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Abstract. In this paper, the generalized anti-reflexive solution for matrix equations (BX = C ,
XD = E), which arise in left and right inverse eigenpairs problem, is considered. With the special

properties of generalized anti-reflexive matrices, the necessary and sufficient conditions for the

solvability and a general expression of the solution are obtained. Furthermore, the related optimal

approximation problem to a given matrix over the solution set is solved. In addition, the algorithm

and the example to obtain the unique optimal approximation solution are given.
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1 Introduction

Left and right inverse eigenpairs problem is a special inverse eigenvalue problem.

That is, giving partial left and right eigenpairs (eigenvalue and corresponding

eigenvector) of a matrix A, (γ j , y j ), j = 1, . . . , l; (λi , xi ), i = 1, . . . , h, a
special matrix set S ⊆ Rn×n (In this paper, denote the set of all n × n real
matrices by Rn×n), and h ≤ n, l ≤ n, find A ∈ S such that{

Axi = λi xi , i = 1, . . . , h,
yTj A = γ j yTj , j = 1, . . . , l.
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32 ANTI-REFLEXIVE SOLUTIONS FOR A CLASS OF MATRIX EQUATIONS

The prototype of this problem initially arose in perturbation analysis of matrix

eigenvalue and in recursive matters. It has profound applications background

[1-4].

Let X = (x1, . . . , xh), Y = (y1, . . . , yl),� = diag(λ1, . . . , λh),� = (γ1, . . . ,

γh), Z = X�,W = Y�, then the above problem can be described as follows.

Giving matrices X, Y, Z ,W and a special matrix set S, find A ∈ S such that{
AX = Z ,

Y T A = WT .

Actually, this is the problem of seeking the solutions of linear matrix equations.

In this paper, wewill extend it and obtain the following problem. Givingmatrices

B,C, D, E and a special matrix set S, find X ∈ S such that{
BX = C,

XD = E .

This equations is an important class of matrix equations, and has profound ap-

plications in engineering and matrix inverse problem AX = B [5, 6]. In recent
years, many authors have studied it, and a series of meaningful results have been

achieved [7-10]. However, its generalized anti-reflexive solutions have not been

concerned with. In this paper, we will discuss this problem.

We now introduce the following notation. Cn×m denote the set of n × m
complex matrices. OCn×n denote the set of n × n unitary matrices. AH , r(A),

tr(A) and A+ be the conjugate transpose, rank, trace and the Moore-Penrose
generalized inverse of a matrix A, respectively. In be the identity matrix of size
n. For A, B ∈ Cn×m, 〈A, B〉 = tr(BH A) denote the inner product of matrices A

andB.The inducedmatrix norm is called Frobenius norm, i.e. ‖A‖ = 〈A, A〉 12 =(
tr(AH A)

) 1
2 , then Cn×m is a Hilbert inner product space.

To extend reflexive (anti-reflexive) matrices and centrosymmetric matrices,

Chen [11] has introduced two new special classes of matrices, which are gener-

alized reflexive matrices and generalized anti-reflexive matrices. He presented

three examples obtained from the altitude estimation of a level network, an elec-

tric network and structural analysis of trusses. His investigation indicated that

generalized reflexive matrices arise naturally from problem with reflexive sym-
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metry, which account for a great number of real world scientific and engineering

applications.

Definition 1. An n × n complex matrix P is called the generalized reflection
matrix if P = PH , P2 = In .

Definition 2. Let A ∈ Cn×m , A is called the generalized reflexive matrix (gen-
eralized anti-reflexive matrix) with respect to matrix pairs (P, Q) if A = PAQ
(or A = −PAQ), where P, Q are the n × n and m × m generalized reflec-
tion matrix, respectively. Denote this class of matrices by Cn×mr (P, Q) (or

Cn×ma (P, Q)), then the following results can be easily deduced.

Cn×mr (P, Q) = {
A|A = PAQ, A ∈ Cn×m},

Cn×ma (P, Q) = {
A|A = −PAQ, A ∈ Cn×m}.

