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We present an implementation for large-scale relativistic electronic structure calculations including
spin-dependent contributions and electron correlation in a fully variational procedure. The modular
implementation of the double group configuration interaction �CI� program into a multiconfiguration
self-consistent-field �MCSCF� code allows for the treatment of large CI expansions in both the
spinor optimization step and the post-MCSCF dynamic electron correlation step. As an illustration
of the potential of the new code, we calculate the spectroscopic properties of the UO2 molecule
where we study the ground state and a few excited states in vertical and adiabatic calculations.
© 2006 American Institute of Physics. �DOI: 10.1063/1.2176609�
I. INTRODUCTION

A number of interesting problems in heavy-element
chemistry require accurate descriptions of electron correla-
tion, both static and dynamic, and relativistic contributions,
both scalar and spin orbit. Examples are open-shell systems
of heavy p, d, and f elements1–3 and excited states of mol-
ecules with closed-shell ground states, for example, in
uranyl4 and coinage metal dimers.5 Ideally, all of these con-
tributions should be treated on the same footing and, where
appropriate, simultaneously. The simultaneous treatment of
static electron correlation and spin-orbit coupling is possible
with the recently presented four-component Kramers-
restricted relativistic multiconfiguration self-consistent-field
�KR-MCSCF� implementation6 based on the theoretical
framework in Ref. 7. In the same theoretical framework, a
relativistic configuration interaction �CI� program has been
presented8 based on the Dirac-Coulomb Hamiltonian and ca-
pable of treating long configuration expansions which aim at
the simultaneous treatment of dynamic electron correlation
and spin-orbit coupling. The use of configuration expansions
of adequate size has, however, often not been possible with
the initial KR-MCSCF implementation.

a�
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The objective of this paper is to present the combination
of these two methods in a dual sense. First, the modular
incorporation of the large-scale CI program in the
KR-MCSCF method allows for calculations with large active
orbital spaces. Second, using the KR-MCSCF state as a ref-
erence point, the CI program is used to treat dynamic corre-
lation based on orbitals which already include the major
static correlation and relativistic relaxation in the molecular
valence space. The orbital space can now contain up to
roughly 120 Kramers pairs, and the CI expansions may be
beyond 1�108 Slater determinants. Active spaces for the
initial KR-MCSCF calculations may now contain more than
50 Kramers pairs. To allow the use of active spaces of this
size in conjunction with the high excitation levels typically
required to describe static correlation, it is necessary to di-
vide the active orbital space into several subspaces and im-
pose restrictions on the occupations of the various active
orbital spaces.

In general, the direct implementations in both the CI
and KR-MCSCF methods shift the limitations for
KR-MCSCF/CI calculations from memory to CPU time as
the rate-determining step. The initial KR-MCSCF im-
plementation6 is direct in the construction of the energy Hes-
sian matrix and the CI Hamiltonian, removing the memory
bottleneck from large-scale applications, but nevertheless be-
comes inefficient when the configuration spaces exceed
about 500 000 Slater determinants. The reason for this is that

explicit comparisons of determinants are carried out in the

© 2006 American Institute of Physics06-1
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evaluation of CI coupling coefficients. The new CI module,
however, is a genuine string-based implementation where the
concept of ordered string graphs9 is exploited to avoid ex-
plicit comparison of strings.

The implementation has been carried out in a local ver-
sion of the DIRAC04 program package10 and is a continuation
of our methodological work along the lines of relativistic
KR-MCSCF/CI for obtaining the wave function and elec-
tronic energies. Paper I of this series11 dealt with the imple-
mentation of relativistic double group CI in a two-
component framework. Scalar spin-orbitals were used as
one-particle functions and the spin-orbit Hamiltonian was
represented in the atomic mean-field approximation.12,13

Paper II �Ref. 8� followed up with a generalization of the CI
implementation to the use of Kramers-paired spinors and an
interface to the four-component environment.

In the following section on theory and implementation,
we review the key features of our relativistic CI method with
focus on the issues relevant for implementing large-scale
KR-MCSCF. These include the efficient use of generalized
active orbital spaces and the implementation of one- and
two-electron �transition� density matrices for the active
spinors. We next describe the modular incorporation of the
CI program in the KR-MCSCF environment. The reader is
referred to the preceding papers on direct relativistic CI
�Refs. 8 and 11� and KR-MCSCF �Refs. 6, 7, and 14� for
further details. In the final section, we apply the new method
to the UO2 molecule. This application illustrates some of the
potentials of the new method since much of the novel func-
tionality with respect to construction of active spaces and
combining computational approaches is exploited.

II. THEORY AND IMPLEMENTATION

The central new methodological aspects of the imple-
mentation presented here are the possibility to carry out rela-
tivistic CI and MCSCF calculations with very large CI ex-
pansions in an efficient manner and the calculation and use
of �transition� one- and two-electron density matrices, both
based on relativistic Kramers-paired spinors of double group
symmetry �D2h

* and subgroups�. In the following subsections,
we therefore focus on the ingredients for the required tech-
nology, especially in the context of relativistic theory.

A. Relativistic configuration interaction theory

In a recent publication6 the initial implementation of a
Kramers-restricted four-component MCSCF program �KR-
MCSCF� for molecules has been presented within a locally
modified version of the DIRAC program package.10 The initial
direct second-order implementation employs a CI program
which can efficiently handle only up to roughly 500 000
Slater determinants and is therefore limited in applicability.
Many typical molecular complete valence space CI expan-

sions surpass this limit, especially since spin-orbit coupling
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invalidates the use of MS or S2 as good quantum numbers.
Double point group symmetry may be used without loss of
rigor and has been implemented for molecules which have
D2h or a subgroup of D2h as point group. The current pro-
gram version is operational for real matrix groups �D2h

* , C2v
* ,

and D2
*� and complex matrix groups �C2h

* , C2
*, and Cs

*�.
Quaternion matrix groups �Ci

* and C1
*� have not been re-

quired in application and are therefore not fully debugged.15

The introduction of generalized active spaces �GASs�
�described in Refs. 11 and 16� replacing the straightforward
complete active space �CAS� expansions17,18 leads to some
improvement, because the wave function may be specified
by an arbitrary number of active orbital spaces with arbitrary
occupation constraints. Nevertheless, most reasonable static
correlation GAS expansions exceed 1�106 Slater determi-
nants, even for small molecules such as diatomic molecules
of heavy elements.

