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The generalized active space concept for the relativistic treatment
of electron correlation. II. Large-scale configuration interaction
implementation based on relativistic 2- and 4-spinors and its application
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Lucas Visscher
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~Received 11 April 2003; accepted 19 May 2003!

The extension of a relativistic double group configuration interaction~CI! formalism to the use of
2- and 4-spinors is presented. We first elucidate the theoretical aspects of the formalism that is
needed to work with spinors that are optimized with a Hartree–Fock scheme that includes spin–
orbit coupling. We then describe a new general implementation for the computation of sigma vectors
and n-particle density matrices that occur in direct CI algorithms. Sample calculations of the
spin–orbit splitting in atoms with one particle or hole in an otherwise closed shell configuration
,1 (,51,2,3) and molecules containing such atoms illustrate the advantage of treating this effect in
a basis of true spinors rather than in a basis of scalar relativistic orbitals as is conventionally done.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1590636#
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I. INTRODUCTION

The simultaneous description of electron correlation a
relativistic effects in atomic and molecular electronic stru
ture calculations of heavy elements is desirable in gen
~like in Lanthanide and Actinide compounds1! and a require-
ment in many cases~e.g., in the heavyp block elements2!
when spectroscopic data of high precision are aimed at.
resulting need to correlate many electrons suggests the u
size-extensive coupled cluster approaches, but these are
ally incapable of describing low spin open-shell cases an
static electron correlation. For these reasons, configura
interaction~CI! approaches are still worth pursuing.

A number of programs for performing relativistic CI ca
culations has been reported, e.g., the DIRRCI code in
DIRAC package,3 the COLUMBUS CI program4 using effective
core potentials, or a newly developed spin–orbit CI cod5,6

based on a multireference CI approach~others are mentioned
in Refs. 7 and 8!.

State of the art in large-scale CI calculations was, ho
ever, so far to use orbitals that are obtained without con
eration of spin–orbit coupling. These so-called scalar rela
istic molecular orbitals~SRMOs! are readily obtained by
modern quantum chemistry program packages~e.g.,
MOLCAS9! that include scalar relativistic corrections via a
effective core potential or a variationally stable Hamiltoni
~e.g., the Douglas–Kroll–Hess Hamiltonian!. A disadvantage

a!Permanent address: Department of Theoretical Chemistry, building 26
Heinrich Heine University Du¨sseldorf, Universita¨tsstraße 1,
D-40225 Düsseldorf, Germany. Electronic mail: timo@theochem.u
duesseldorf.de
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of this approach shows up if one considers states for wh
spin–orbit coupling significantly alters the wave functio
An accurate description of such a state with a CI expans
based on SRMOs requires extremely long expansion len
as the CI expansion should not only take care of elect
correlation corrections but also serve to include the orb
relaxation induced by spin–orbit coupling. More compa
and accurate representations of the wave functions, e
cially in the heavy main group atoms and their molecu
compounds2 are possible by an expansion based on rela
istic 4- ~or approximate 2-! molecularspinors ~RMSs!. A
complication is that such spinors transform according
double group symmetry representations necessitating m
fication of the algorithms that are used to solve the~direct!
CI equations. Still, we think that CI calculations based up
spinors may well become more efficient than the traditio
approach since much shorter expansions may be used.

A preceding publication10 has at length dealt with a new
configuration interaction~CI! implementation for relativistic
quantum chemistry applications. The key concept is the
troduction of generalized active spaces~GAS! which allow
for an arbitrary division of orbital/spinor spaces and, the
fore, a very flexible definition of trial wave functions. Fo
not too large systems, for which the size extensivity defe
of CI are not so important, one can then account for b
dynamical and static electron correlation while simul
neously including spin–orbit coupling effects. An efficie
implementation, like the LUCI-type algorithms developed
one of us, allows for near full CI accuracy by using very lo
expansions. These key points also comprise the impro
ments over the aforementionedDIRRCI program which is also

2,
3 © 2003 American Institute of Physics

e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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based on molecular spinors, but limited to restricted ac
space~RAS! type expansions and, furthermore, to expa
sions of not more than a few million determinants.

In the current paper we discuss the construction of a n
interface that couples the CI program to the general rela
istic quantum chemistry programDIRAC3 that provides for
the spinor optimization at the Hartree–Fock level. We plan
report a more extensive interface to the molecular MCS
implementation inDIRAC in the near future. The optimizatio
of the CI-wave function using a direct CI algorithm is di
cussed in detail and we show that the main task in the di
CI algorithm, the computation of the sigma vectors, can
carried out by a general algorithm that is also suited for
computation of density matrices. This will greatly simpli
the work on relativistic multiconfiguration self-consiste
field ~MCSCF! wave functions.

All implementations could be realized by generalizing
newly developed set11 of efficient routines from the LUCIA
code.12 These routines were originally created for the co
putation of nonrelativistic sigma vectors over gene
n-particle operators orn-particle density matrices as require
in the Hilbert-space coupled-cluster~CC! formalism. The ex-
citation class formalism that was developed turned out to
very useful for our present purpose as well.

