}
≤ CN

(
H,

εr
√

r

(s + 4r)L

)
exp

{ −rτ 2n(α)

2(σ 2 + τ
√

sM/3)

}
(5)

holds, where C = 1 + 4e−2α, and τ = r
√

r√
s(s+4r)

ε.

In particular, if Z is an i.i.d. sequence, according to Remark 1, we take β = ∞ in Theo-
rem 1 and ignore the multiplicative constant 1 + 4e−2α. The following bound follows from
Theorem 1 immediately.

Corollary 1 Let Z be an i.i.d. sequence, and assume that the variance D[�(f, z)] ≤ σ 2 for
all z ∈ Z and for all functions in H. Then for any ε, 0 < ε ≤ 2r, the inequality

Prob

{
sup
f ∈H

E(f ) − En(f )√
E (f )

≥ ε

}
≤ N

(
H,

εr
√

r

(s + 4r)L

)
exp

{ −rτ 2n

2(σ 2 + τ
√

sM/3)

}

holds.
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Remark 2 (i) n(α) arises from the Bernstein inequality (Theorem 4.3) for strongly mixing
processes in Modha and Masry (1996) and is called the “effective number of observations”
for strongly mixing processes. From Theorem 1 and Corollary 1, we can find that n(α) plays
the same role in our analysis as that played by the number n of observations in the i.i.d. case.

(ii) Since n(α) → ∞ as n → ∞, by Theorem 1, we then have that for any 0 < ε ≤ 2r

Prob

{
sup
f ∈H

E(f ) − En(f )√
E (f )

≥ ε

}
→ 0, as n → ∞.

This shows that as long as the covering number of the hypothesis space H is finite, the
empirical risks En(f ) can uniformly converge to their expected risks E (f ), and the conver-
gence speed may be exponential. This assertion is well known for the ERM algorithm with
i.i.d. samples (see e.g. Bousquet 2003; Cucker and Smale 2002a; Vapnik 1998). We have
generalized these classical results in Bousquet (2003), Cucker and Smale (2002a), Vapnik
(1998) to the exponentially strongly mixing sequences.

(iii) Theorem 1 is on the rate of relative uniform convergence of the ERM algorithm (1)
with exponentially strongly mixing sequences. As far as we know, this is the first result on
this topic. The bound in Theorem 1 usually has smaller confidence interval than that bound
on the rate of uniform convergence (this is the reason why Bousquet 2003; Cucker and
Smale 2002a; Vapnik 1998 bounded the term (4)).

Theorem 1 will be proven in the next section. Before going into the technical proofs, we
first deduce the generalization bounds of the ERM algorithm (1) with exponentially strongly
mixing samples.

Proposition 1 Let Z be a stationary α-mixing sequence with the mixing coefficient sat-
isfying Assumption 1. Assume that the variance D[�(f, z)] ≤ σ 2 for all z ∈ Z and for all
functions in H. Then for any η ∈ (0,1], the following inequalities hold true provided that

n(α) ≥ max

{
ln(C/η)

2C1r2
,
C0[(s + 4r)L] 2d

p

C12
2d
p r

5d+2p
p

,
ln(C/η(σ 2 + sM/3))

2r2

}
.

(i) With probability at least 1 − η,

E (fz) ≤ En(fz) + ε2(n, η)

2

(
1 +

√
1 + 4En(fz)

ε2(n, η)

)
. (6)

(ii) With probability at least 1 − 2η,

E (fz) − E (fH) ≤ ε′(n, η) + ε2(n, η)

2

(
1 +

√
1 + 4En(fz)

ε2(n, η)

)
, (7)

where

ε(n, η) ≤ max

{[
2 ln(C/η)

C1n(α)

] 1
2

,

[
2C0r

−3d
p [(s + 4r)L] 2d

p

C1n(α)

] p
2p+2d

}
,

ε′(n, η) = M ln(C/η)

3n(α)

(
1 +

√
1 + 18n(α)σ 2

M2 ln(C/η)

)
,
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C1 = 3r4

2s(s + 4r)[3(s + 4r)σ 2 + 2r
5
2 M]

.

Remark 3 (i) Since when n → ∞, n(α) → ∞, we have

ε(n, η) → 0, ε′(n, η) → 0, as n → ∞.

By inequality (7), we then have

E (fz) − E (fH) → 0, as n → ∞.

This shows that the ERM algorithm (1) with exponentially strongly mixing observations is
consistent whenever the covering number of the target function set H is finite.