Definition 3. Cn×mr P = {
X |PX = X, X ∈ Cn×m

}
, Cn×maP = {

X |PX =
−X, X ∈ Cn×m}.
From Definition 2, 3, it is easy to see that if P, Q are two given n × n and

m × m generalized reflection matrices, respectively, then Cn×mr (P, Q) (or

Cn×ma (P, Q)) is a closed linear subspace of Cn×m , and Cn×mr P (or Cn×maP ) is also a

closed linear subspace of Cn×m . Throughout, we always assume that P, Q are
two given n × n and m ×m generalized reflection matrices, respectively. From
Definition 2, 3 and this assumption, it is easy to prove the following results.

1) X ∈ Cn×mr (P, Q) ⇔ XH ∈ Cm×n
r (Q, P),

X ∈ Cn×ma (P, Q) ⇔ XH ∈ Cm×n
a (Q, P).

2) Cn×m = Cn×mr (P, Q) ⊕ Cn×ma (P, Q),

Cn×m = Cn×mr P ⊕ Cn×maP .

The notation V1 ⊕ V2 stands for the orthogonal direct sum of linear subspace V1
and V2. From this, for any

B ∈ Ch×n, C ∈ Ch×m, D ∈ Cm×l, E ∈ Cn×l,
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34 ANTI-REFLEXIVE SOLUTIONS FOR A CLASS OF MATRIX EQUATIONS

we have the following results.

B = B1 + B2, PBH1 = BH1 , PBH2 = −BH2 , B1BH2 = 0.

C = C1 + C2, QCH1 = CH1 , QCH2 = −CH2 ,C1CH2 = 0.

D = D1 + D2, QD1 = D1, QD2 = −D2, DH2 D1 = 0.

E = E1 + E2, PE1 = E1, PE2 = −E2, EH2 E1 = 0.

(1.1)

In Definition 2, if P = Q, then A is a reflexive matrix (or an anti-reflexive
matrix) with respect to P [12]. We denote the set of all reflexive matrices (anti-
reflexive matrices) by Cn×nr (P) (or Cn×na (P)). So Cn×nr (P) (or Cn×na (P)) is a

special case of Cn×nr (P, Q) (or Cn×na (P, Q)).

In this paper, we consider the following problems.

Problem 1. Given B ∈ Ch×n , C ∈ Ch×m , D ∈ Cm×l , E ∈ Cn×l , find X ∈
Cn×ma (P, Q) such that {

BX = C,

XD = E .

Problem 2. Given X∗ ∈ Cn×m , find X̂ ∈ SE such that
‖X∗ − X̂‖ = min

∀X∈SE
‖X∗ − X‖,

where SE is the solution set of Problem 1.
Problem 2 is the optimal approximation problem of Problem 1. It occurs

frequently in experimental design [13]. Here the matrix X∗ may be a matrix
obtained from experiments, but it may not satisfy the structural requirement

(generalized anti-reflexive matrices with respect to matrix pairs (P, Q)) and/or

matrix equations (BX = C, XD = E). The optimal estimate X̂ is the matrix
that satisfies both restrictions and is the optimal approximation of X∗. See for
instance [14, 15].

This paper is organized as follows. In section 2, we first study the special

properties of matrices in Cn×ma (P, Q). Then using these properties and the

results of [7], we obtain the solvability conditions and the general solutions of

Problem 1. Section 3 is devoted to derive the unique approximation solution of

Problem 2 by applying the methods of space decomposition. Finally, the algo-

rithm and the example to obtain the unique approximation solution are given.
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2 Solvability conditions of Problem 1

First, we discuss the properties of matrices in Cn×ma (P, Q).

Lemma 1.

1) If X ∈ Cn×ma (P, Q), AH ∈ Cn×hr P
(
Cn×haP

)
, then (AX)H ∈ Cm×h

aQ
(
Cm×h
rQ

)
.

2) If X ∈ Cn×ma (P, Q), A ∈ Cm×l
r Q

(
Cm×l
aQ

)
, then X A ∈ Cn×laP

(
Cn×lr P

)
.

Proof.

1) If AH ∈ Cn×hr P , then

Q(AX)H = QXH PPAH = −(AX)H .