The application section starts with a study of the grou
state spin–orbit splitting in three atoms with significan
differing radial expectation value of the ground-state spi
components~Tm, Lu, and Tl!. Since the strength of the spin
orbit splitting varies strongly with the angular momentum
the open shell we can then compare the effect of usin
spinor instead of a spin–orbital basis in both the strong~Tl!
and weak~Tm! limit. Next we will consider application to
the ClO molecule for which both experimental data and
curate coupled-cluster single double~triple! @CCSD~T!# ref-
erence values are available.

The paper is structured as follows: The theory sect
commences with important aspects of the transition fr
SRMOs to RMSs. We further discuss the excitation cl
formalism for structuring the CI wave function, the interfa
of the CI program to theDIRAC package, and finally the
efficient computation of CI sigma vectors and density ma
ces in the excitation class formalism in detail. The next s
tion of the paper reports atomic and molecular applicati
of the new code in direct comparison with other existi
approaches. We finally draw conclusions for future work
the light of the acquired results.

II. THEORY AND IMPLEMENTATION

This section covers the new development work a
strongly refers to the theoretical formalism from Ref. 10
avoid repetition. We assume that spinors are obtained usi
Kramers-restricted algorithm13 and that all spinors transform
according to a double group irreducible representation.
spinors are related to a Kramers partner and we label th
so-called Kramers pairs by lowercase indicesi , j , k, and l .
The individual partners are distinguished by either placing
not placing a bar over this index.

The computation of a sigma vector from a given tr
vector and that of a~transition! density matrix from two vec-
loaded 02 Apr 2011 to 130.37.129.78. Redistribution subject to AIP licens
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tors can be cast in almost the same structure. To illustrate
construction of a sigma vector we consider the expressio
the relativistic two-particle Hamiltonian in a basis of Kram
ers spinors10,14,15

Ĥ22el5 1
2 (

i jkl
@~ i j ukl !xi jkl

111~ ī j ukl !x
ī jkl

11
1~ ij̄ ukl !xij̄ kl

11
#

1 1
4 (

i jkl
~ ī j uk l̄ !x

ī jk l̄

11
1 1

8 (
i jkl

@~ ī j uk̄l !x
ī j k̄ l

11

1~ i j̄ uk l̄ !x
i j̄ k l̄

11
#%, ~1!

and take a single term~given in boldface! consisting of a
Kramers replacement operator

x
i j̄ kl

11
52ai

†ak
†aj̄al2ai

†a
l̄

†
aj̄ak̄1aj

†ak
†aī al1aj

†a
l̄

†
aī ak̄ ,

derived from the generic formula for double replacement
erators in Ref. 10 and an integral (i j̄ ukl). Considering only
the first creator-annihilator string, the term becomes

(
i jkl

~ i j̄ ukl !ai
†ak

†alaj̄ . ~2!

The corresponding contribution to the sigma vector appe
as

s11~T,T †!5(
i jkl

(
S,S̄

~ i j̄ ukl !A
i j̄ kl

TT̄,SS̄
CS,S̄ , ~3!

whereA
i j̄ kl

TT̄,SS̄
5^T †T̄ †uai

†ak
†alaj̄ uS†S̄†& is the coupling coef-

ficient with uS†S̄†& the Slater determinant defined by strin
of spinor creation operatorsS† and S̄†, andCS,S̄ is the ex-
pansion coefficient referring to this determinant in the
expansion of the wave function.

The real part of the 2-particle density matrix fragme
takes the form

r r~2!~ i j̄ kl !5(
S,S̄

(
T,T̄

CT,T̄ A
i j̄ kl

TT̄,SS̄
CS,S̄ , ~4!

and comparing Eqs.~3! and ~4! we see that by a prope
ordering of the summation loops the contractions only dif
in the specification of the multiplicative factors (i j̄ ukl) and
CT,T̄ , respectively. This makes the computation of the sig
vector very similar to that of the density matrix and enab
us to use the same program code for both tasks.

The initial version of theLUCIAREL code as presented i
Ref. 10 had to be extended to include sigma vector contri
tions that involve a change of the Kramers projection qu
tum number in the 2-particle operator. This contribution
zero in an orbital basis but has to be accounted for in a sp
basis as is easily shown by the following argument. Leti be
an unbarred spinor andj̄ a barred spinor with contribution
of both a and b spin functions. Then a densitŷi u j̄ & of a
two-electron integral (i j̄ ukl), e.g., is nonvanishing due t
nonzero spin integrations