(ii) Bounds (6) and (7) describe the generalization performance of the ERM algorithm (1)
with exponentially strongly mixing observations in the given function set H: Bound (6)
evaluates the risk for the chosen function in the target function set H, and bound (7) evaluates
how close this risk is to the smallest possible risk for the target functions set H.

(iii) Strongly mixing samples usually contain less information than i.i.d. samples, and
they therefore might lead to worse learning rates. This property of dependent samples is just
what we can expect as reflected in our results.

In addition, from Proposition 1, we can find that if p � d , the learning rates of the ERM
algorithm with exponentially strongly mixing samples are close to or as same as those for
learning rate with i.i.d. samples.

The ERM algorithm is known to be a classical learning algorithm in statistical learning
theory (Vapnik 1998). However, when the complexity of the given function set H is high,
the ERM algorithm (1) is usually very time-consuming and overfitting may happen (see
Wu and Zhou 2005). Thus, regularization techniques are frequently adopted. Two kinds of
regularization methods are the most interesting: the Tikhonov regularization and the Ivanov
regularization. The interested reader can consult Wu and Zhou (2005) for the details. As an
application of Proposition 1, in this paper we also explore a new method to solve the time-
consuming problem of the ERM algorithm (1) by following the enlightening idea of Giné
and Koltchinski (2006). We simply state our ideas as follows: first, we decompose the given
target function set H into different disjoint compact subsets such that the complexities of
all subsets are small. To be more precise, for the given r, s, r < s, we take q > 1 and a ∈ N
such that s = rqa , and

a = logq

(
s

r

)
.

Let ρi = rqi, i = 0,1, . . . , a (with ρ0 = r, ρa = s). We set

H(ρi−1) = {f ∈ H : E (f ) ≤ ρi−1},
and

H(ρi−1, ρi] = H(ρi)\H(ρi−1).

Then we have

H =
a⋃

i=1

H(ρi−1, ρi],
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where a is finite because H is assumed to be compact. Second, for a given function subset
H(ρi−1, ρi], i ∈ {1,2, . . . , a}, by the ERM algorithm (1), we can obtain the corresponding
empirical target function f i

z , and then we can obtain the upper bound of their risk E (f i
z )

by the same argument conducted in Proposition 1. Thus we choose the minimizer of these
upper bounds of the risks E (f i

z ), i ∈ {1,2, . . . , a} as the risk of the chosen function in the
hypothesis space H. We can obtain the following proposition.

Proposition 2 With all notations as in Proposition 1, let f i
z , i ∈ {1,2, . . . , a} be the func-

tion minimizing the empirical risk En(f ) over f ∈ H(ρi−1, ρi]. Then for any η ∈ (0,1], the
following inequalities hold true provided that

n(α) ≥ max

{
ln(C/η)

2C1r2
,
C0[(s + 4r)L] 2d

p

C12
2d
p r

5d+2p
p

,
ln(C/η(σ 2 + sM/3))

2r2

}
.

(i) With probability at least 1 − η,

E (fz) ≤ min
1≤i≤a

{
En(f

i
z ) + ε2

i (n, η)

2

(
1 +

√
1 + 4En(f i

z )

ε2
i (n, η)

)}
.

(ii) With probability at least 1 − 2η,

E (fz) − E (fH) ≤ ε′(n, η) + min
1≤i≤a

{
ε2
i (n, η)

2

(
1 +

√
1 + 4En(f i

z )

ε2
i (n, η)

)}
,

where C1 and ε′(n, η) are defined as in Proposition 1, Ci is defined as at the end of Sect. 5,
and

εi(n, η) ≤ max

{[
2 ln(C/η)

Cin(α)

] 1
2

,

[
2C0(ρi−1)

−3d
p [(ρi + 4ρi−1)L] 2d

p

Cin(α)

] p
2p+2d

}
.

Propositions 1 and 2 will be proven in the next section. Before going into the technical
proofs, in order to have a better understanding of the significance and value of the established
results in this paper, we compare our results with the previously known results in Vidyasagar
(2002). Therefore, we first give the equivalent form of inequality (7) in Proposition 1 as
follows.

By Theorem 1, we have that for any 0 < ε < 2r , and for the function fz that minimizes
the empirical risk En(f ) over H, the inequality

Prob

{
E (fz) − En(fz)√

E (fz)
≥ ε

}
≤ CN

(
H,

εr
√

r

(s + 4r)L

)
exp

{ −rτ 2n(α)

2(σ 2 + τ
√

sM/3)

}

is valid, where C = 1 + 4e−2α, and τ = r
√

r√
s(s+4r)

ε.