The relativistic double group CI program LUCIAREL de-
scribed here operates by including all determinants fulfilling
the occupation restrictions given by the GAS constraints.
The Dirac-Coulomb CI Hamiltonian matrix eigenvalue equa-
tion �or for other Hamiltonians of the previous implementa-
tions such as the Douglas-Kroll-Hess �DKH� Hamiltonian
including mean-field spin-orbit terms12,13� is then solved for
a specified number of roots in a direct CI fashion in the basis
of the generated Slater determinants, thus ensuring simulta-
neous treatment of dynamic electron correlation and spin-
orbit coupling. Recent development work16 on the pro-
gram has opened for efficient evaluation of CI �transition�
density matrices by the introduction of an excitation class
formalism. This procedure maps excitations by grouping
them according to the occupation of active �GAS� subspaces
and the Kramers barred or unbarred type of the involved
creation/annihilation operators in second quantization �de-
tails below�.

In the GAS concept the various determinants are divided
into blocks with each block having given occupations in the
various active subspaces. The creator strings are in the same
way divided into various occupation types with each occu-
pation type being specified by occupation of the various ac-
tive orbital spaces.

To show some important features of our implementation
we consider the evaluation of sigma vector fragments re-
quired in direct CI technology.9,19 These linear transforma-
tions are carried out in basically the same way as the density
matrix generation �see Sec. II B 3 and Ref. 8�. A sample
vector would be

�� = �
�

����Ĥ����c� �1�

expressed in the basis of determinants ���� and where Ĥ is
7,11
the relativistic Hamiltonian

ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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IJ
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1

2
�hĪJX̂ĪJ

+
+ hIJ̄X̂IJ̄

+ �

+

1

2 �
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��KL�MN�xKLMN
++

+ �K̄L�MN�x
K̄LMN

++
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++ �

+
1

4 �
KLMN

�K̄L�MN̄�x
K̄LMN̄

++

+
1

8 �
KLMN

��K̄L�M̄N�x
K̄LM̄N

++
+ �KL̄�MN̄�x

KL̄MN̄

++ � , �2�

expressed in terms of Kramers-paired spinors. Typically, the
complete sigma vector cannot be kept in fast memory. It is
therefore necessary to divide the � and C vectors into
batches and construct a given batch of the � vector by read-
ing in batches of the C vector. To construct the � vector, the
C vector may therefore be read in for each batch or more
precisely the part of the C vector that contributes to one or
more of the blocks of a given batch of � must be read in. As
an increasing number of batches therefore lead to increasing
input/output �I/O�, it is important to allow as large batches as
the available memory allows. An essential part of our divi-
sion of vectors into batches is the concept of blocks of
determinants. Each determinant is defined by a creator
string for the occupied unbarred Kramers spinors and a
creator string for the occupied barred Kramers spinors:

����= �S�
†S̄�

†�. As already briefly mentioned, the determinants
are divided into blocks with each block having given occu-
pations in the various active subspaces. The creator strings
are also divided into such occupation types. A given block of
determinants is then identified by its Kramers projection
value, the occupation types, and the symmetries of the con-
stituent barred and unbarred strings. We then define a batch
of determinants as one or several blocks of determinants. The
number of blocks in each batch is defined so that the total
length of all the blocks in a batch is less than some specified
value related to available computer memory. Currently, we
typically use 1�107. The division of the determinants into
blocks and batches does not affect the efficiency as the inner
parts of the �-vector generation from the onset generate the
contribution from one block of C to one block of �. The
batching of determinants is the most important reason for the
lower memory requirements of LUCIAREL compared to the
initial KR-MCSCF CI code in DIRAC.6 Details are again
available in the preceding publications.8,11

To illustrate the generation of a given block of � from a
given block of C, consider the terms from the part of the
Hamiltonian that changes the Kramers projection by two

units,
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�T,T̄
+2

= �
I�K

L�J

�
S

�T†�aI
†aK

† �S†���IJ̄�KL̄� − �KJ̄�IL̄��

� �
S̄

�T̄†�aL̄aJ̄�S̄†�CS,S̄, �3�

where aI
† is a creation operator for an unbarred spinor, aL̄ an

annihilation operator for a barred spinor, S† denotes a string
of unbarred creation operators, and CS,S̄ is the CI coefficient

for the unbarred/barred string combination S† , S̄† forming a
particular determinant.

As the blocks of � and C are specified, only the part of

Ĥ that connects these two blocks is included. The Hamil-
tonian is therefore also divided into several sub-
Hamiltonians where each sub-Hamiltonian is defined by the
changes it produces in the number of the barred and unbarred
electrons in each orbital subspace. The blocking of the deter-
minants therefore also reduces the number of integrals that
must reside in core at any given time. This is, however, not
exploited at the moment. Further details on the evaluation of
the � vector are again available in the preceding
publications.8,11 As a remark on the ongoing work, the divi-
sion of the determinants into batches allows for a simple
fine-grained parallelization of the � vector evaluation. A
batch of coefficients along with the required transformed in-
tegrals can be passed to a given processor/node, and after
evaluation the various � vector contributions from the differ-
ent nodes are kept at the node or gathered to form the com-
plete � vector.