^ i ~a!1 i ~b!u j̄ ~a!1 j̄ ~b!&5^ i ~a!u j̄ ~a!&1^ i ~b!u j̄ ~b!&

Þ0,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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no matter what type of operator is involved if truespinors
are used. Ifspinorbitals~i.e., two-spinors for which only one
of the components is nonzero! are chosen it is either th
integral itself or the coupling coefficient that vanishes. T
assumption, made in the older implementation, is now
valid. Straightforward extension of the formalism describ
in Ref. 10 would, therefore, call for implementation of add
tional sigma vector routines that consider thisKramers flipin
the 2-electron operator explicitly. Instead of programmi
this addition we, however, chose to take another route
convert the algorithms to the excitation class formalism.
this formalism the detailed sigma and density computatio
controlled at a higher level when the partitioning of t
Hamiltonian is defined, and this makes the implementat
of additional terms much simpler, as we will discuss belo

A. Excitation class formalism

The Hamiltonian~or in general any operator! can be de-
fined by its total symmetry, a type label which gives t
maximum number of particles involved, and the differe
classes of excitation operators that appear. To divide the
citation operations into different classes we consider
number of ‘‘Kramers flips’’ that they induce. These Krame
flips are equivalent to spin-flips in nonrelativistic formalism
and replace a barred spinor by an unbarred spinor or
versa. As a particular excitation operator will always refer
a specific integral@cf. Eq. ~2!# we can then also use th
chosen excitation class ordering to determine the orderin
all involved integrals. Following this scheme Hamiltonia
may now be distinguished in a number of types, depend
on the level of sophistication that is used in the description
spin–orbit coupling:

Type

Excitation classes

1-particle terms 2-particle terms

1 DMk50 DMk50
2 DMk50,61 DMk50
3 DMk50,61 DMk50,61,62
4 like 3, spinor basis, integrals with an even number of ba
5 like 3, spinor basis, integrals with an arbitrary

number of bars

A nonrelativistic Hamiltonian that does not include spin
orbit coupling operators corresponds to type 1, wherea
Hamiltonian in which spin–orbit coupling is described by
mean-field spin–orbit operator has only one-parti
Kramers-flip operators and corresponds to type 2.
SRMOs, only types 1–3 will occur. When spinors form t
basis, type 4 is relevant and, in case of low or no applica
point group symmetry~see Sec. II B 1!, type 5 may also be
relevant. A special case of a Hamiltonian containing typ
operators occurs in a mean-field spin–orbit method tha
based on the spinfreeDIRAC formalism.16 Here spin–orbit
integrals are formed using a molecular mean-field exp
sion. This method is currently being implemented by two
us ~T.F. and L.V.!.

The ordering of the classes is hardwired in the progr
as shown in Table I. With this classification we can subdiv
loaded 02 Apr 2011 to 130.37.129.78. Redistribution subject to AIP licens
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the Hamiltonian in terms of the active excitation classes. T
routines that perform the actual contractions only need
know which classes are active which means that the in
mation corresponding to the Hamiltonian itself is only us
in the higher levels of the code. We, therefore, made
routines performing the actual sigma and density evalua
entirely general and independent of the particular Ham
tonian that is defined. Incorporation of new Hamiltonians
now trivial since it merely requires adding the appropria
information in the setup routine. Furthermore, because
set of integrals contained in the operators is completely
fined by the strings that are used in the actual calculat
one may easily discard integrals which are not required i
particular CI in the sorting step. This makes it easy to r
multiple CI calculations using one set of molecular integr
and eliminates costly additional index transformations.

B. Integral interface to the DIRAC formalism

The earlier version of LUCIAREL assumes that ea
spinorbital can be decomposed into a spatial part, transfo
ing according to a specific boson irrep, and a spin part. W
spinors such a decomposition is impossible as each sp
will be built from functions that belong to different boso
irreps. In the new implementation we, therefore, removed
reference to spatial symmetry and only consider the co
pound fermion irrep of the spinor in the appropriate dou
group. In the interface toDIRAC, where symmetry handling is
limited to D2h* and its subgroups, this fermion irrep is simp
the parity. It then suffices to label each spinor as either
barred or barred and~in case of inversion symmetry! asger-
adeor ungerade. The CI code follows this designation.

1. Double group symmetry

The subgroups ofD2h* can be divided into so-called rea
complex, and quaternion groups.13 The difference is manifes
in the two-electron integrals in the molecular spinor ba
that can be written, respectively, as real, complex, or qua
nion numbers. We have currently completed the implem
tation of the complex (C2 ,Cs ,C2h) and quaternion (Ci ,C1)
groups. In the complex groups, integrals with an odd num
of barred indices vanish and the active lists of integrals

TABLE I. Excitation class ordered operators in second quantization
corresponding integrals.