It follows that for any 0 < ε < 2r ,

Prob
{

E (fz) − En(fz) ≥ ε
√

s
}

≤ CN
(

H,
εr

√
r

(s + 4r)L

)
exp

{ −rτ 2n(α)

2(σ 2 + τ
√

sM/3)

}
. (8)
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By Theorem 2 in the next section, we also have that for any ε > 0, and for the function
fH that minimizes the expected risk E (f ) over H, the inequality

Prob
{

En(fH) − E (fH) ≥ ε
√

s
}

≤ C exp

{ −rε2n(α)

2(σ 2 + ε
√

sM/3)

}
(9)

holds true. Note that

E (fz) − E (fH) ≤ E (fz) − En(fz) + En(fH) − E (fH). (10)

Taking inequality (8) into account from (9) and (10), and replacing ε by ε

2
√

s
, we conclude

that for any 0 < ε < 2r , the inequality

Prob
{

E (fz) − E (fH) ≥ ε
} ≤ 2CN

(
H,

εr
√

r

2
√

s(s + 4r)L

)
exp

{ −rτ ′2n(α)

2(σ 2 + τ ′√sM/3)

}
(11)

holds, where C = 1 + 4e−2α, and τ ′ = r
√

r

2s(s+4r)
ε.

Thus we have the following remarks.

Remark 4 Comparing bound (11) with the bound in Theorem 6.12 obtained by Vidyasagar
(2002), we can find that although we adopt the same measure of the complexity of function
set, the covering number, and our proof techniques have many steps similar to that of The-
orem 3.5 in Vidyasagar (2002). The differences between bound (11) and the bound in The-
orem 6.12 are obvious: First, the key proof technique and method are different. Vidyasagar
(2002) first established the bound (Theorem 3.5) on the empirical means uniform conver-
gence to their true values, then he proved that the minimal empirical risk algorithm based on
a function family of finite metric entropy is PAC (see Theorem 6.12 in Vidyasagar 2002). In
this paper, we first adopted the sign n(α) introduced by Modha and Masry (1996) to establish
a new bound on the relative uniform convergence of the ERM algorithm with exponentially
strongly mixing samples, which consists of only one exponential term, and then we obtained
the generalization bounds of the ERM algorithm and proved that the ERM algorithm with
exponentially strongly mixing samples is consistent.

Second, in Theorem 6.12, Vidyasagar (2002) merely established the bound in the case
of n = kl, that is, Theorem 6.12 in Vidyasagar (2002) is on the case of the number n of
samples can be exactly divisible by integer k. In the case of n = kl, comparing the bound in
Theorem 6.12 with bound (11), we can find that if k and l satisfy

k ≤
[

ln(4αl)

c
+ lε2

8c
+ 4lε

c

] 1
β

,

bound (11) has better convergence rate than the bound in Theorem 6.12, otherwise bound
(11) has the same convergence rate as that bound in Theorem 6.12.

In addition, since n(α) = O(n
β

β+1 ), the convergence rate of bound (11) is close to or as
same as those for convergence rate with i.i.d. samples in Bousquet (2003), Cucker and Smale
(2002a), Vapnik (1998).

4 Proof of relative uniform convergence bound

To prove the main results presented in the last section, we first establish a new bound on the
relative difference between the empirical risks and their expected risks by using an argument
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similar to that used by Modha and Masry (1996) and by Vidyasagar (2002). Our approach
is however based on the Bernstein moment condition (see Craig 1933; Modha and Masry
1996) and the covariance inequality for α-mixing sequences in Vidyasagar (2002).

Lemma 1 (Craig 1933) Let W be a random variable such that E(W) = 0, and W satisfies
the Berstein moment condition, that is , for some K1 > 0,

E|W |k ≤ Var(W)

2
k!Kk−2

1

for all k ≥ 2. Then, for all 0 < ξ < 1/K1,

E[exp(ξW)] ≤ exp

[
ξ 2E|W |2

2(1 − ξK1)

]
.

Lemma 2 (Vidyasagar 2002) Suppose Z is an α-mixing stochastic process. Suppose
g0, g1, . . . , gl are essentially bounded functions, where gi depends only on zik . Then

∣∣∣∣∣E
[

l∏
i=0

gi

]
−

l∏
i=0

E(gi)

∣∣∣∣∣ ≤ 4lα(k)

l∏
i=0

‖gi‖∞.