Hence, (AX)H ∈ Cm×h
aQ . If AH ∈ Cn×haP , then

Q(AX)H = QXH PPAH = (AX)H .

Hence, (AX)H ∈ Cm×h
rQ . We can prove 2) by the same methods. �

Lemma 2 [16]. Let E ∈ Cn×h, F ∈ Cn×l and FH E = 0. Then we have

(EF)+ =
(
E+

F+

)
.

Lemma 3.

1) If BH ∈ Cn×hr P
(
Cn×haP

)
,CH ∈ Cm×h

aQ
(
Cm×h
rQ

)
, then B+B ∈Cn×nr (P), B+C ∈

Cn×ma (P, Q).

2) If D ∈ Cm×l
r Q

(
Cm×l
aQ

)
, E ∈ Cn×laP

(
Cn×lr P

)
, then DD+ ∈ Cm×m

r (Q), ED+ ∈
Cn×ma (P, Q).

Proof. We only prove 1), and 2) can be proved by the same methods.

1) Since BH ∈ Cn×hr P , it is easy to prove the following equations
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PBH = BH , B+ = PB+ . (2.1)

From this, we have PB+BP = B+B, i.e. B+B ∈ Cn×nr (P). The equations

(2.1) implies the following equations(
BH
)+ = (

PBH
)+ = (

BH
)+P, PB+ = B+. (2.2)

Since CH ∈ Cm×h
aQ , it is also easy to obtain the following equations

QCH = −CH , C = −CQ. (2.3)

Combining (2.2) and (2.3), we obtain

PB+CQ = −B+C i.e. B+C ∈ Cn×ma (P, Q).

If BH ∈ Cn×haP , CH ∈ Cm×h
rQ , we can also prove the conclusion by the same

methods. �

Lemma 4. Let K ∈ Cn×nr (P),G ∈ Cm×m
r (Q), F ∈ Cn×m , denoteM = K FG.

Then the following statements are true.

1) If F ∈ Cn×mr (P, Q), then M ∈ Cn×mr (P, Q).

2) If F ∈ Cn×ma (P, Q), then M ∈ Cn×ma (P, Q).

3) If F = F1 + F2, where F1 ∈ Cn×mr (P, Q), F2 ∈ Cn×ma (P, Q), then M ∈
Cn×mr (P, Q) if and only if K F2G = 0. In addition, we have M = K F1G.

Proof.

1) PMQ = PK FGQ = PK PPFQQGQ = K FG = M . Hence, M ∈
Cn×mr (P, Q).

2) PMQ = PK FGQ = PK PPFQQGQ = K (−F)G = −M . Hence,
M ∈ Cn×ma (P, Q).

3) M = K FG = K (F1 + F2)G = K F1G + K F2G, from 1) and 2),

K F1G ∈ Cn×mr (P, Q), K F2G ∈ Cn×ma (P, Q). IfM ∈ Cn×mr (P, Q), then

M − K F1G ∈ Cn×mr (P, Q), but M − K F1G = K F2G ∈ Cn×ma (P, Q).

According to conclusion 2) of Definition 2, we have K F2G = 0, i.e.

M = K F1G. If K F2G = 0, it is clear that M = K F1G + K F2G =
K F1G ∈ Cn×mr (P, Q). �
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Lemma 5.

1) If A ∈ Cn×nr (P), B ∈ Cn×ma (P, Q), then AB ∈ Cn×ma (P, Q).

2) If A ∈ Cn×mr P , B ∈ Cn×haP , then AH B = 0, A+B = 0.

Proof.

1) PABQ = PAPPBQ = −AB. So, AB ∈ Cn×ma (P, Q).

2) From Definition 3, we have

AH B = AH PH PB = (PA)H PB = AH (−B) = −AH B.

So, AH B = 0. From Definition 3, we also have

A+B = A+PPB = (PA)+PB = A+(−B) = −A+B.

So, A+B = 0. �

Denote

B̃H = (
BH1 B

H
2

)
, C̃ H = (

CH2 C
H
1

)
, D̃ = (

D1 D2
)
, Ẽ = (

E2 E1
)
, (2.4)

where B1, B2,C1,C2, D1, D2, E1, E2 are given by (1.1).