Operator Integral class Kramers flip type

ai
†aj hi j DMk50

a
ī

†
aj̄

hi j DMk50

ai
†ak

†alaj ( i j ukl) DMk50

a
ī

†
a

k̄

†
al̄ a j̄ ( i j ukl) DMk50

ai
†a

k̄

†
alaj̄ ( i j uk̄l ) DMk50

ai
†aj̄ hi j DMk511

a
ī

†
aj

hī j DMk521

ai
†ak

†alaj̄ ( i j̄ ukl) DMk511

a
ī

†
a

k̄

†
al̄ aj ( ī j ukl) DMk521

ai
†ak

†al̄ a j̄ ( i j̄ uk l̄ ) DMk512

a
ī

†
a

k̄

†
alaj ( ī j uk̄l ) DMk522
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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come ~in Mulliken notation!: ( i j ukl), (i j̄ uk̄l ), ( ī j uk̄l ), and
( i j̄ uk l̄ ). Integrals with four barred indices are also nonze
but related to the completely unbarred list via Kramers sy
metry. This can be employed to remove reference to
class in the contraction loops.

In the quaternion groups the barred and unbarred spi
belong to the same fermion symmetry. If one does not e
ploy quaternion algebra four additional integral lists appe
They are chosen as follows: (i j ukl), ( ī j ukl), ( ī j ukl), and
( i j ukl). Again two of these classes are redundant since
classes with one bar are related to those with three bars.
corresponding excitation operators are, however, presen
plicitly in the computation of the sigma vector. We chose
exploit the redundancy by storing only the classes with o
bar and creating the integrals with three bars ‘‘on the fl
when needed.

2. Integral storage

By analogy to our nonrelativistic formalism, integra
with 4 unbarred indices are stored as a Coulomb minus
change integral, (i j uukl)5@( i j ukl)2( i l uk j)#. In contrast to a
nonrelativistic formalism, however, where one would eith
only need the Coulomb or the exchange part of the ot
types of two-particle integrals, we now find that both term
are always needed. Consider for instance the inte
( ī j u j ī ). Its nonrelativistic counterpart~unbarred indices cor
responding to ana spin and barred to ab spin! vanishes
upon spin-integration34 but the relativistic integral is non
zero. To retain consistency in the nonrelativistic and the re
tivistic setup of the program we chose to store these type
separate integrals.

So far we have not considered the GAS partitioning
the active spinor space on which the wave function definit
is based because it was not relevant for the preceding dis
sion. Since we now want to discuss the integral storage
need to pay attention to this aspect. The GAS partition
gives rise to a substructure of integrals and density matr
that depends on the GAS classification of the involved in
ces. Figure 1 gives a pseudocode visualizing the proce
of fetching integrals and storing density matrices that follo
this substructure. We chose to treat real and imaginary p
of all quantities separately and not to rely on the not alw
efficient complex algebra that compilers may offer. First
determine the type of excitation by the operator class~ex-
plained above! and the possible distributions of excitatio
operators over the active spaces. Next follows the numbe
electrons~varying from 0 to 2! for each of the in total four
types ~creation unbarred, creation barred, annihilation u
barred, annihilation barred! of individual creation/
annihilation operators. Finally, we need three symme
loops to itemize the possible symmetry combinations of
operator types that add up to the right overall operator s
metry ~totally symmetric in case the operator is the Ham
tonian!. Given this information, strings can be generated
each operator type. The final step is to loop over th
strings, fetch the corresponding integrals, and store them
an internal list. This internal list can then be used in t
sigma-vector or density-matrix construction. The full integ
loaded 02 Apr 2011 to 130.37.129.78. Redistribution subject to AIP licens
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list is superfluous after this sorting step is completed and
released from memory when the fetching procedure is end

The now generated internal integral list is string-driv
and has a length which varies with the type of calculat
that is specified. A unique ordering of all involved terms
defined automatically and this same ordering~and length!!
can also be used to order the 1- and 2-particle density ma
elements that are computed after the CI calculation. T
common set of routines for evaluating density matrices a
sigma vectors will be discussed in the following subsecti

C. Sigma vector and density matrix routines

At the top level the generation of sigma vectors a
density matrices in the new formalism proceeds in the sa
way as described in Ref. 10. In order to be able to comp
with the ‘‘traditional’’ evaluation, the new scheme has be
implemented as an alternative route. The most important
pects of the new implementation are summarized here.

Real and imaginary contributions to the vectors a
treated separately by an outer loop over the different com
nents. A partitioning of the vectors according to the Kram
projection values of the determinant elements is carried
and loops over the partitions are performed. At the innerm
level, the occupation of the different GA spaces defines ty
of ‘‘bra’’ ~in the following addressed as L, left! and ‘‘ket’’ ~R,
right! determinants. At this point, the decisive differen
compared to the traditional route becomes clear. Whereas
conventional set-up would call distinct routines for all kin
of coupling types, differing, e.g., in the change in Krame
projection valueDMK and the number of electrons, the ne
setup calls the same routine for all couplings of the given
and R fragments no matter what form the coupling opera
has. This concise implementation leads to a significant
duction of computer code.