To exploit the α-mixing property, we decompose the index set I = {1,2, . . . , n} into
different parts as follows: Given an integer n, choose any integer kn ≤ n and define ln =
�n/kn� to be the integer part of n/kn. For the time being, kn and ln are denoted respectively
by k and l so as to reduce notational clutter. The dependence of k and l on n is restored near
the end of the paper.

Let p = n − kl and define the index sets Ii, i = 1,2, . . . , k as follows

Ii =
{ {i, i + k, . . . , i + lk} 1 ≤ i ≤ p,

{i, i + k, . . . , i + (l − 1)k} p + 1 ≤ i ≤ k.

Note that
⋃

i Ii equals the index set I = {1,2, . . . , n} and that within each set Ii the elements
are pairwise separated by at least k. Then we have the following theorem.

Theorem 2 Let Z be a stationary α-mixing sequence with the mixing coefficient satisfying
Assumption 1. Assume that the variance D[�(f, z)] ≤ σ 2 for all z ∈ Z and for all functions
in H. Then for all ε > 0, the inequality

Prob

{
E(f ) − En(f )√

E (f )
> ε

}
≤ (1 + 4e−2α) exp

{ −n(α)rε2

2(σ 2 + ε
√

sM/3)

}
(12)

holds.

Proof For any i, 1 ≤ i ≤ n, let

Xi = E[�(f, z1)] − �(f, zi), Sn =
n∑

i=1

Xi,

then we have

E(f ) − En(f ) = 1

n
Sn.
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Let pi = |Ii |
n

for i = 1,2, . . . , k, where |Ii | is the number of terms in the i-th part, it then
follows that

k∑
i=1

pi = 1

n

n∑
i=1

|Ii | = 1.

Then

Sn =
k∑

i=1

[ ∑
m∈Ii

Xm

]
=

k∑
i=1

T (i), (13)

where T (i) = ∑
m∈Ii

Xm.

Now we can apply 1
n
Sn to the exponential exp (

γ Sn

n
) for all γ > 0

E

[
exp

(
γ

Sn

n

)]
≤

k∑
i=1

piE

[
exp

(
γ

T (i)

|Ii |
)]

. (14)

We now bound the second term on the right-hand side of inequality (14) which is denoted
henceforth by φ. For any i ∈ {1,2, . . . , k}, we have

φ = E

[
exp

( ∑
m∈Ii

γXm

|Ii |
)]

= E

[ |Ii |∏
m=1

exp

(
γXm

|Ii |
)]

≤
|Ii |∏

m=1

E

[
exp

(
γXm

|Ii |
)]

+
∣∣∣∣∣E

[ |Ii |∏
m=1

exp

(
γXm

|Ii |
)]

−
|Ii |∏

m=1

E

[
exp

(
γXm

|Ii |
)]∣∣∣∣∣. (15)

For simplicity, we denote the first term in inequality (15) by S1, and denote the second term
in inequality (15) by S2. Now we proceed through the following two steps.

Step 1 Estimate S1. By the stationary property of the α-mixing sequence Z , we have

S1 =
|Ii |∏

m=1

E

[
exp

(
γXm

|Ii |
)]

=
{

E

[
exp

(
γX1

|Ii |
)]}|Ii |

.

Since X1
|Ii | satisfies the Bernstein moment condition with K1 = M

3|Ii | (Modha and Masry 1996)
in Lemma 1 and

E[X1] = E
{
E[�(f, z1)] − �(f, z1)

} = 0.

Hence for all 0 < γ ≤ 3|Ii |
M

, we have

|Ii |∏
m=1

E

[
exp

(
γXm

|Ii |
)]

≤ exp

[
γ 2|Ii |E

∣∣ X1
|Ii |

∣∣2

2(1 − γM/(3|Ii |))
]

≤ exp

[
γ 2E

∣∣X1

∣∣2

2|Ii |(1 − γM/(3|Ii |))
]
.

For all i = 1,2, . . . , k, |Ii | ≥ l, thus we have

1 − γM

3|Ii | ≥ 1 − γM

3l
,
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and furthermore

exp

[
γ 2E

∣∣X1

∣∣2

2|Ii |(1 − γM/(3|Ii |))
]

≤ exp

[
γ 2E

∣∣X1

∣∣2

2l(1 − γM/(3l))

]
.