Another issue worth mentioning in this context is the
general implementation of the � vector evaluation indepen-
dent of the excitation level of a given determinant with re-
spect to some reference function �e.g., the Dirac-Coulomb
Hartree-Fock state�. This is possible in genuine string-based
algorithms which do not carry out explicit comparisons of
configurations/occupations in determining coupling coeffi-
cients. LUCIAREL is therefore much more efficient when
higher than double excitations are involved than, e.g., the
relativistic double group CI code DIRRCI �Ref. 20� that is also
included in the DIRAC package.

The previously presented shift to an excitation class for-
malism in the CI code8 now opens for the efficient compu-
tation of the CI density matrices which are required in a
KR-MCSCF optimization. Due to the structural similarity of
� vector and density matrix calculations, this is carried out
with the same set of program routines, providing different
input and output in the two respective cases. A more detailed
description is given in Sec. II B 3.

B. KR-MCSCF implementation

We now turn to the KR-MCSCF implementation and
briefly outline the optimization procedure �details may be
found in Ref. 6�, as the tasks for LUCIAREL immediately be-
come apparent from the derived expressions. The central
KR-MCSCF equation system to be solved for a macroitera-

�
tion step � reads

ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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�� = − �E�2� − �I�−1E�1� �4�

with E�2� is the Hessian matrix, E�1� is the gradient vector,
and � is a level shift parameter evaluated at the current ex-
pansion point �=0. The Hessian matrix is never calculated
explicitly but expanded in a set of trial vectors from which
the coefficients are found by solving projected linear equa-
tions onto the reduced space of trial vectors

a� = − �E�2R� − �I�−1E�1R� �5�

with the reduced Hessian and gradient elements,

Eij
�2R� = bi

†E�2�b j ,

Ei
�1R� = bi

†R�1�.

The solution �� to the full linear equation is found to the
required accuracy by means of successive linear transforma-
tions

� j = E�2�b j �6�

for a trial vector b j without setting up the Hessian explicitly.
This direct optimization procedure ensures that KR-MCSCF
calculations involving a large number of configurational and
orbital parameters can be treated. As the Hessian couples
orbital and configuration subspaces, the sigma vectors � j

have both orbital and configurational contributions which
give rise to different tasks for the CI module. These tasks can
be best understood from the program flow diagram given in
Fig. 1. To give an overview, we summarize the entry points
and their task in Table I before turning to a more detailed
discussion in the following Secs. II B 1, II B 2, and II B 3.
The top-level routines represent the specific task, the CI start
guess, a projection vector �sigma vector� from a given ex-
pansion point CI vector, the one- and two-particle density
matrices from a given expansion point vector, and finally, if
desired, an analysis step of an optimized wave function in

configuration space.
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1. Start guesses

The setout in a KR-MCSCF macroiteration is a start
guess for all optimization parameters, both the occupied
Kramers orbitals and the configuration coefficients. The
former are determined either by running a Dirac-Coulomb
Hartree-Fock SCF calculation or by using a vector from a
previous KR-MCSCF run. An initial guess for the CI param-
eters is gained by transforming the integrals over the Dirac-
Coulomb �DC� Hamiltonian to the start guess for the one-
particle basis and running a direct CI calculation with a few
microiterations only, which is sufficient. This can be under-
stood with the help of the diagram in Fig. 2. The first CI
iteration is the initial guess and is the Hartree-Fock determi-
nant in the closed-shell case and a simple linear combination
of a few determinants in the open-shell case. Assuming that
the initial wave function corresponds to a nonrelativistic or
scalar relativistic Hamiltonian, this initial wave function has

FIG. 1. KR-MCSCF flow diagram. D , P: One- and two-
particle density matrices, F: generalized Fock matrix,
E: total energy, g: gradient, H: Hessian.

TABLE I. The various entry points and tasks for the KR-MCSCF program.

Entry point in LUCIAREL Needed for

Setup Number of CI determinants

Configuration interaction Generation of configuration start guess
for KR-MCSCF
Any large-scale CI
after the KR-MCSCF
�Will internally call the “sigma vectors”
entry point�

Sigma vectors Configurational part of gradient
Configurational and orbital contribution
to configurational sigma vectors

Density matrices Orbital part of gradient
Configurational and orbital contribution
to orbital sigma vectors

Configuration vector analysis Analysis at convergence
ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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a well-defined Kramers projection value MK determined
from the number of Kramers unbarred �Np� and barred �Np̄�
electrons as MK= �Np−Np̄� /2. In the second iteration, all pos-
sible couplings from the initial determinants to all singly and
doubly excited determinants are included, necessarily having
Kramers projection value from MK to MK±2. This step can
be viewed as a first order coupling in terms of perturbation
theory. The third iteration includes all the determinants that
can be obtained from the initial wave function with up to
quadruple excitations and Kramers projection from MK to
MK±4. In the case depicted in Fig. 2 this comprises the full
determinant space, but in cases with more open orbitals, a
larger number of iterations may be required to include the
full determinant space.