FIG. 1. Loop structure for integral access in excitation class formalism
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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As a further improvement, the evaluation of the coupli
coefficients, e.g., in Eq.~4!, is now carried out by intro-
ducing a resolution of the identity in the string bas
15(UU†uU†Ū†&^U†Ū†u. In this resolution over all strings th
unbarred and barred coupling coefficients may be trea
separately,17 as

A
i j̄ kl

TT̄,SS̄
5^T †uai

†ak
†al uS †&^T̄ †ua

j̄

†uS̄ †&. ~5!

The procedure commences with loops over the differ
symmetry blocks of the resolution matrices and by group
the strings according to the maximum allowed size o
single resolution batch. Because the determination of
coupling coefficients directly from the unbarred and bar
string combinations becomes time-consuming in the limit
long CI expansions one gains a significant speed-up by
troducing such resolution matrices. The price that is to
paid are increased operation counts, but these may be m
mized by carefully considering the place where the reso
tion of the identity is inserted.

The final step in the sigma vector computation cons
of multiplication of the R vector expansion coefficient by t
integral value. For this, a full symmetry block of a particul
excitation type of integrals is picked from the integral arr
and processed. In the density computation, the final cont
tion involves the L and R vector expansion coefficients a
the appropriate summation over L strings. The generated
der of density matrix elements exactly resembles the exc
tion class ordering of integrals described above. The c
thus delivers generaln-particle density matrices which wil
find their use in the relativisticMCSCF program.18

III. APPLICATIONS AND DISCUSSION

The current implementation opens for molecular app
cations on heavy element systems with pronounced sp
orbit effects in the one-particle basis, i.e., where a sp
dependent orbital optimization prior to the plain CI run
desirable. We want to demonstrate in a few test cases
improvement of the new implementation over the previo
one where a spin-averaged basis of one-particle function
the starting point.

A. Heavy atoms

We start with a study on atoms that have either o
electron outside or one hole in a closed shell core as
provides the simple example of spin–orbit splitting in t
ground state. We thereby considerp-, d-, and f -shells as the
influence of orbital relaxation should be rather different
either case. To obtain the best comparison we select atom
sizable and similar nuclear charge. Our systems of choice
thallium (Tl,6s2p1,2P1/2,3/2), lutetium (Lu,5d16s2,2D3/2,5/2),
and thulium (Tm,4f 136s2,2F7/2,5/2), the configuration and
level symbol of the ground state given in parentheses.

The MOLCAS program package~version 5.09! served to
find a scalar relativistic, spin-averaged orbital basis for
three atoms whereasDIRAC was used for the spin–orbit re
laxed calculations. To enable a fair comparison we used
uncontracted basis set in both cases. A set of family typ
used for the Tm and Lu atoms19 with 23s, 19p, 17d, and 11f
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exponents. The Tl basis set consisted of 20s, 16p, 11d, and
8 f functions. Spin–orbit mean-field integrals were genera
with the atomic mean-field integrals~AMFI!20 program. Here
we encountered a technical complication because
MOLCAS-AMFI implementation defines its mean-field bas
upon the atomic contraction coefficients of the basis fu
tions. In an uncontracted calculation this would mean t
the core spinors were to be represented by single GT
which is too crude an approximation to be used. In this c
we used a modified version ofAMFI, that includes a call to an
initial SCF module to calculate atomic orbital coefficients f
computing the appropriate mean-field integrals.

The symmetry group used isC2h* in the spin-averaged
andC2* in theDIRAC calculations, giving rise to 3 roots for T
(Au ,A1), 5 for Lu (Ag ,A1), and 7 for Tm (Au ,A1), respec-
tively. To avoid spurious symmetry-breaking in the spi
averaged calculations, orbitals are symmetrized by optim
ing on multiple roots in a complete active space se
consistent field~CASSCF! calculation using the Tl1, Lu1,
and Tm2 SCF orbitals as a starting point. In the spinor-ty
calculations symmetry-breaking does not occur asDIRAC by
default optimizes on a state-averaged energy expression
ing fractional occupation of the open shell orbitals. We th
build the corresponding one-determinant wave functions a
zeroth-order approximation, and perform different kinds
variational~spin–orbit! CI calculations:

~1! CAS type CI: Full CI within the valence subspace, gi
ing the spin–orbit splitting of the respective groun
states.
~a! Minimal CAS: Only the open sub-shell angular m

mentum functions are included: 4f 13 in Tm, 5d1 in
Lu, and 6p1 in Tl. This excludes any correlation con
tribution.

~b! Valence CAS: In Lu the active space becom
6s25d1, in Tl 6s26p1, and in Tm the valence CAS
space is identical to the minimal CAS. This has t
effect of including a minimal amount of correlatio
between the valence electrons and gives rise t
modification of the spin–orbit splitting of the groun
state.