Thus we obtain

S1 ≤ exp

[
γ 2E

∣∣X1

∣∣2

2l(1 − γM/(3l))

]
.

Step 2 Estimate S2. With the same method in Modha and Masry (1996), by Lemma 2 and
Assumption 1, we can get

S2 =
∣∣∣∣∣E

[ |Ii |∏
m=1

exp

(
γXm

|Ii |
)]

−
|Ii |∏

m=1

E

[
exp

(
γXm

|Ii |
)]∣∣∣∣∣

≤ 4α(k)(|Ii | − 1)

|Ii |∏
m=1

∥∥∥∥ exp

[
γXm

|Ii |
]∥∥∥∥∞

≤ 4(|Ii | − 1)α(k)eγM

≤ e|Ii |e−24α · e−ckβ · eγM

≤ 4e−2α exp{|Ii | + γM − ckβ}.
The final inequality follows from the fact that |Ii |− 1 ≤ e|Ii |−2 (this is deduced from |Ii | ≥ 2
and Assumption 1).

Returning to inequality (15) and since γM ≤ 3|Ii |, we obtain

E

[
exp

(
γ

T (i)

|Ii |
)]

≤ exp

[
γ 2E|X1|2

2l(1 − γM/(3l))

]
+ 4e−2α exp(4|Ii | − ckβ).

We require exp(4|Ii | − ckβ) ≤ 1, which holds if 4|Ii | ≤ ckβ . But |Ii | ≤ ( n
k

+ 1), thus the
bound holds if 4((n/k) + 1) ≤ ckβ , or if 4(n + k) < ckβ+1. Since n + k ≤ 2n the bound

holds if 8n ≤ ckβ+1, or if {8n/c} 1
β+1 ≤ k. Let

k = 	{8n/c} 1
β+1 
.

Since l = ln = �n/k�, we have

E

[
exp

(
γ

T (i)

|Ii |
)]

≤ exp

[
γ 2E|X1|2

2l(1 − γM/(3l))

]
+ 4e−2α. (16)

Since inequality (16) is true for all γ , 0 < γ <
3|Ii |
M

, to make the constraint uniform over
all i, we then require that γ satisfies

0 < γ <
3l

M
<

3|Ii |
M

.

Since

γ 2E|X1|2
2l(1 − γM

3l
)

> 0,
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we have

E

[
exp

(
γ

T (i)

|Ii |
)]

≤ (1 + 4e−2α) exp

[
γ 2E|X1|2

2l(1 − γM/3l)

]
.

Returning to inequality (14), we have

E

[
exp

(
γ

Sn

n

)]
≤ (1 + 4e−2α) exp

[
γ 2E|X1|2

2l(1 − γM/3l)

]
.

By Markov’s inequality, we have that for any δ > 0,

Prob
{

E(f ) − En(f ) > δE (f )
} = Prob

{
eγ (E(f )−En(f )) > eγ δE(f )

}

≤ E[eγ (E(f )−En(f ))]
eγ δE(f )

≤ C exp

{
−γ δE (f ) + γ 2E|X1|2

2l(1 − γM/3l)

}
,

where C = 1 + 4e−2α. Now by substituting

γ = δlμ

E|X1|2 + Mδμ/3
,

where μ = E (f ), and noting that γ satisfies γ < 3l
M

, we obtain

Prob
{

E(f ) − En(f ) > δE (f )
} ≤ (1 + 4e−2α) exp

{ −δ2lμ2

2(E|X1|2 + δμM/3)

}
.

Replacing δ by ε√
μ

, we then have

Prob

{
E(f ) − En(f )√

E (f )
> ε

}
≤ (1 + 4e−2α) exp

{ −ε2lμ

2(E|X1|2 + ε
√

μM/3)

}
.

Since r < E (f ) ≤ s, replacing l by n(α) then implies that for any ε > 0, the inequality

Prob

{
E(f ) − En(f )√

E (f )
> ε

}
≤ (1 + 4e−2α) exp

{ −n(α)rε2

2(E|X1|2 + ε
√

sM/3)

}
(17)

holds. Theorem 2 thus follows from inequality (17) by replacing E|X1|2 by σ 2. This finishes
the proof of Theorem 2. �

Remark 5 Vidyasagar (2002) established the bound (Theorem 3.5) on the difference be-
tween the empirical means and their true values based on strongly mixing sequences, and
his bound consists of two terms. However, in this paper we are to bound the relative differ-
ence between the empirical risks and their expected risks based on exponentially strongly
mixing sequences, and our result consists of only one exponential term. Comparing The-
orem 2 with Theorem 3.5 in Vidyasagar (2002), we can find that the bound in Theorem 2
has smaller confidence interval than that in Theorem 3.5. Concerning the comparison of the
convergence rate between the bound in Theorem 2 and that in Theorem 3.5 (Vidyasagar
2002), we also have the same results as those in Remark 4.
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By Theorem 2, we now can prove our main theorem on the rate of the empirical risks rel-
atively uniform converging to their expected risks for the ERM algorithm with exponentially
strongly mixing sequence Z .

