THE GENERALIZED BINET FORMULA, REPRESENTATION AND SUMS OF THE GENERALIZED ORDER- k PELL NUMBERS

Emrah Kiliç and Dursun Taşci

Abstract

In this paper we give a new generalization of the Pell numbers in matrix representation. Also we extend the matrix representation and we show that the sums of the generalized order- k Pell numbers could be derived directly using this representation. Further we present some identities, the generalized Binet formula and combinatorial representation of the generalized order- k Pell numbers.

1. Introduction

It is well-known that the Pell sequence $\left\{P_{n}\right\}$ is defined recursively by the equation, for $n \geq 1$

$$
\begin{equation*}
P_{n+1}=2 P_{n}+P_{n-1} \tag{1.1}
\end{equation*}
$$

in which $P_{0}=0, P_{1}=1$.
In [3], Horadam showed that some properties involving Pell numbers. Also in [2], Ercolano gave the matrix method for generating the Pell sequence as follows:

$$
M=\left[\begin{array}{ll}
2 & 1 \tag{1.2}\\
1 & 0
\end{array}\right]
$$

and by taking succesive positive powers of the matrix M one can easily verify that

$$
M^{n}=\left[\begin{array}{cc}
P_{n+1} & P_{n} \\
P_{n} & P_{n-1}
\end{array}\right]
$$

[^0]The Pell sequence is a special case of a sequence which is defined recursively as a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\ldots+c_{k-1} a_{n+k-1}
$$

where $c_{0}, c_{1}, \ldots, c_{k-1}$ are real contants. In [4], Kalman derived a number of closed-form formulas for the generalized sequence by companion matrix method as follows:

$$
A_{k}=\left[a_{i j}\right]_{k \times k}=\left[\begin{array}{cccccc}
c_{0} & c_{1} & c_{2} & \ldots & c_{k-2} & c_{k-1} \tag{1.3}\\
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right] .
$$

Then by an inductive argument he obtained that

$$
A_{k}^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

Further in [7], we defined the generalized order- k Lucas sequence in matrix representation with employing the matrix methods of Kalman.

Also in [5], we gave the generalized Binet formula, combinatorial representation and some relations involving the generalized order- k Fibonacci and Lucas numbers.

Now we give a new generalization of the Pell numbers in matrix representation and extend the matrix representation so we give sums of the generalized Pell numbers could be derived directly using this representation.

2. The Main Results

Define k sequences of the generalized order- k Pell numbers as shown:

$$
\begin{equation*}
P_{n}^{i}=2 P_{n-1}^{i}+P_{n-2}^{i}+\ldots+P_{n-k}^{i} \tag{2.1}
\end{equation*}
$$

for $n>0$ and $1 \leq i \leq k$, with initial conditions

$$
P_{n}^{i}=\left\{\begin{array}{c}
1 \\
\text { if } n=1-i, \\
0
\end{array} \quad \text { otherwise }, \quad \text { for } 1-k \leq n \leq 0,\right.
$$

where P_{n}^{i} is the nth term of the i th sequence. When $k=2$, the generalized order- k Pell sequence, $\left\{P_{n}^{k}\right\}$, is reduced to the usual Pell sequence, $\left\{P_{n}\right\}$.

When $i=k$ in (2.1), we call P_{n}^{k} the generalized k-Pell number.
By (2.1), we can write

$$
\left[\begin{array}{c}
P_{n+1}^{i} \tag{2.2}\\
P_{n}^{i} \\
P_{n-1}^{i} \\
\vdots \\
P_{n-k+2}^{i}
\end{array}\right]=\left[\begin{array}{ccccc}
2 & 1 & \ldots & 1 & 1 \\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]\left[\begin{array}{c}
P_{n}^{i} \\
P_{n-1}^{i} \\
P_{n}^{i} \\
\vdots \\
P_{n-k+1}^{i}
\end{array}\right]
$$

for the generalized order- k Pell sequences. Letting

$$
R=\left[r_{i j}\right]_{k \times k}=\left[\begin{array}{ccccc}
2 & 1 & \ldots & 1 & 1 \tag{2.3}\\
1 & 0 & \ldots & 0 & 0 \\
0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & 0
\end{array}\right]
$$

The matrix R is said to be generalized order- k Pell matrix.
To deal with the k sequences of the generalized order- k Pell sequences simultaneously, we define a $k \times k$ matrix E_{n} as follows:

$$
E_{n}=\left[e_{i j}\right]_{k \times k}=\left[\begin{array}{cccc}
P_{n}^{1} & p_{n}^{2} & \ldots & p_{n}^{k} \tag{2.4}\\
P_{n-1}^{1} & P_{n-1}^{2} & \ldots & P_{n-1}^{k} \\
\vdots & \vdots & & \vdots \\
& & & \\
P_{n-k+1}^{1} & P_{n-k+1}^{2} & \ldots & P_{n-k+1}^{k}
\end{array}\right]
$$