An additional feature can be seen from Fig. 2 �further
details can be found in Ref. 7�: The box in the upper left
corner symbolizes the reduction of nonredundant contribu-
tions in the case of an even number of electrons. This corre-
sponds to exploiting time-reversal symmetry in the many-
particle wave function, the implementation of which would
require changes in the linear transformation �sigma vector�
evaluations. In the odd-fermion case, time-reversal symme-
try is more easily exploited at the many-particle level if
Kramers partners fall into different fermion irreducible rep-
resentations, which is the case in complex matrix groups.
Real matrix groups are treated by switching to the highest
complex subgroup thus ensuring the same symmetry block-
ing. Here, in addition, it is exploited that all integrals are
purely real.21

2. Sigma vector computation

The evaluation of the complete electronic gradient calls
for derivatives with respect to the configurational parameters
in a given macroiteration. As an example, the term for a
determinant ���� reads �Eq. �3.12� from Ref. 7�

� �E

���
* �

	=0

= ����Ĥ�c�k�� − E�0�c�
�k�, �7�

meaning a sigma-vector-type expression Ĥ�c�k�� needs to be
�k�

FIG. 2. Coupling diagram for a six-fermion system and the relativistic
Kramers-restricted Hamiltonian.
determined from the current expansion point vector �c �.
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The second place where computations of sigma vectors
are required is in the calculation of orbital and configura-
tional contributions to the configurational Hessian sigma
vectors. As described in detail in Refs. 6 and 7, the Hessian
matrix is not computed explicitly. Instead, the solution is
expanded in a set of trial vectors b in the spinor �o� and
configurational �c� space and a complex Davidson algorithm
used as update procedure �see, also Sec. II B�. One is left
with a matrix equation

�
�c

�o

�c*

�o*
 =�

E�2�c*c E�2�c*o E�2�c*c*
E�2�c*o*

E�2�o*c E�2�o*o E�2�o*c*
E�2�o*o*

E�2�cc E�2�co E�2�cc*
E�2�co*

E�2�oc E�2�oo E�2�oc*
E�2�oo*

 · �
bc

bo

bc*

bo*
 ,

�8�

of which the different elements E�2�c*c ·bc, etc., can be ex-
pressed as Eqs. �3.29�–�32� in Ref. 7,

��
cc = �0�Ĥ�B� − E�0�b�

c , �9�

��
co = ���H̃�0� , �10�

�pq
oc = �g̃pq

o �*, �11�

�pq
oo = �g̃pq

o �* +
1

2�
r

g�r�b�r� , �12�

where H̃ and g̃ refer to the one-index transformed Hamil-
tonian and gradient, respectively, and g�r�b�r� is an abbrevi-
ated expression involving products of gradient elements and
expansion coefficients.

Again, the first two expressions �9� and �10� correspond
to a sigma vector step with the trial vectors �B� �Hessian
solution expansion vector� and �0� �current configurational C
vector�, respectively. The remaining two orbital terms �11�
and �12� are derived from the orbital gradient, the evaluation
of which will be discussed in the Sec. II B 3.

As an efficient option, integrals with two positronic
indices may be neglected in the calculation of sigma vectors.
As long as these are included in the gradient, the
KR-MCSCF wave function is fully relaxed with respect to
electron-positron rotations. Although this is not a fully
second-order optimization, it gives satisfactory convergence
at a significantly lower cost in the integral transformation.6,7

3. Density matrix computations

Both the orbital part of the gradient and of the direct
Hessian evaluation require one- and two-particle density ma-
trices over the active space indices �active in the sense of the
GAS concept6 �. Excitations between all orbital spaces in-
cluding the inactive and secondary spaces are included and

the spinor gradient element reads

ense or copyright; see http://jcp.aip.org/about/rights_and_permissions
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� �E

�
pq
* �

	=0

= − �c�0���X̂qp
− ,Ĥ��c�0�� = Fqp − Fpq

* = f��1
+,�2

+� .

�13�

Fqp here is a generalized Fock matrix6,22 and f��� is a func-
tion of the one- ��1

+� and two-particle ��2
++� density. The in-

troduction of GASs makes the classification of orbital rota-
tions nontrivial. To exclude redundant orbital rotations
between two GA orbital spaces, we examine whether the
chosen CI space is invariant towards rotations between these
two GASs. Redundant orbital rotations are subsequently re-
moved from the parameter space.

In each iteration, the density matrices are constructed to
calculate the orbital part of the gradient. The second type of
call occurs inside the microiteration loops in the evaluation
of the orbital contributions to the orbital sigma vectors. Here,
transition density matrices are required for expressions of the
type

�c�0,k���X̂qp
− ,Ĥ��B� ,

where B is a trial vector expansion in terms of determinants
�� required for the direct update procedure,

�B� = �
�

b����� .

Exemplifying the calculation of density matrices by analogy
to CI sigma vectors �as mentioned in Sec. II A� we discuss
the evaluation of a density matrix element for the Kramers
flip operator aI

†aK
† aLaJ̄ of the �MK= +1 class,

�++�r��IJ̄KL� = �
S,S̄

�
T,T̄

�CT,T̄
r �T†T̄†�aI

†aK
† aLaJ̄�S†S̄†�CS,S̄

r

+ CT,T̄
i �T†T̄†�aI

†aK
† aLaJ̄�S†S̄†�CS,S̄

i � , �14�

where a real contribution consists of additive real/real and
imaginary/imaginary contributions �and likewise for imagi-
nary contributions from real/imaginary and imaginary/real
contributions�. As described in Ref. 8 the contraction with
integrals �in the sigma vector case� is now replaced with a
contraction with coefficients. The evaluation procedure is
identical, though, and allows for the treatment of any opera-
tor in the above form. The calculation of transition densities
is easily carried out by replacing the ket vector with the
appropriate CI expansion of the reference vectors required in
the direct KR-MCSCF steps.