Proof of Theorem 1 We decompose the proof into three steps.
Step 1 Let H = H1 ∪ H2 ∪ · · · ∪ Hb , b ∈ N, then for any ε > 0, whenever

sup
f ∈H

E(f ) − En(f )√
E (f )

≥ ε,

there exists j , 1 ≤ j ≤ b, such that

sup
f ∈Hj

E(f ) − En(f )√
E (f )

≥ ε.

This implies the equivalence

sup
f ∈H

E(f ) − En(f )√
E (f )

≥ ε ⇐⇒ ∃j, 1 ≤ j ≤ b, s.t. sup
f ∈Hj

E(f ) − En(f )√
E (f )

≥ ε. (18)

By the equivalence (18), and by the fact that the probability of a union of events is
bounded by the sum of the probabilities of these events, we have

Prob

{
sup
f ∈H

E(f ) − En(f )√
E (f )

≥ ε

}
≤

b∑
j=1

Prob

{
sup

f ∈Hj

E(f ) − En(f )√
E (f )

≥ ε

}
. (19)

Step 2 To estimate the term on the right-hand side of inequality (19), we define

ψ(f ) = (1 − δ)E (f ) − En(f ).

Let b = N (H, ε
L
) and let the disks Dj , j ∈ {1,2, . . . , b} be a cover of H with center at fj

and radius ε/L. For any z ∈ Z n and all f ∈ Dj , we conclude

ψ(f ) − ψ(fj ) = (1 − δ)E (f ) − En(f ) − [(1 − δ)E (fj ) − En(fj )]
= [En(fj ) − En(f)] + (1 − δ)[E (f) − E (fj )]
≤ L · ‖f − fj‖∞ + L(1 − δ) · ‖f − fj‖∞

≤ ε(2 − δ).

Since this holds for all z ∈ Z n and all f ∈ Dj , we obtain

sup
f ∈Dj

ψ(f ) ≥ 2ε(2 − δ) �⇒ ψ(fj ) ≥ ε(2 − δ).

This implies that for j = 1,2, . . . , b,

Prob
{

sup
f ∈Dj

ψ(f ) ≥ 2ε(2 − δ)
}

≤ Prob
{
ψ(fj ) ≥ ε(2 − δ)

}
. (20)
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Step 3 For the sake of simplicity, we denote the term on the right-hand side of inequal-
ity (20) by I1 and denote the term on the left-hand side of inequality (20) by I2. Take
δ = ε

E(fj )
, and suppose 0 < ε < 2r , then we have

I1 = Prob
{
ψ(fj ) ≥ ε(2 − δ)

}

= Prob
{

E (fj ) − En(fj ) ≥ δE (fj ) + ε(2 − δ)
}

= Prob

{
E (fj ) − En(fj ) ≥ ε + ε

(
2 − ε

E (fj )

)}

= Prob

{
E (fj ) − En(fj )√

E (fj )
≥ ε√

E (fj )
+ ε√

E (fj )

(
2 − ε

E (fj )

)}

≤ Prob

{
E (fj ) − En(fj )√

E (fj )
≥ ε√

s

(
3 − ε

r

)}

≤ Prob

{
E (fj ) − En(fj )√

E (fj )
≥ ε√

s

}
,

I2 = Prob
{

sup
f ∈Dj

ψ(f ) ≥ 2ε(2 − δ)
}

= Prob

{
sup
f ∈Dj

[
E(f ) − En(f ) − εE (f )

E (fj )

]
≥ 2ε

(
2 − ε

E (fj )

)}

≥ Prob

{√
r sup

f ∈Dj

[
E (f ) − En(f )√

E (f )
− εs√

E (f )E (fj )

]
≥ 2ε

(
2 − ε

E (fj )

)}

≥ Prob

{
sup
f ∈Dj

E(f ) − En(f )√
E (f )

≥ εs

E (fj )
√

r
+ 2ε√

r

(
2 − ε

E (fj )

)}

≥ Prob

{
sup
f ∈Dj

E(f ) − En(f )√
E (f )

≥ εs

r
√

r
+ 2ε√

r

(
2 − ε

s

)}

≥ Prob

{
sup
f ∈Dj

E(f ) − En(f )√
E (f )

≥ (s + 4r)ε

r
√

r

}
.