Lemma 6. If B,C, D, E are given by (1.1), B̃, C̃, D̃, Ẽ are denoted by (2.4),
X ∈ Cn×ma (P, Q), then matrix equations (BX = C, XD = E) are equivalent
to (B̃ X = C̃, X D̃ = Ẽ).

Proof. According to (1.1), BX = C is equivalent to

B1X + B2X = C1 + C2.

From Lemma 1, (B1X)H ∈ Cm×h
aQ , (B2X)H ∈ Cm×h

rQ . According to conclusion

2) of Definition 2, we have

B1X = C2, B2X = C1 ,
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38 ANTI-REFLEXIVE SOLUTIONS FOR A CLASS OF MATRIX EQUATIONS

i.e. (
B1
B2

)
X =

(
C2
C1

)
.

So BX = C is equivalent to B̃ X = C̃ . By applying the similar methods, we can
prove that XD = E is equivalent to X D̃ = Ẽ . �

Lemma 7 [7]. If B,C, D, E are given by (1.1), then (BX = C, XD = E)

has a solution in Cn×m if and only if

CD = BE, C = BB+C, E = ED+D. (2.5)

Moreover, its general solution can be expressed as

X = B+C + (In − B+B)ED+

+ (In − B+B)F(Im − DD+), ∀F ∈ Cn×m .
(2.6)

Theorem 1. If B,C, D, E are given by (1.1), then Problem 1 has a solution
in Cn×ma (P, Q) if and only if

C2D2 = B1E1, C1 = B2B+
2 C1, E1 = E1D+

2 D2. (2.7)

C1D1 = B2E2, C2 = B1B+
1 C2, E2 = E2D+

1 D1. (2.8)

Moreover, the general solution can be expressed as

X = X0 + K FG, ∀F ∈ Cn×ma (P, Q), (2.9)

where

X0 = B+
1 C2 + (

In − B+
2 B2

)
E2D+

1 + B+
2 C1 + (

In − B+
1 B1

)
E1D+

2 ,

K = In − B+
1 B1 − B+

2 B2, G = Im − D1D+
1 − D2D+

2 .

(2.10)

Proof. Necessity: Since Problem 1 has a solution in Cn×ma (P, Q), from Lem-

ma 6, matrix equations (B̃ X = C̃ , X D̃ = Ẽ) has a solution in Cn×ma (P, Q) ⊆
Cn×m . From Lemma 7, we have

C̃ D̃ = B̃ Ẽ, C̃ = B̃ B̃+C̃, Ẽ = Ẽ D̃+ D̃. (2.11)
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Combining (1.1), (2.4), Lemma 5 and according to the first equality of (2.11),

we have (
C2
C1

)
(D1 D2) =

(
B1
B2

)
(E2 E1),

(
0 C2D2

C1D1 0

)
=
(
0 B1E1
B2E2 0

)
.

i.e.

C2D2 = B1E1, C1D1 = B2E2. (2.12)

Combining Lemma 2, Lemma 5, (1.1), (2.4), and according to the second equal-

ity of (2.11), we have (
C2
C1

)
=
(
B1
B2

) (
B+
1 B

+
2

) (C2
C1

)
,

(
C2
C1

)
=
(
B1B+

1 0

0 B2B+
2

)(
C2
C1

)
,

i.e.

C1 = B2B+
2 C1, C2 = B1B+

1 C2. (2.13)

Using the similar methods, from the third equality of (2.11), we also have

E1 = E1D+
2 D2, E2 = E2D+

1 D1. (2.14)

Combining (2.12)–(2.14) yields (2.7) and (2.8).

Sufficiency: From Lemma 2, Lemma 5, (2.7) and (2.8) are equivalent to (2.11)

if (1.1), (2.4) hold. From Lemma 7, it is easy to see that matrix equations

(B̃ X = C̃, X D̃ = Ẽ) has a solution in Cn×m . Moreover, the general solution
can be expressed as

X = X0 + (In − B̃+ B̃)F(Im − D̃ D̃+), ∀F ∈ Cn×m, (2.15)

where

X0 = B̃+C̃ + (In − B̃+ B̃)Ẽ D̃+. (2.16)
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According to (1.1), (2.4), Lemma 2 and Lemma 5, we have

X0 = (
B+
1 B

+
2

) (C2
C1

)
+
(
In − (

B+
1 B

+
2

) (B1
B2

)) (
E2 E1

) (D+
1

D+
2

)

= B+
1 C2 + (

In − B+
2 B2

)
E2D+

1 + B+
2 C1 + (

In − B+
1 B1

)
E1D+

2 .

So X0 in (2.16) is equivalent to X0 in (2.10). From Lemma 3, Lemma 5, (2.11),
it is easy to prove

X0 ∈ Cn×ma (P, Q), B̃ X0 = C̃, X0 D̃ = Ẽ .

Hence X0 is a solution ofmatrix equations (B̃ X = C̃, X D̃ = Ẽ) inCn×ma (P, Q).

From Lemma 6, X0 is also a solution of matrix equations (BX = C, XD = E)

in Cn×ma (P, Q).

In the following, we show that the general solution of Problem 1 can be ex-

pressed as (2.9) if (1.1), (2.4), (2.7) and (2.8) hold. Denote by SE the solution
set of Problem 1 and S the set consisting of X expressed by (2.15) (S is the
solution set of matrix equations (B̃ X = C̃, X D̃ = Ẽ) in Cn×m). Denote

K = In − B̃+ B̃, G = Im − D̃ D̃+. (2.17)

From (1.1), (2.4), Lemma 2, we have

K = In − B+
1 B1 − B+

2 B2, G = Im − D1D+
1 − D2D+

2 .

So K ,G in (2.17) are equivalent to K ,G in (2.10), respectively. Since

Cn×ma (P, Q) ⊆ Cn×m , it is clear that SE ⊆ S. According to Lemma 3, we
have

K = In − B̃+ B̃ = In − B+
1 B1 − B+

2 B2 ∈ Cn×nr (P),

G = Im − C̃C̃+ = Im − C1C+
1 − C2C+

2 ∈ Cm×m
r (Q).

According to Lemma 4, X = X0 + EFG ∈ Cn×ma (P, Q) if and only if F ∈
Cn×ma (P, Q), i.e. (2.15) is equivalent to (2.9) or S = SE if and only if F ∈
Cn×ma (P, Q) in (2.15). From Lemma 6, the general solution of Problem 1 can

be expressed as (2.9). �
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3 The solution of Problem 2

According to (2.9), it is easy to prove that if Problem 1 has a solution in

Cn×ma (P, Q), then the solution set SE is a nonempty closed convex set. We
can claim that for any given X∗ ∈ Cn×m , there exists the unique optimal approx-
imation for Problem 2.

Theorem 2. Given X∗ ∈ Cn×m , if B,C, D, E are denoted by (1.1) and they
satisfy the conditions of Theorem 1, then Problem 2 has the unique solution
X̂ ∈ SE . Moreover X̂ can be expressed as

X̂ = X0 + K X∗
2G, (3.1)

where X0, K ,G are given by (2.10), and X∗
2 is given by the following equation.

X∗
2 = 1

2

(
X∗ − PX∗Q

)
(3.2)

Proof. Denote K1 = In − K , it is easy to prove that matrices K and K1 are
orthogonal projection matrices satisfying KK1 = 0. Denote G1 = Im − G, it
is also easy to prove that matrices G and G1 are orthogonal projection matrices
satisfying GG1 = 0.

According to conclusion 2) of Definition 2, for any X∗ ∈ Cn×m , there exist
only X∗

1 ∈ Cn×mr (P, Q) and only X∗
2 ∈ Cn×ma (P, Q), which satisfy that

X∗ = X∗
1 + X∗

2,
〈
X∗
1, X

∗
2

〉 = 0,

where

X∗
1 = 1

2
(X∗ + PX∗Q), X∗

2 = 1

2
(X∗ − PX∗Q).

From this, combining the invariance of Frobenius norm under orthogonal trans-

formations and the methods of space decomposition, and according to (2.9), for

any X ∈ SE , we have
‖X∗ − X‖2 = ‖X∗

1 + X∗
2 − X‖2 = ‖X∗

2 − X‖2 + ‖X∗
1‖2

= ‖X∗
2 − X0 − K FG‖2 + ‖X∗

1‖2
= ‖(K + K1)(X∗

2 − X0) − K FG‖2 + ‖X∗
1‖2

= ‖K (X∗
2 − X0) − K FG‖2 + ‖K1(X∗

1 − X0)‖2 + ‖X∗
2‖2
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= ‖K (X∗
2 − X0)(G + G1) − K FG‖2 + ‖K1(X∗

2 − X0)‖2 + ‖X∗
1‖2

= ‖K (X∗
2 − X0)G − K FG‖2 + ‖K (X∗

2 − X0)G1‖2
+‖K1(X∗

2 − X0)‖2 + ‖X∗
1‖2.

Since ‖K (X∗
2 − X0)G1‖2, ‖K1(X∗

2 − X0)‖2, ‖X∗
1‖2 are constants, it is obvious

that min
∀X∈SE

‖X∗ − X‖ is equivalent to

min
∀F∈Cn×ma (P,Q)

‖K (X∗
2 − X0)G − K FG‖. (3.3)

According to the definitions of K , X0, and G, it is easy to prove K X0G = 0.

So, (3.3) is equivalent to

min
∀F∈Cn×ma (P,Q)

‖K X∗
2G − K FG‖. (3.4)

It is clear that F = X∗
2 + K1F∗G1, ∀F∗ ∈ Cn×ma (P, Q) is a solution of (3.4).

Substituting this result to (2.11) yields (3.1). �

Algorithm

1. Input B,C, D, E, P, Q, X∗.

2. According to (1.1) compute B1, B2,C1,C2, D1, D2, E1, E2.

3. ComputeC1D1,C2D2, B1E1, B2E2, B1B+
1 C2, B2B

+
2 C1, E1D

+
2 D2, E2D

+
1 D1,

if (2.7), (2.8) hold, then go to 4; otherwise stop.

4. According to (2.10) compute X0, K ,G.

5. According to (3.2) compute X∗
2 .

6. Calculate X̂ from (3.1).

Numerical analysis

Theorem 2 leads naturally to this numerical algorithm for the solution of Prob-

lem 2. The process will then be numerically stable, the reason is that the sin-

gular value decomposition is numerically stable. We can also test that as X∗

approximates a solution of Problem 1, X∗ becomes closer to the unique solu-
tion X̂ of Problem 2.
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Example (n = 10, m = 8, h = 5, l = 4)

B =




1.5 3.6 −7.8 1.9 1+ 3i 1− i 7.3 2.7 8.2 −6.7
2i 5.3 4.1 7.5 3.1 −2.9 1.6 3.4 −3i 8.5

3.5 7.6 1− i 5.8 9.6 7.5 4.2 −5.1 3.5 7− 2i
3− 5i 6.7 1.3 4.6 6.5 5.9 10.1 −7.6 1.8 4i
7− 2i 5.6 7.5 6.9 12.6 −10.3 3.5 5.7 7.1 10.9


,

C = 1.0e + 002 ×
From first column to fourth column


0.6659− 0.0020i −0.3750− 0.0180i 0.3401− 0.1735i −0.0656− 0.0335i
0.0118− 0.0990i 0.1222− 0.0510i −1.1070+ 0.0140i −0.3035− 0.0907i

−0.0523+ 0.0300i −0.2872− 0.0545i −0.4139+ 0.1610i −0.6031− 0.0203i
−0.1025− 0.0450i −0.5622+ 0.1950i −0.4017+ 0.1120i −0.7739+ 0.0728i
0.3143− 0.0180i −0.2712+ 0.0780i −1.8750+ 0.1495i −0.3922+ 0.0607i

From fifth column to eighth column

0.3543− 0.0105i 0.2491− 0.2340i −0.2982+ 0.0130i 0.6948− 0.0250i
0.3231− 0.0868i 0.5957− 0.1135i −0.1347− 0.0640i 0.0260− 0.0860i
0.3317− 0.0050i 0.2884+ 0.0090i −0.3730+ 0.0040i 0.4630+ 0.0475i
0.3166+ 0.1212i 0.3854+ 0.1315i −0.5566+ 0.1300i 0.6913+ 0.0200i
0.2585+ 0.0735i 0.2333− 0.0785i −0.1809+ 0.0520i −0.0302+ 0.0080i