Storage and handling of the generated density matrices
are performed via an efficient format which is based on a
quaternion representation of the involved quantities.6,23

4. Vector analysis

At two stages of the optimization, the CI module may be
called for an analysis of the contribution of the various Slater
determinants and for the size of the various MK components.
The first stage is after the generation of the configurational
start guess, where the analysis provides information about
the state one is converging to. The second analysis is invoked
at the end of an optimization by passing the final configura-

tional vector to the CI module.
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III. APPLICATION: THE UO2 MOLECULE

The theoretical study of uranium and plutonium com-
pounds is both necessary and interesting, since experiments
with hazardous material are costly and often dangerous.
Moreover, the plethora of low-lying electronic states in most
of the compounds, the influence of spin-orbit coupling, and
the importance of electron correlation make computational
investigations of high accuracy a difficult task. The UO2

molecule is an example of an open-shell actinide compound
where already the treatment of the ground state is far from
trivial. In recent years, several ab initio and density-
functional theory �DFT� studies of the molecule have been
carried out.24–28

New experiments29,30 have allowed for direct compari-
son with theoretical predictions and facilitated statements
about the quality of theoretical results. The recent REMPI
experiments of Han et al.30 confirm previous theoretical
work that predicts UO2 to be linear and symmetric in its
ground state. Two open-shell electrons form an ungerade
manifold of low-lying states arising from the U�5f 7s�g�O2

configuration and a gerade manifold from the U�5f2�O2 con-
figuration. The most recent calculations employed the com-
plete active space second-order perturbation theory
�CASPT2� combined with spin-orbit coupling at the com-
plete active space state interaction level31 �in the following
called SO-CASPT2� and spin-orbit CI calculations per-
formed with the COLUMBUS program package32 using relativ-
istic effective core potentials. In these studies, the lowest
states are predicted to be of ungerade symmetry and are char-
acterized as =2u and =3u. These states have, as domi-
nant components, determinants obtained by populating the
U�7s�g� and U�5f5/2� spinors in a j-j-coupling picture. In an
LS-coupling scheme this latter spinor corresponds to the non-
bonding U�5f�� orbital that lies slightly below the also non-
bonding U�5f�� orbital.

The splitting between the lowest u and g states is of
interest because the shifts in the asymmetric stretch vibra-
tional frequency going from a neon to an argon matrix, that
were observed by Zhou et al.,33 may be explained by assum-
ing a change of ground state in the argon matrix. This view-
point is supported by the theoretical work of Li et al.26 which
indeed indicates a significant lowering of the gerade states
upon coordination with argon. This interaction could be
strong enough to cause a matrix-induced change of ground
state, similar to the one observed in CUO.34 This explanation
is, however, not in agreement with the electronic spectra of
UO2 in argon reported by Heaven and co-workers.29,30 These
spectra make an assignment of the ground state as gerade
unlikely. In a recent paper Gagliardi et al.28 presented new
calculations and concluded that although theoretical calcula-
tions cannot rule out the change of ground state, this is not
very likely given the good agreement of the observed elec-
tronic spectra with the gas-phase computational data.

To give a first indication of the results that can be ob-
tained using a consistent treatment of both scalar and spin-
orbit relativistic effects, we will investigate the lowest u and
g states of UO2 in terms of their character and excitation

energy, both vertical and adiabatic. At the KR-MCSCF level,
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the calculations will be carried out with sufficiently large
active spaces and CI expansions to allow for the description
of static correlation. As dynamic electron correlation has a
profound impact on the spectroscopic properties of this sys-
tem, we investigate the ground state and the excited states by
applying GASCI based on both Dirac-Coulomb Hartree-
Fock �DC-HF� and KR-MCSCF spinors. These calculations
serve to analyze the bonding situation and will shed light on
the interplay of spin-orbit �SO� coupling and electron corre-
lation that is of crucial importance to make a reliable predic-
tion of the precise ordering of the u and g states.

A. DC-HF and KR-MCSCF calculations

The calculations have been performed using the uncon-
tracted basis sets from Ref. 35 with �26s21p17d12f� func-
tions on uranium and �10s5p2d1f� functions on oxygen and
at various internuclear distances along the linear symmetric
stretch coordinate of the molecule in the D2h

* double group
symmetry. The initial set of molecular spinors is obtained
from a DC-HF calculation with state averaging over the
7s15f1�u� double open-shell configuration. The selection of
active spaces for the subsequent KR-MCSCF calculations
requires a characterization of the molecular spinors. This is
done by Mulliken population analysis and by determining

the L̂z expectation values of the spinors in question and as-

signing �approximate� projection quantum numbers 	. The L̂z

analysis reveals that almost all of the Kramers pairs are close
to an integer 	 value; therefore spin-orbit coupling has only
a minor influence at the one-particle level. This concerns
both the bonding orbitals �where one �–� mixing occurs�
and the virtual-space orbitals. Consequently, we obtain in
essence the same bond lengths when running the DC-HF
calculation with and without spin-orbit terms �Re=3.314a0

including and Re=3.315a0 neglecting spin-orbit coupling�.
The averaging over configurations carried out in the DC-HF
is not the reason for this, as this averaging only includes
nonbonding orbitals.

The active KR-MCSCF space is composed as given in
Table II. The active space contains the energetically highest
occupied DC-HF Kramers pairs from the averaged calcula-
tion, four of which are bonding. We include the entire set of
5f�U� and 7p�U� functions as they are partially mixed and
cannot be separated unambiguously. In addition, an anti-
bonding gerade function is included.

A CASSCF calculation with the 14 valence electrons in
these 18 Kramers pairs yields a configuration space of
roughly 1�109 determinants, a calculation which is feasible

TABLE II. The symmetry and main contribution of the active spinors in the
UO2 KR-MCSCF calculation. Bonding orbitals are denoted in boldface.

Gerade Ungerade

7s�U� �* �5f�U�� �7p�U��
7s�U� �

2p�O� � 2p�O�5f�U� �

2p�O� � 2p�O�5f�U� �

2p�O�6d�U� � 2p�O�5f�U� �
but too time consuming. We have tested two different re-
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stricted active space calculations. The first includes all exci-
tations up to triples in the active space �SDT, 143 330 deter-
minants�, the second up to pentuples �SDTQ5, 15 200 032
determinants�. We use an odd maximum excitation level be-
cause the ground state is expected to be singly excited with
respect to the closed-shell reference setup. The larger space
thus contains up to quadruple excitations out of the ground
state. The KR-MCSCF calculations are approximated by ne-
glecting rotations between positive energy and negative en-
ergy orbitals, i.e., freezing the no-pair partitioning to that of
the DC-HF calculation. This approximation has a negligible
effect on the computed energies.