By inequality (20), we then get

Prob

{
sup
f ∈Dj

E(f ) − En(f )√
E (f )

≥ (s + 4r)ε

r
√

r

}
≤ Prob

{
E(fj ) − En(fj )√

E (fj )
≥ ε√

s

}
. (21)

Combining inequalities (19), (21) and (12), and replacing ε by r
√

r

(s+4r)
ε, we then get The-

orem 1. �

5 Proof of generalization bound

In this section, we begin to prove the generalization bounds (Propositions 1 and 2) of the
ERM algorithm with exponentially strongly mixing samples by the results obtained in the
last section. Our main tool is the following lemma established by Cucker and Smale (2002b).
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Lemma 3 (Cucker and Smale 2002b) Let c1, c2 > 0, and s > q > 0. Then the equation

xs − c1x
q − c2 = 0

has a unique positive zero x∗. In addition

x∗ ≤ max{(2c1)
1/(s−q), (2c2)

(1/s)}.

Proof of Proposition 1 By the assumption that 0 < ε ≤ 2r , the exponential of inequality (5)
in Theorem 1 becomes

−rτ 2n(α)

2(σ 2 + τ
√

sM/3)
≤ −C1n

(α)ε2,

where

C1 = 3r4

2s(s + 4r)[3(s + 4r)σ 2 + 2r
5
2 M]

.

Since H is assumed to be compact, then by assumption (2) we have

N
(

H,
εr

√
r

(s + 4r)L

)
≤ exp

{
C0

[
εr

√
r

(s + 4r)L

]−2d
p

}
,

where C0 is a positive constant. In other words, for any ε, 2r ≥ ε > 0, by Theorem 1 we
have

Prob

{
sup
f ∈H

E (f ) − En(f )√
E (f )

≥ ε

}
≤ C exp

{
C0

[
εr

√
r

(s + 4r)L

]−2d
p

− C1n
(α)ε2

}
, (22)

where C = 1 + 4e−2α.
Let us rewrite inequality (22) in an equivalent form. We equate the right-hand side of

inequality (22) to a positive value η(0 < η ≤ 1)

C exp

{
C0

[
εr

√
r

(s + 4r)L

]−2d
p

− C1n
(α)ε2

}
= η.

It follows that

ε
2+ 2d

p − ln(C/η)

C1n(α)
ε

2d
p − C0r

−3d
p [(s + 4r)L] 2d

p

C1n(α)
= 0.

By Lemma 3, we can solve this equation with respect to ε. This equation has a unique
positive zero ε∗, and

ε∗ .= ε(n, η) ≤ max

{[
2 ln(C/η)

C1n(α)

] 1
2

,

[
2C0r

−3d
p [(s + 4r)L] 2d

p

C1n(α)

] p
2p+2d

}
.

It is used further to solve inequality

sup
f ∈H

E(f ) − En(f )√
E (f )

≤ ε(n, η).
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Then we deduce that with probability at least 1 − η simultaneously for all functions in
the function set H, the inequality

E (f ) ≤ En(f ) + ε2(n, η)

2

(
1 +

√
1 + 4En(f )

ε2(n, η)

)

is valid. Since with probability at least 1 − η, this inequality holds for all functions of the
function set H, it holds in particular for the function fz that minimizes the empirical risk
En(f ) over H. For this function with probability at least 1 − η, the inequality

E (fz) ≤ En(fz) + ε2(n, η)

2

(
1 +

√
1 + 4En(fz)

ε2(n, η)

)
(23)

then holds.
By Theorem 4.3 in Modha and Masry (1996), we have that for any ε > 0, the inequality

Prob
{
|E (f ) − En(f )| > ε

}
≤ 2(1 + 4e−2α) exp

{ −n(α)ε2

2(σ 2 + εM/3)

}
(24)

is valid. Thus by inequality (24), we conclude that for the same η as above, and for the
function fH that minimizes the expected risk E (f ) over H, the inequality

E (fH) > En(fH) − ε′(n, η) (25)

holds with probability 1 − η, where

ε′(n, η) = M ln(C/η)

3n(α)

(
1 +

√
1 + 18n(α)σ 2

M2 ln(C/η)

)
.