 ,

D =




1.3 5.7 2.9 4.5

−3.5 4.6 −0.9 −5.1
2.7 −1.6 1.1 6.2

2.1 5− 3i 5.3 2.3

−5.1 7.5 −3.1 1.7

1.5 0.7 4.2 −1.2
2.9 −3.2 2.4 1.8

−4.6 1.8 6.4 3.6




,

E =




10.635 −26.995+ 5.25i −8.95 −0.825
−14.72 −30.43+ 7.95i 17.82 −49.12

41.145+ 4.05i −68.815+ 1.65i −11.53+ 1.65i −5.18+ 9.3i
−29.695 32.875+ 7.2i 5.44 17.435

−0.755− 1.275i −17.49+ 4.875i −36.27− 0.775i 8.72+ 0.425i
20.585− 0.525i −5.385− 1.55i 2.915− 1.325i 45.69− 0.575i

−25.55 18.705+ 7.35i 3.615 18.995

22.14− 2.25i 34.51− 8.25i −1.195− 6.3i 2.11+ 1.8i
−3.375 45.85− 6.3i 43.58 39.975

−43.6 60.05− 2.25i −14.67 −73.64




,

Comp. Appl. Math., Vol. 27, N. 1, 2008



44 ANTI-REFLEXIVE SOLUTIONS FOR A CLASS OF MATRIX EQUATIONS

P =




0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0




, Q =




0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0




,

X∗ =




4.7 −3.5 3.9 −2.3 2.6 −1.9 −3.6 5.1

−2.9 2.8 0.8 2.8 1.7 4.5 7.3 6.9

1.3 1.6 1.2 1.6 2.5 2.1 9.5 −2.9
9.6 −2.1 −1.5 −2.5 2.8 0.7 2.1 7.5

−1.5 1.4 7.5 −0.1 0.5i −3.5 −1.5 1.6

2.7 −1.8 9.6 0.2 1.9 6.9 3.8 −3.1
1.7 3.2 −1.7 −2.1 2.3 1.4 1.9 7.6

8.1 5.5 2.2 7.3 4.3 2− 3i 2.6 1.5

4.3 2.9 −1.2 6.8 1.2 7.6 5.9 1.6

1.9 5.8 −9.7 3.2 8.1 7.6 2.5 5.3




.

It is easy to see that B,C, D, E, P, Q, X∗ satisfy the required properties. Using
the software "MATLAB", we obtain the unique solution X̂ of Problem 2.

X̂ =




0.9 −3.9 −1.85 −1.75 −2.1 −0.35 −2.6 −0.4
−4.35 0.45 −3.4 −2.65 −0.75 7.1 1 2.2

−2.1 −3.25 −0.4+ 1.5i −1.35 −2.4 −0.05 4 −2.75
3.2 −1.9 −1.45 −2.4 2.45 1.2 −2.75 2.8

0.15 −0.65 0.3 −1 −0.1+ 0.25i −6.55 0.8 −1.1
0.65 −0.15 6.55 0.1− 0.25i 1 −0.3 1.1 −0.8
1.9 −3.2 −1.2 −2.45 2.4 1.45 −2.8 2.75

3.25 2.1 0.05 2.4 1.35 0.4− 1.5i 2.75 −4
3.9 −0.9 0.35 2.1 1.75 1.85 0.4 2.6

−0.45 4.35 −7.1 0.75 2.65 3.4 −2.2 −1




.

4 Conclusions

In this paper, we considered the generalized anti-reflexive solutions of matrix

equations (BX = C , XD = E), i.e. Problem 1. We also considered the nearest

solution to a given matrix in Frobenius norm, i.e. Problem 2. The solvability
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conditions and the explicit formula for the solution are given. According to

Theorem 1 and 2, the algorithm is presented to compute the nearest solution.

The numerical example is given to illustrate the results obtained in this paper

correction.
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