Generalizing Eq. (2.2), we derive

$$
\begin{equation*}
E_{n+1}=R \cdot E_{n} \tag{2.5}
\end{equation*}
$$

Lemma 1. Let E_{n} and R be as in (2.4) and (2.3), respectively. Then, for all integers $n \geq 0$

$$
E_{n+1}=R^{n+1}
$$

Proof. By (2.4), we have $E_{n+1}=R \cdot E_{n}$. Then, by an inductive argument, we may rewrite it as

$$
\begin{equation*}
E_{n+1}=R^{n} \cdot E_{1} \tag{2.6}
\end{equation*}
$$

Since by definition of the generalized order- k Pell number, $E_{1}=R$; therefore

$$
E_{n+1}=R^{n+1}
$$

So the proof is complete.
Theorem 1. Let E_{n} be as in (2.4). Then

$$
\operatorname{det} E_{n}=\left\{\begin{array}{cl}
1 & \text { if } k \text { is odd } \\
(-1)^{n} & \text { if } k \text { is even }
\end{array}\right.
$$

Proof. From Lemma 1, we have $E_{n+1}=R^{n+1}$. Then

$$
\operatorname{det} E_{n+1}=\operatorname{det}\left(R^{n+1}\right)=(\operatorname{det} R)^{n+1}
$$

where $\operatorname{det} R=(-1)^{k+1}$. Thus

$$
\operatorname{det} E_{n+1}=\left\{\begin{array}{cc}
1 & \text { if } k \text { is odd } \\
(-1)^{n+1} & \text { if } k \text { is even }
\end{array}\right.
$$

So the proof is complete.
Now we give some relations involving the generalized order- k Pell numbers.
Theorem 2. Let P_{n}^{i} be the nth generalized order- k Pell number, for $1 \leq i \leq k$. Then, for all positive integers n and m

$$
P_{n+m}^{i}=\sum_{j=1}^{k} P_{m}^{j} P_{n-j+1}^{i}
$$

Proof. From Lemma 1, we know that $E_{n}=R^{n}$; we may rewrite it as

$$
\begin{equation*}
E_{n+1}=E_{n} E_{1}=E_{1} E_{n} \tag{2.7}
\end{equation*}
$$

In other words, E_{1} is commutative under matrix multiplication. Hence, more generalizing Eq. (2.7), we can write

$$
\begin{equation*}
E_{n+m}=E_{n} E_{m}=E_{m} E_{n} \tag{2.8}
\end{equation*}
$$

Consequently, an element of E_{n+m} is the product of a row E_{n} and a column of E_{m}; that is

$$
P_{n+m}^{i}=\sum_{j=1}^{k} P_{m}^{j} P_{n-j+1}^{i}
$$

Thus the proof is complete.
For example, if we take $k=2$ in Theorem 2, we have

$$
\begin{aligned}
P_{n+m}^{2} & =\sum_{j=1}^{2} P_{m}^{j} P_{n-j+1}^{2} \\
& =P_{m}^{1} P_{n}^{2}+P_{m}^{2} P_{n-1}^{2}
\end{aligned}
$$

and, since $P_{n}^{1}=P_{n+1}^{2}$ for all $n \in \mathbb{Z}^{+}$and $k=2$, we obtain

$$
P_{n+m}^{2}=P_{m+1}^{2} P_{n}^{2}+P_{m}^{2} P_{n-1}^{2}
$$

where P_{n}^{2} is the usual Pell number. Indeed, we generalize the following relation involving the usual Pell numbers:

$$
P_{n+m}=P_{m+1} P_{n}+P_{m} P_{n-1} .
$$

Lemma 2. Let P_{n}^{i} be the nth generalized order-k Pell number. Then

$$
\begin{align*}
& P_{n+1}^{i}=P_{n}^{1}+P_{n}^{i+1}, \text { for } 2 \leq i \leq k-1, \\
& P_{n+1}^{1}=2 P_{n}^{1}+P_{n}^{2}, \tag{2.9}\\
& P_{n+1}^{k}=P_{n}^{1} .
\end{align*}
$$

Proof. From Eq. (2.7), we have $E_{n+1}=E_{n} E_{1}$. Since using a property of matrix multiplication, the proof is readily seen.

3. Sums of the Pell Numbers

Now we extend the matrix representation and show that the sums of the generalized Pell numbers.