Note that

En(fH) ≥ En(fz). (26)

From inequalities (23), (25) and (26), we deduce that with probability at least 1 − 2η, the
inequality

E (fz) − E (fH) ≤ ε′(n, η) + ε2(n, η)

2

(
1 +

√
1 + 4En(fz)

ε2(n, η)

)

is valid. In addition, if

n(α) ≥ max

{
ln(C/η)

2C1r2
,
C0[(s + 4r)L] 2d

p

C12
2d
p r

5d+2p
p

,
ln(C/η(σ 2 + sM/3))

2r2

}
,

then we have ε ≤ 2r . This leads to Proposition 1. �

Proof of Proposition 2 When the complexity of the function set H is high, in order to solve
the time-consuming problem of the ERM algorithm (1), we can decompose the hypoth-
esis space H into many compact subsets by following the enlightening idea of Giné and
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Koltchinski (2006), and denote it as follows:

H =
a⋃

i=1

H(ρi−1, ρi].

For every i, 1 ≤ i ≤ a, let f i
z be the function minimizing the empirical risk En(f ) over f ∈

H(ρi−1, ρi]. By the similar argument with inequality (23), we have that for any η ∈ (0,1],
with probability at least 1 − η, the inequality

E (f i
z ) ≤ En(f

i
z ) + ε2

i (n, η)

2

(
1 +

√
1 + 4En(f i

z )

ε2
i (n, η)

)
, 1 ≤ i ≤ a (27)

holds, where

εi(n, η) ≤ max

{[
2 ln(C/η)

Cin(α)

] 1
2

,

[
2C0(ρi−1)

−3d
p [(ρi + 4ρi−1)L] 2d

p

Cin(α)

] p
2p+2d

}
,

Ci = 3ρ4
i−1

2ρi(ρi + 4ρi−1)[3(ρi + 4ρi−1)σ 2 + 2ρ
5
2
i−1M]

.

Thus we have that with probability at least 1 − η, the inequality

E (fz) ≤ min
1≤i≤a

{
En(f

i
z ) + ε2

i (n, η)

2

(
1 +

√
1 + 4En(f i

z )

ε2
i (n, η)

)}
(28)

is valid.
In addition, for the same η as above, we have that with probability 1 − η, the inequality

E (fH) ≥ En(fH) − ε′(n, η) (29)

holds. Then by inequalities (28), (29) and the fact that

En(fH) ≥ En(f
i
z ), i ∈ {1,2, . . . , a}

we have that with probability 1 − 2η, the inequality

E (fz) − E (fH) ≤ ε′(n, η) + min
1≤i≤a

{
ε2
i (n, η)

2

(
1 +

√
1 + 4En(f i

z )

ε2
i (n, η)

)}

is valid. We then complete the proof of Proposition 2. �

6 Conclusions

In this paper we have studied the learning performance of the ERM algorithm with expo-
nentially strongly mixing samples. We first established a new bound on the rate of relative
uniform convergence for the ERM algorithm with exponentially strongly mixing samples.
Then we have derived the generalization bounds of the ERM algorithm and proved that
the ERM algorithm with exponentially strongly mixing observations is consistent. To our
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knowledge, the results here are the first explicit bounds on the rate of convergence on this
topic. In order to have a better understanding of the significance and value of the established
results in this paper, we have compared our results with the previous works, and concluded
that the established results not only sharpen and improve the previously known results in Zou
and Li (2007), Vidyasagar (2002), but also extend the results in Bousquet (2003), Cucker
and Smale (2002a), Vapnik (1998) for i.i.d. samples to the case of α-mixing sequence. We
have also shown that the learning rates of the ERM algorithm with exponentially strongly
mixing samples are close to or as same as those for learning rate with i.i.d. samples.

In addition, since the ERM algorithm is usually very time-consuming and overfitting
may happen when the complexity of the given function set H is high, as an application of
our main results, we also explored a new strategy to implement the ERM algorithm in high
complexity hypothesis space.

Along the line of the present work, several open problems deserve further research. For
example, how to control the generalization ability of the ERM algorithm with exponentially
strongly mixing samples? What is the essential difference between the generalization ability
of the ERM algorithm with i.i.d. samples and dependent samples? All these problems are
under our current investigation.
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