~2! SD~T! type CI: including all single, double,~and triple!
replacements from the minimal CAS reference occu
tion into a restricted virtual space. This restriction is
be imposed in uncontracted basis set calculations s
numerous high energy virtuals appear. A cut-off thres
old of 10 a.u.~3 a.u. for Lu! for the orbital energy pre-
vents inclusion of high-lying virtual orbitals that contrib
ute little to electron correlation and would make th
virtual space prohibitively large. In the cases of Tm a
Lu, there are too many triple replacements to allow
SDT-CI calculations when correlating 15 or 17 electron
respectively. For Tl this was feasible so that we inclu
triple excitations as well in that case.

The DIRAC calculations with the newly developed C
code ~described here! use the same setup as the sp
averagedMOLCAS calculations: An uncontracted basis s
and deletion of virtual spinors with energies above 10 a.u~3
a.u!. The resulting CI expansion lengths are'70.000 terms
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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TABLE II. Ground-state spin–orbit splittings in cm21 and differences in radial expectation values of t
valence spinors in a.u.

Atom Tm Lu Tl

Valence spinors f 7/22 f 5/2 d3/22d5/2 p1/22p3/2

D^r & 0.018 0.085 0.496

Approach Orbitals Spinors Orbitals Spinors Orbitals Spinors
Minimal CAS 9108 8996 2578 1687 6330 7709
Valence CAS ¯ ¯ 2470 1564 6260 7083
SD~T!CI 9817 9280 2450 1744 7200 7286
Exp. 8771.243a 1993.32b 7793c

aReference 31.
bReference 31.
cReference 32.
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in the SDT calculations on Tl and'1.1 million determinants
in the SD calculation on Tm including 15 electrons.

The results of these calculations are summarized
Table II. The first observation is the striking difference b
tween the minimal CAS and the valence CAS spin–or
splitting in Thallium in the spinor calculation. It turns ou
that this phenomenon can be explained via second-order
turbation theory. The valence CAS space of Tl gives rise
the configurationss2p1, s1p2, andp3. The first configuration
is also present in the minimal CAS space and gives
zeroth-order~one-determinant! description of the ground
state wave function. In the valence CAS also states fromp3

can mix in. The ground-state component2P1/2 interacts with
one excited determinant whereas the2P3/2 component inter-
acts with two determinants. The coupling matrix eleme
are

^ss̄p1/2uĤup1/2p3/2p̄3/2&

5^ss̄p3/2uĤup3/2p3/2p̄3/2&'20.048EH

^ss̄p3/2uĤup1/2p̄1/2p3/2&'0.060EH .

These matrix elements differ in value due to the fact t
the p1/2 spinor is more compact than thep3/2 spinor which
makes the integral ^ss̄u 1/r 12up1/2p̄1/2& larger than
^ss̄u 1/r 12up3/2p̄3/2&. Taking also the difference in diagona
elements into account and using the second-order pertu
tion theory expression:

EJ
(2)5(

n

u^2PJ~s2p1!uĤu2PJ
n~p3!&u2

DEJ
, J51/2,3/2,

n labeling the different state components andDEJ denoting
the energy difference between the diagonal elements in
determinant basis we find the following energy lowerings

E1/2
(2)521760.4 cm21,

E3/2
(2)522604.5 cm21,

the difference amounting to 844 cm21. The variational treat-
ment in the true complete active space configuration inte
tion ~CASCI! gives a difference of 626 cm21 in the same
direction. This demonstrates that limited or unbalanced in
duction of electron correlation effects may worsen the res
of the calculation instead of improving them.
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As we wanted to focus on a rigorous comparison b
tween the orbital and spinor approach and not on obtain
spin–orbit splittings of very high precision we did not a
tempt to fully converge the computed splitting. This requir
among others including the 5d for correlation in the thallium
atom.10 Running this type of calculation with the spinor bas
and a truncation value of 2 a.u. for the virtual spinors resu
in a splitting of 7420 cm21 ~21 virtual Kramers pairs,
1.288.980 determinants!. This value can further be improve
by increasing the size of the virtual space and by includ
also the outer core 5p shell in the correlation treatment.35

Whereas this method provides for systematic improvem
in case of spinor calculations this is not so for orbital calc
lations. There one may obtain virtually any desired splitti
by an unbalanced correlation treatment. Then one finds t
e.g., including all virtual functions when correlating only
valence electrons brings the ground-state splitting to twice
experimental value, because the improvement of the vale
function is not accompanied by simultaneous improvem
of the core functions to which this function needs to be
thogonal~see the discussion in Ref. 21!. We confirmed this
finding also with the Douglas–Kroll Hamiltonian by increa
ing the cutoff threshold in several steps, yielding an incre
ing spin–orbit~SO! splitting beyond the experimental value
Thus, to maintain a balanced description of the spin–o
components, the extent of the virtual space should be kep
accordance with the electrons chosen to be correlated.
convergence of the atomic SO-splitting of Tl requires lo
expansions, which are feasible using dedicated programs
employ spherical symmetry.22