To calculate the sums $S_{n}, n \geq 0$, of the generalized order- k Pell numbers, defined by

$$
S_{n}=\sum_{i=0}^{n} P_{i}^{1} .
$$

Let T be a $(k+1) \times(k+1)$ square matrix, such that

$$
T=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \tag{3.1}\\
1 & & & \\
0 & & R & & \\
\vdots & & & \\
0 & & & &
\end{array}\right]
$$

where R is the $k \times k$ matrix as in (2.3).
Theorem 3. Let $S_{n}, n \geq 0$, denote the sums of the generalized Pell numbers. Then S_{n} is $(2,1)$ entry of the matrix T^{n+1} in which T is the $(k+1) \times(k+1)$ matrix as in (3.1).

Proof. Let C_{n} be a $(k+1) \times(k+1)$ square matrix, such that

$$
C_{n}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
S_{n-1} & & & & \\
S_{n-2} & & E_{n} & & \\
\vdots & & & & \\
S_{n-k} & & & &
\end{array}\right]
$$

where E_{n} is the $k \times k$ matrix as in (2.4). Then, by Eq. (2.9) and

$$
\begin{equation*}
S_{n+1}=P_{n+1}^{1}+S_{n} \tag{3.2}
\end{equation*}
$$

we derive a recurrence equation

$$
\begin{equation*}
C_{n+1}=C_{n} \cdot T \tag{3.3}
\end{equation*}
$$

Inductively, we also have

$$
\begin{equation*}
C_{n+1}=C_{1} \cdot T^{n} \tag{3.4}
\end{equation*}
$$

Since $S_{-i}=0,1 \leq i \leq k$, we thus infer $C_{1}=T$, and in general, $C_{n}=T^{n}$. Since $S_{n}=\left(C_{n+1}\right)_{2,1}$ and $C_{n}=T^{n}$, the proof is readily seen.

From Eqs. (3.3) and (3.4), we reach the following equation:

$$
\begin{equation*}
C_{n+1}=C_{n} C_{1}=C_{1} C_{n} \tag{3.5}
\end{equation*}
$$

which shows that C_{1} is commutative as well under matrix multiplication. By an application of Eq. (3.5), the sums of the generalized order- k Pell numbers satisfy the follwing recurrence relation:

$$
S_{n}=1+2 S_{n-1}+\sum_{i=2}^{k} S_{n-i}
$$

Substituting $S_{n}=P_{n}^{1}+S_{n-1}$, an instance of Eq. (3.2), into Eq. (3.4), we express P_{n}^{1} in terms of the sums of the generalized order- k Pell numbers:

$$
\begin{equation*}
P_{n}^{1}=1+\sum_{i=1}^{k} S_{n-i} \tag{3.6}
\end{equation*}
$$

When $k=2$, this equation is reduced to

$$
P_{n}^{1}=1+S_{n-1}+S_{n-2} .
$$

So we derive the well-known result [3]:

$$
\sum_{i=1}^{n} P_{i}=\frac{P_{n+1}+P_{n}-1}{2}
$$

where P_{n} is the nth term of the usual Pell sequence.

4. Generalized Binet Formula

In [6], Levesque gave a Binet formula for the Fibonacci sequence. In this section, we derive a generalized Binet formula for the generalized order- k Pell sequence by using the determinant.

Lemma 3. The equation $x^{k+1}-3 x^{k}+x^{k-1}+1=0$ does not have multiple roots for $k \geq 2$.

Proof. Let $f(x)=x^{k}-2 x^{k-1}-x^{k-2}-\ldots-x-1$ and let $h(x)=(x-1) f(x)$. Then $h(x)=x^{k+1}-3 x^{k}+x^{k-1}+1$. So 1 is a root but not a multiple root of $h(x)$, since $k \geq 2$ and $f(1) \neq 1$. Suppose that α is a multiple root of $h(x)$. Note that $\alpha \neq 0$ and $\alpha \neq 1$. Since α is a multiple root, $h(\alpha)=\alpha^{k+1}-3 \alpha^{k}+\alpha^{k-1}+1=0$ and

$$
\begin{aligned}
h^{\prime}(x) & =(k+1) \alpha^{k}-3 k \alpha^{k-1}+(k-1) \alpha^{k-2} \\
& =\alpha^{k-2}\left((k+1) \alpha^{2}-3 k \alpha+k-1\right)=0 .
\end{aligned}
$$