We find the 2u state as the lowest state from the u mani-
fold in both the smaller and the larger KR-MCSCF calcula-
tions. With the SDT setup, a potential curve has been calcu-
lated yielding an equilibrium bond distance of Re=3.348a0, a
bond elongation compared to the average of configuration
DC-HF result of Re=3.314a0. This comparison of a state
energy with an average energy expression is meaningful be-
cause the averaging in the DC-HF is carried out over the
nonbonding 5f�U� and 7p�U� spinors and should give a rea-
sonable first guess of the bond distance in the ground state.
Restricting the open-shell occupation in the DC-HF to
7s�U��g 5f�U�� leads to a bond length of Re=3.312a0, in
accord with our arguments. The lowest g state is obtained by
a corresponding KR-MCSCF calculation at a single point,
3.481a0, as 4g for which the excitation energy is 0.669 eV.
The g states are known to have minima at significantly
longer bond distances than the u states,25 however. An adia-
batic excitation energy including dynamic electron correla-
tion is necessary to obtain a result reliable enough to make a
more definite statement about the true excitation energy of
the gerade states that are assumed to be significantly lowered
in energy in argon matrices.

A Mulliken population analysis and L̂z analysis of the
spinors reveal that the correspondence between the SDT and
SDTQ5 KR-MCSCF states is good. The g orbitals do not
undergo any significant change. Some variation in the form
of the 5f� and 5f� spinors on the form of spinor optimization
is observed as reported in Table III. The character of these
two active orbitals determines to a large degree the excitation
energies to the lowest excited states. Despite the increasing
� character of the �-type orbital with the correlation level,
we consider the smaller KR-MCSCF calculation a reason-
able starting point for dynamic correlation calculations, be-
cause all internal excitations of the KR-MCSCF SDTQ5 cal-
culations are included in the MRCI calculations.

B. Multireference CI calculations

MRCI calculations using LUCIAREL will be carried out to

TABLE III. Dominant contribution to 5f� and 5f� for various forms of
spinor optimization.

Oribital type DC-HF KR-MCSCF SDT KR-MCSCF SDTQ5

5f� 86%�, 14%� 90%�, 10%� 90%�, 10%�

5f� 95%�, 5%� 86%�, 14%� 70%�, 30%�
investigate two aspects of the electronic states of the UO2
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molecule. First, we want to determine a precise bond length
of the 2u, 3u states by using state-specific SDT KR-MCSCF
�2u� spinors as one-particle basis. This will also yield the
adiabatic excitation energy of the �expected� first excited
state 3u. Second, we will run single-point calculations for a
larger number of excited states in both the g and u symme-
tries at different correlation levels and compare with other
methods and experiment.

1. Potential curves

The configuration space for these calculations is based
upon the KR-MCSCF SDT reference expansion and all
single and double excitations into a virtual space truncated at
2 a.u., amounting to 44 virtual Kramers pairs and a total
expansion length of almost 1�107 determinants. States were
identified �also in Sec. III B 2� by comparing small CAS CI
calculations with identical runs using the DIRAC module
DIRRCI �Ref. 20� which can exploit linear symmetry and di-
rectly delivers the  quantum numbers.

The results are compiled in Table IV. All presented
methods find 2u as the ground state also at the correlated
level. The adiabatic excitation energy for the 3u state is in
good agreement with experiment, given the small splitting
between the two states. The bond lengths hardly differ for the
2u and 3u states and the two curves are nearly parallel. Us-
ing DC-HF spinors, this correspondence is even better as the
averaging eliminates the state-specific �here 2u� character of
the orbitals in the �MC� calculation. Finally, we find excel-

TABLE IV. Equilibrium bond lengths and adiabatic excitation energies of
low-lying electronic states of UO2 using SDT KR-MCSCF orbitals �MC� or
DC-HF spinors �DC-HF� and comparison with experiment and other ap-
proaches.

State

Tc �cm−1� Rc �a0�

Present Expt.a Present SO-CASPT2b SOCI �COLUMBUS�c

2u 0 0 3.372 3.375 3.401
3uMC 417 360 3.379
3uDC-HF

¯ 3.375

aReference 30.
bReference 24.
cReference 25.

TABLE V. Excitation energies of u electronic states of UO2 at different corr
denotes single �S� excitations of 12 valence electrons, a CAS with two elec
virtual space from all reference determinants so created. SDT-SD denotes SD
a �g

* orbital and SD excitations into the virtual space from all reference det
augmented basis set.

State CAS2 S12C2-SD SDT-SD�MC� SDT-SD

2u 0 0 0 0
3u 477 416 518 460
1u 1416 1336 1478 1
2u 1853 1763 1922 1
4u 5904

U–O Separation 3.418a0 3.481a0 3.481a0 3.481a0

aReference 25.
b
Reference 28.
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lent agreement between our value and the SO-CASPT2 re-
sult if we take the result obtained with a similar basis set and
active CASSCF space as ours. The deviation with the SOCI
result obtained with the COLUMBUS program is somewhat
larger. This deviation has two possible sources. We use—for
reasons of feasibility—a truncation of the virtual space. We
do not expect, however, that increasing the size of the virtual
space would lead to a significantly different equilibrium
bond length. The SOCI calculation on the other hand has
been carried out only at the SDCI level and uses an effective
core potential.