Turning to the other atoms we see that, as expected,
small difference in radial expectation values between thf
spinors in Tm do not cause a big difference in the determi
spin–orbit splittings in the orbital or spinor approach at t
valence CAS or SDCI level. The spinor basis performs be
but in both cases the minimal CAS result is acceptable.
comprises an intermediate case: The difference in radial
pectation values is about a factor of 5 larger than in Tm,
is still smaller by about the same factor than the Tl splittin

The valence CAS calculation for Lu exhibits a simil
unbalanced treatment of the component correlation as in
but here the effect is noticeably smaller. Correlating also
4 f electrons leads to a significant improvement of the sp
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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orbit splitting in the spinor basis whereas the orbital va
hardly changes. By applying the sf1so approach~described
in the section on ClO! and correlating also the 5s and 5p
semicore ~25 electrons in total!, we obtain a value of
2031 cm21 in the orbital basis which is quite close to expe
ment.

In all cases the spinor basis gives reasonable results
the minimal CAS space, and significant improvement c
only be reached by going to rather large expansions. Th
of particular interest when multiconfiguration SCF type
calculations are carried out where a limited active spac
mandatory. Given this future development and the fact t
spin-dependent type of CI calculations will become prohi
tively expensive anyhow when the system size and the n
ber of virtual functions is increased, we consider the pres
limited size calculations rather typical. They may be ve
useful23 in complicated situations where a good choice
reference function is difficult and application of couple
cluster methods is impossible.

B. A molecular example: ClO

In order to compare with other methods24,25 we chose to
investigate the molecule ClO that represents a light molec
with a significant spin–orbit splitting lifting the degenera
of the ground state. In earlier work it was demonstrated t
a correlation treatment is indispensable for achieving
ground-state spin–orbit splitting of even acceptable ac
racy. The obvious reason is the poor description of the e
tron affinities of the constituent atoms at the SCF level
theory. It will be interesting to see whether CI calculatio
will give the same trends. Thus, we have carried out a se
of calculations in both the orbital and the spinor basis
different correlation levels. The results are compiled
Table III.

The types of calculations in the table are denoted
follows: CAS stands for a full CI calculation in the afore
mentioned subspace, e.g.,~9in5!CAS characterizes a calcu
lation with nine active electrons in five Kramers pairs, whi
in this case simply is the valence orbitals/spino
sp ,2pp ,2pp* constructed from thep orbitals/spinors. The
sixth function is thesp* orbital, and the two additional orbit
als in the~13in8! calculation refer to thess andss* occupied
orbitals. Furthermore, CI singles and doubles~SD! calcula-

TABLE III. CIO ground-state spin–orbit splittings in cm21 at different
correlation levels and using different approaches.

Approach Orbitalsa Orbitals1G sf1so Spinors Spinors1Gb

~9in5!CAS 224.3 206.9 221.8 245.1
~9in6!CAS 228.9 211.5 226.3 250.9
~13in8!CAS 229.6 212.2 227.0 252.1
SD9-3au 291.9 274.3 289.5 313.1 est. 293
Reference 244.8 225.9
CCSD 324.4 303.5
CCSD-T 336.4 315.3
Expc 318

aComputed with a modified version of the AMFI code including only t
one-electron and the two-electron spin–same–orbit terms~Ref. 20!.

bReference 24.
cReference 33.
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tions have been carried out with nine and 13 electrons,
spectively, limiting the virtual space to orbitals/spinors wi
energies below 3 a.u.. We compare the results both with
periment and the previous values obtained with the Dira
Coulomb–Gaunt Hamiltonian and one set of spinors~DCG1!
at the SCF level~reference! and the Coupled Cluster metho
with single, double and perturbative inclusion of triple exc
tations. We took the same basis set as in Ref. 24 but us
in uncontracted form. This difference is only 0.3 cm21 as
can be seen by comparing the CCSD one-determinant re
ence value with the~9in5!CAS value~both numbers should
be identical if the same basis is used!. The neglect of the
Gaunt interaction is important as is apparent by looking
the fourth and fifth column of Table III where we list th
Dirac–Coulomb and Dirac–Coulomb–Gaunt results co
puted with theMOLFDIR program.26,27The effect of the Gaunt
interaction is an almost constant shift of 20 cm21 that re-
duces the computed splitting. The spin–other–orbit contri
tion to the splitting increases slightly with the correlatio
treatment, and we give an estimated~final! value for the SD9
CI calculation including the estimated Gaunt contribution
this level of correlation from theMOLFDIR CC calculations.