Thus $\alpha_{1,2}=\frac{3 k \mp \sqrt{5 k^{2}+4}}{2(k+1)}$ and hence, for α_{1}

$$
\begin{align*}
0 & =\alpha_{1}^{k-1}\left(-\alpha_{1}^{2}+3 \alpha_{1}-1\right)-1 \\
& =\left(\frac{3 k+\sqrt{5 k^{2}+4}}{2(k+1)}\right)^{k-1}\left(\frac{5 k-4+3 \sqrt{5 k^{2}+4}}{2(k+1)^{2}}\right)-1 . \tag{4.1}
\end{align*}
$$

We let $a_{k}=\left(\left(\frac{3 k+\sqrt{5 k^{2}+4}}{2(k+1)}\right)^{k-1}\left(\frac{5 k-4+3 \sqrt{5 k^{2}+4}}{2(k+1)^{2}}\right)\right)$. Then we write Eq. (4.1) as follows:

$$
0=a_{k}-1
$$

Since $a_{k}<a_{k+1}$ and $a_{2}=2,0887$ for $k \geq 2, a_{k} \neq 1$, a contradiction. Similarly, hence, for α_{2}

$$
\begin{align*}
0 & =\alpha_{2}^{k-1}\left(-\alpha_{2}^{2}+3 \alpha_{2}-1\right)-1 \\
& =\left(\frac{3 k-\sqrt{5 k^{2}+4}}{2(k+1)}\right)^{k-1}\left(\frac{5 k-4-3 \sqrt{5 k^{2}+4}}{2(k+1)^{2}}\right)-1 \tag{4.2}
\end{align*}
$$

We let $b_{k}=\left(\left(\frac{3 k-\sqrt{5 k^{2}+4}}{2(k+1)}\right)^{k-1}\left(\frac{5 k-4-3 \sqrt{5 k^{2}+4}}{2(k+1)^{2}}\right)\right)$. Then we write Eq. (4.2) as follows:

$$
0=b_{k}-1
$$

Since $b_{k}>b_{k+1}$ and $b_{2}=-8,88662 \times 10^{-2}$ for $k \geq 2, b_{k} \neq 1$, a contradiction. Therefore, the equation $h(x)=0$ does not have multiple roots.

Consequently, from Lemma 3, it is seen that the equation $x^{k}-2 x^{k-1}-x^{k-2}-$ $\ldots-x-1=0$ does not have multiple roots for $k \geq 2$.

Let $f(\lambda)$ be the characteristic polynomial of the generalized order- k Pell matrix R. Then $f(\lambda)=\lambda^{k}-2 \lambda^{k-1}-\lambda^{k-2}-\ldots-\lambda-1$, which is a well-known fact. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the eigenvalues of R. Then, by Lemma $3, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct. Let V be a $k \times k$ Vandermonde matrix as follows:

$$
V=\left[\begin{array}{cccc}
\lambda_{1}^{k-1} & \lambda_{2}^{k-1} & \ldots & \lambda_{k}^{k-1} \\
\lambda_{1}^{k-2} & \lambda_{2}^{k-2} & \ldots & \lambda_{k}^{k-2} \\
\vdots & \vdots & & \vdots \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{k} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Let w_{k}^{i} be a $k \times 1$ matrix as follows:

$$
w_{k}^{i}=\left[\begin{array}{c}
\lambda_{1}^{n+k-i} \\
\lambda_{2}^{n+k-i} \\
\vdots \\
\lambda_{k}^{n+k-i}
\end{array}\right]
$$

and $V_{j}^{(i)}$ be a $k \times k$ matrix obtained from V by replacing the j th column of V by w_{k}^{i}. Then we obtain the generalized Binet formula for the generalized order- k Pell numbers with the following theorem.

Theorem 4. Let P_{n}^{i} be the nth term of i th Pell sequence, for $1 \leq i \leq k$. Then

$$
P_{n-i+1}^{j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)} .
$$

Proof. Since the eigenvaules of R are distinct, R is diagonizable. It is readily seen that $R V=V D$, where $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}\right)$. Since V is invertible
$V^{-1} R V=D$. Hence, R is similar to D. So we obtain $R^{n} V=V D^{n}$. Then we have the following linear system of equations:

$$
\begin{array}{cc}
e_{i 1} \lambda_{1}^{k-1}+e_{i 2} \lambda_{1}^{k-2}+\ldots+e_{i k} & =\lambda_{1}^{n+k-i} \\
e_{i 1} \lambda_{2}^{k-1}+e_{i 2} \lambda_{2}^{k-2}+\ldots+e_{i k} & =\lambda_{2}^{n+k-i} \\
\vdots & \vdots \\
e_{i 1} \lambda_{k}^{k-1}+e_{i 2} \lambda_{k}^{k-2}+\ldots+e_{i k} & =\lambda_{k}^{n+k-i}
\end{array}
$$

And, for each $j=1,2, \ldots, k$, we obtain

$$
e_{i j}=\frac{\operatorname{det}\left(V_{j}^{(i)}\right)}{\operatorname{det}(V)}
$$

where $e_{i j}$ is the (i, j) th elements of the matrix E_{n}, i.e., $e_{i j}=P_{n-i+1}^{j}$.
So the proof is complete.
Corollary 1. Let P_{n}^{k} be the nth generalized k-Pell number. Then

$$
P_{n}^{k}=\frac{\operatorname{det}\left(V_{k}^{(1)}\right)}{\operatorname{det}(V)}
$$

Proof. Since $e_{i j}$ is the (i, j) th elements of the matrix E_{n}, i.e., $e_{i j}=P_{n-i+1}^{j}$. If we take $i=1$ and $j=k$, then $e_{1, k}=P_{n}^{k}$. Then by using Theorem 4, the proof is immediately seen.

5. Combinatorial Representation

In this section we give a combinatorial representation of the generalized order- k Pell numbers. In [1], the authors obtained an explicit formula for the elements in the nth power of the companion matrix and gave some interesting applications. The matrix A_{k} be as in (1.3), then we find the following Theorem in [1].

Theorem 5. The (i, j) entry $a_{i j}^{(n)}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ in the matrix $A_{k}^{n}\left(c_{1}, c_{2}, \ldots, c_{k}\right)$ is given by the following formula:

$$
\begin{equation*}
a_{i j}^{(n)}\left(c_{1}, c_{2}, \ldots, c_{k}\right)=\sum_{\left(t_{1}, t_{2}, \ldots t_{k}\right)} \frac{t_{j}+t_{j+1}+\ldots+t_{k}}{t_{1}+t_{2}+\ldots+t_{k}} \times\binom{ t_{1}+t_{2}+\ldots+t_{k}}{t_{1}, t_{2}, \ldots, t_{k}} c_{1}^{t_{1}} \ldots c_{k}^{t_{k}} \tag{5.1}
\end{equation*}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\ldots+k t_{k}=$ $n-i+j$, and the coefficients in (5.1) is defined to be 1 if $n=i-j$.

Then we have the following Corollary.
Corollary 2. Let P_{n}^{i} be the generalized order- k Pell number, for $1 \leq i \leq k$. Then

$$
P_{n}^{i}=\sum_{\left(r_{1}, r_{2}, \ldots r_{k}\right)} \frac{r_{k}}{r_{1}+r_{2}+\ldots+r_{k}} \times\binom{ r_{1}+r_{2}+\ldots+r_{k}}{r_{1}, r_{2}, \ldots, r_{k}} 2^{r_{1}}
$$

where the summation is over nonnegative integers satisfying $r_{1}+2 r_{2}+\ldots+k r_{k}=$ $n-i+k$.

Proof. In Theorem 5, if $j=k$ and $c_{1}=2$, then the proof is immediately seen from (2.4).

References

1. W. Y. C. Chen, J. D. Louck, The Combinatorial Power of the Companion Matrix, Linear Algebra Appl., 232 (1996), 261-278.
2. J. Ercolano, Matrix Generators of Pell Sequences, Fibonacci Quart., 17(1) (1979), 71-77.
3. A. F. Horadam, Pell Identities, Fibonacci Quart., 9(3) (1971), 245-252, 263.
4. D. Kalman, Generalized Fibonacci Numbers By Matrix Methods, Fibonacci Quart., 20(1) (1982), 73-76.
5. E. Kilic and D. Tasci, On the Generalized Order- k Fibonacci and Lucas Numbers, Rocky Mountain J. Math., (to appear).
6. C. Levesque, On the $m^{\text {th }}$-Order Linear Recurrences, Fibonacci Quart., 23(4) (1985), 290-293.
7. D. Tasci and E. Kilic, On the Order- k Generalized Lucas Numbers, Appl.Math.Comput., 155(3) (2004), 637-641.

Emrah Kiliç
Department of Mathematics,
TOBB University of Economics and Technology,
06560 Sogutozu, Ankara, Turkey
E-mail: ekilic@etu.edu.tr
Dursun Taşci
Department of Mathematics,
Gazi University,
06500 Teknikokullar, Ankara, Turkey
E-mail: dtasci@gazi.edu.tr

[^0]: Received August 5, 2004, revised August 31, 2005.
 Communicated by Song-Sun Lin.
 2000 Mathematics Subject Classification: 11B37, 15A36, 15 A15.
 Key words and phrases: Generalized order- k Pell numbers; Matrix method; Binet formula; Sum.