2. Excited states

Vertical excitation energies are determined by single-
point calculations at a U–O separation of 3.481a0 which is
between the u and g state minima. All calculations are based
on averaged 7s15f1�u� DC-HF spinors except where noted
otherwise. For purposes of comparison we determine the ex-
citation energies at different levels of electron correlation.
CAS2 denotes a CASCI calculation with the two-open-shell
electrons only. S12C2-SD stands for a run with single exci-
tations from the six doubly occupied Kramers pairs into a
CAS2 space and single and double excitations into the vir-
tual space �now truncated at 5 a.u.� from the complete refer-
ence space. The SDT-SD space is the same as in Sec. III B 1
but now also with a truncation value of 5 a.u. This largest
calculation includes nearly 23�106 Slater determinants.

Results for the states of u symmetry are collected in
Table V. At all levels, 2u is the molecular ground state. Al-
ready the two-electron CAS calculation reproduces the states
in the correct ordering and even with reasonable excitation
energies. Adding on the 12 electrons in an intershell correla-
tion type of model space reduces the excitation energies
somewhat. The fully correlated level brings the energies back
to the CAS2 results. This indicates that differential electron
correlation is quite small for these plain-valence calculations.
The 3u excitation energy derived with MC spinors is seen to
be poorer than the DC-CI value, implying that state averag-
ing in the orbital optimization is to be preferred in DC-CI
calculations of excited states.

When comparing to other methods and experiment, the
difference in U–O separation needs to be accounted for. The

n levels and comparison with experiment and other approaches. S12C2-SD
in the U�7s ,7p ,5f� orbitals and single and double �D� excitations into the
citations from seven occupied valence orbitals to the U�7p ,5f� orbitals and
ants so created. The CV-SDT-SD calculation has been carried out with an

-SD CV-SDT-SD �+3g1h� SOCI �COLUMBUS
a� SO-CASPT2b Expt.

0 0 0 0c

431 378 360c

1088 2567 1094d

2042 1566 2908 1401d

72a0 3.372a0 3.402a0 3.452a0

cReference 30.
d

elatio
trons
T ex

ermin

SDT

0
427
089
542

3.3
Reference 29.
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SO-CASPT2 energies are computed at 3.452a0, the SOCI
values at 3.402a0. Shifting our most elaborate potential curve
down to the shorter SOCI bond distance results in close
agreement of the CI approaches. For better comparison, we
have also carried out a single-point calculation at our mini-
mum bond distance of 3.372a0. The agreement between
these excitation energies and the SOCI �COLUMBUS� energies
is remarkable, and both methods give excitation energies
very close also to the matrix experimental values �given in
italics in Table V�. The SO-CASPT2 results which are very
close to the gas-phase experiment in case of 3u are off by
more than 1000 cm−1 for the excited states 1u and 2u. By
deeper analysis, we attempt to answer two questions that
arise. �1� What is the possible source for the deviation of the
SO-CASPT2 results from all other values for the 1u and 2u
excited states? �2� Is the close agreement between the two
SOCI values and the matrix experiment substantiated or co-
incidental?

Considering the second question first, we extend our cor-
relation treatment to include excitations from the subvalence
orbitals to obtain excitation energies of greater reliability for
the gas-phase molecule. We do this by opening the 2s�O� and
6p�U� for single excitations in a core-valence type of corre-
lation manner, combined with the reference space from the
plain-valence calculation correlating 14 electrons. In total, 24
electrons are correlated yielding a configuration space of
more than 50�106 determinants. The SO-CASPT2 method
treats ten electrons as active and the additional 14 electrons
by perturbation theory, so the correlation levels are now at
better balance for a comparison. Our calculation has only
been carried out for the irreducible representation containing
the two 2u states, and the obtained excitation energy is
1814 cm−1. Thus, the excitation energy increases by roughly
270 cm−1 compared to the valence calculations. The prelimi-
nary results of four-component coupled cluster calculations
on UO2 �Ref. 36� also give an increasing 2u excitation en-
ergy upon correlating 24 electrons. Obviously, the excitation
energy is not converged with respect to the treatment of elec-
tron correlation at the plain-valence level.

To further increase the accuracy of our calculation, we
augmented the basis set by functions of high angular mo-
mentum, 3g and 1h function, essentially for correlating the
uranium f electrons �exponents 2.725 913 629,
0.861 203 1602, and 0.365 998 661 6 for g and 1.604 319 77
for h�. The recalculated 2u excitation energy is now in-
creased to 2042 cm−1 �denoted CV-SDT-SD in Table V�, a
substantial correction of another 228 cm−1. The coupled
cluster calculation conducted by Infante and Visscher36 using
the same basis set indicates that including double excitations
from the uranium 6p shell will lead to another increase of
this excitation energy as compared to our final value of
2042 cm−1.

Turning to the first question now, the SO-CASPT2 value
we compare has been obtained vertically at a different bond
length but at the minimum geometry obtained with that cor-
relation treatment. Even if we shift along the potential curves
to bring the U–O separation to agreement, the variance in
excitation energy is not more than 200 cm−1, because the

respective potential curves are nearly parallel. There are two
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other theoretical possibilities for the deviation. The
SO-CASPT2 calculations are carried out using spin-orbitals
instead of spinors as one-particle basis. An analysis would
require running our respective calculations with spin-orbitals
in the two-component implementation of LUCIAREL.8 We do
not believe, however, that the use of spinors can make up for
such large a difference in excitation energies, given our re-
sults from Sec. III A. The last possibility concerns the as-
sumption of additivity of spin-orbit coupling and dynamic
electron correlation in the SO-CASPT2 approach. Simulating
this kind of treatment is not possible with our current imple-
mentation. It remains to be shown whether an additive treat-
ment of spin-orbit coupling and electron correlation can de-
viate from the simultaneous treatment on such a scale for
excitation energies of lower excited states.

We gain confidence from our calculations that the true
2u excitation energy must be larger than 2000 cm−1. This is
corroborated by the other mentioned approaches. Therefore,
either the differential matrix effect on the experimental result
in Table V is tremendous or the experimental assignment of
the excited state is in error. A conclusive judgment would be
premature at this stage, and we leave the issue for further
investigation.

Table VI shows our results for the lowest set of g states,
calculated at the intershell correlation level and compared to
SO-CASPT2. The same ordering of states is found and the
excitation energies are in good agreement for the 4g and 2g
states after shifting along the potential curve. For the 1g state
a deviation of at least 600 cm−1 remains. The 0g state from
the 7s2�U� configuration is found as the second vertically
excited state of g symmetry and was not calculated in Ref.
28. Due to the small intensities for the 7s to 5f excitation
these states have not been observed so that we cannot verify
the accuracy of the calculation by comparing with experi-
ment. Given the reasonable agreement with the SO-CASPT2
values, we may in this case assume that differential correla-
tion is small and that the computed energies comprise rea-
sonable predictions of the excitation energies. Without ex-
plicitly calculating the UO2·Ar interaction energies it
remains, however, impossible to predict whether the lowest

TABLE VI. Excitation energies of g electronic states of UO2 at different
correlation levels and comparison with other approaches. S12C2-SD denotes
single �S� excitations of 12 valence electrons, a CAS with 2 electrons in the
U�7s ,7p ,5f� orbitals and single and double �D� excitations into the virtual
space from all reference determinants so created.

State SO-CASPT2a S12C2-SDDF-HF

4g 3 330 3 102
0g�s2� ¯ 5 862

1g 6 823 7 243

2g 12 073 11 648
U–O separation 3.452a0 3.481a0

aReference 28.
of these states may fall below the 2u state in an argon matrix.
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IV. SUMMARY AND OUTLOOK

We present a four-component relativistic direct
KR-MCSCF/CI program system capable of performing cal-
culations with large active orbital spaces and configuration
spaces. Relativistic contributions, in particular, spin-orbit
coupling, are treated simultaneously with electron correlation
in both the KR-MCSCF and the post-MCSCF CI step. For
computational feasibility, approximations such as the neglect
of electron-positron orbital rotations, or integrals with two
positronic indices in the calculation of sigma vectors giving
satisfactory convergence at a significantly lower cost in the
integral transformation, can be invoked. The program system
opens for the efficient and precise calculation of spectro-
scopic properties of heavy-element molecules with arbitrary
shell structures in ground and excited states.

The initial application concerns the UO2 molecule. In
agreement with recent other studies and gas-phase experi-
ments, we find =2u as the molecular ground state and the
same ordering of the lowest excited states of g and u sym-
metries. The effect of spin-orbit coupling at the orbital opti-
mization level is found to be small, especially on the bonding
molecular Kramers pairs. This is reflected by the very small
bond contraction of only 0.001a0 when comparing a spin-
orbit free and a full relativistic calculation. We determine a
U–O bond length of Re=3.372a0 when including static and
dynamic electron correlations and spin-orbit coupling fully
variationally. The single-point excited state calculations re-
veal that differential electron correlation is rather small at the
valence-correlated level including 14 active electrons. This
changes upon including excitations from the subvalence
shells, where the excitation energy of the 2u state increases
by 270 and by 500 cm−1 upon augmenting the basis set in
addition. This finding also indicates that the reported excita-
tion energies from argon matrix experiments could differ by
up to 0.1 eV from the corresponding gas-phase values if they
have been correctly assigned. A final statement on the mo-
lecular ground state in a rare-gas matrix cannot be made. In
comparison with other methods, we find an error cancellation
for excitation energies when correlating too few electrons.
Our results suggest that a simultaneous treatment of electron
correlation and spin-orbit coupling in quantum chemical
studies is required for obtaining high-precision �errors
smaller than 0.05 eV� excitation energies of UO2.

We are proceeding with a work on improvement and
extension of the available methodology. Parallelization of the
CI program is highly desirable for greater efficiency on mod-
ern computers with many processors and large amounts of
shared memory. The integral transformation step in the KR-
MCSCF procedure, the time-consuming step in smaller con-
figuration space applications, is already parallelized. Current
work involves exploiting that all integrals are real in the real
matrix double groups �D2h

* ,D2
* ,C2v

* � �Refs. 6 and 21� which
concern all linear molecules and a large fraction of nonlinear
small molecules. Furthermore, the linear symmetry imple-
mentation in the DIRRCI program will be utilized also for
LUCIAREL, which will greatly facilitate calculations on linear
molecules. With respect to spectroscopic properties, the ac-

cess to transition moments would be of great desire. One of
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the next steps will therefore be to make use of our already
implemented transition densities between different CI vec-
tors to calculate transition moments for direct comparison
with experiment.

Concerning further studies, we are investigating diac-
tinide compounds, in particular, the U2 molecule. In these
systems spin-orbit coupling is likely to be of much greater
importance than in UO2, and a fully relativistic treatment
yielding Kramers-paired spinors would shed further light on
the bonding picture in such systems. The above-mentioned
implementational improvements will then also reduce the
computational demand and facilitate the interpretation of ob-
tained data.

We conclude that our presented four-component relativ-
istic direct KR-MCSCF/CI method is a significant and useful
new tool for electronic structure calculations on small heavy-
element molecules. To further increase the reliability of the
dynamic electron correlation treatment, we are also extend-
ing LUCIAREL by merging it with a new multireference
coupled cluster �MRCC� method37,38 opening for Kramers-
restricted MRCC treatments. Based on KR-MCSCF wave
functions, this method will allow for coupled cluster calcu-
lations on heavy-element molecules with an arbitrary number
of open shells.
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