The CISD approach that we used in the present w
gives a splitting that is 10 cm21 smaller than the CCSD
value and falls about 23 cm21 short of the benchmark
CCSD-T value. This illustrates the well-known shortcomin
of the CI method to assess the full correlation energy. M
important in the present context is, however, that we ag
find that the spinor basis performs significantly better th
the orbital basis, even for such a light molecule as C
However, another issue needs attention when doing su
direct comparison: The orbital values in the first two co
umns of Table III have been obtained including two furth
approximations. First, a mean-field spin–orbit summation
carried out, and, furthermore, spin–orbit integrals are co
puted neglecting multicenter terms~the atomic approxima-
tion!. To further resolve this and refine the comparison,
also report results of a hybrid approach in the third colu
~denoted sf1so). These are obtained by first generating
molecular orbital basis using the spin-freeDIRAC

formalism.16 Next, the implementation of the integral tran
formation step in DIRAC allows for transforming spin-
dependent integrals@using the Dirac–Coulomb~DC! opera-
tor# to this spin-free orbital basis, but without invoking
mean-field summation and also including two-center sp
dependent integrals. Thus, the combined contribution of
mean-field summation and the one-center approximation
AMFI can be ruled out. In fact, as can be seen by compar
these results with the orbital values, the latter effects
negligibly small, amounting to only 2 to 3 cm21, which is
also a corroboration of the validity of the AMFI approxima
tions. What remains is a difference of roughly 25 cm21,
which is solely due to the methodological treatment of spi
orbit coupling: Early~at the SCF stage! or late ~at the CI
stage!. The present results indicate a surprisingly large su
riority of the spin-dependent orbital optimization already f
elements as light as chlorine and oxygen.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



a
hu
ap
om
o

ve
im
m
o

i-
o-
m
o

ce
as

in
a
ple

ffi
in
th
e
a
a
to
a
ve
n

a
a
f

a

xi-

nt
pl
th
e
n
-

in
in

ea
to
ti
re
t
e

e-
po

hip

m
h

im-
I
for

d

, J.

r
r,

s-

hys.

lta

hem.

s.

ort,

and

en-

9

2970 J. Chem. Phys., Vol. 119, No. 6, 8 August 2003 Fleig, Olsen, and Visscher

Down
IV. CONCLUSIONS

On the technical side we report that theLUCIAREL pro-
gram has now been included in, and adapted to, a progr
package which uses a general relativistic spinor basis. T
it is now possible to exploit the advantages of the GAS
proach in a spinor basis when, e.g., heavy element c
pounds are investigated. Moreover, the concise program c
for determining sigma vectors and density matrices impro
transparency and facilitates future modifications and
provements. The only point of reference of this CI progra
is the Kramers pairing of the optimized spinors, and it is n
decisive whether a ‘‘full’’ Dirac Hamiltonian or an approx
mate spin-dependent Hamiltonian which typically is tw
component is used to determine the spinor basis. The for
option will leave the electronic and positronic degrees
freedom open for optimization in the Hartree–Fock pro
dure~and thus requires both large and small component b
functions!. In this contextLUCIAREL will serve as the large-
scale CI module for a new Kramers-MCSCF program with
the DIRAC package.18,28 The composite treatment of sigm
vectors and density matrices proves valuable for the im
mentation of this module.

Use of a spinor basis has a profound impact on the e
ciency of determining atomic spin–orbit splittings, both
uncorrelated and correlated treatments. We conclude at
stage that the well-known test case Tl does not stand alon
this respect, but that also the lanthanide atomic ground st
under consideration are better described in a spinor basis
given level of electron correlation. Our study is meant
exemplify the difference in these representative cases,
there is all reason to assume that the finding will carry o
to molecules with heavy atoms, including those differe
from the ones we have selected.

In conclusion, we recommend to start from a spinor b
sis when an extensive correlation treatment is aimed
Since the presented CI calculations are equally expensive
Dirac spinors as for approximate spinors derived from
approximate spin-dependent Hamiltonian~like the Douglas–
Kroll Hamiltonian including the Breit interaction!, there
would in principle be no argument for applying an appro
mated Hamiltonian once the correlation stage begins
dominate the calculation time. Two counter argume
should be mentioned, however. At the present stage of im
mentation, the use of uncontracted basis sets in
4-component approach is less efficient than the use of g
eral contraction as is common in correlation calculatio
with a scalar relativistic Hamiltonian. This is especially im
portant when a number of heavy atoms are to be taken
account. Second, the AMFI method also takes the Breit
teraction into account in an approximate fashion, wher
our Dirac calculations employ the Dirac–Coulomb opera
which neglects the spin–other–orbit terms of the relativis
two-particle interaction. Although these contributions a
relatively small in heavy elements, it would be desirable
include them. This will be subject of future work on th
DIRAC package.29 We also like to mention here that an impl
mentation of the mean-field spin–orbit method based u
molecular densities within theDIRAC package is in
progress.30
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34In other words, since there is no exchange interaction between part
with different spin.

35It has to be noted, though, that taking the spin–other–orbit part of
two-electron spin–orbit operator into account would result in a decre
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of the spin–orbit splitting of Tl in the order of 50 cm21 ~Ref. 2! in our
present spinor calculations. In the orbital calculations, the Ga
term is accounted for in an approximate fashion through the mean-
summation.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions


