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Abstract— In the last 30 years, the contrast-to-noise ratio
(CNR) has been used to estimate the contrast and lesion
detectability in ultrasound images. Recent studies have
shown that the CNR cannot be used with modern beamform-
ers, as dynamic range alterations can produce arbitrarily
high CNR values with no real effect on the probability
of lesion detection. We generalize the definition of CNR
based on the overlap area between two probability density
functions. This generalized CNR (gCNR) is robust against
dynamic range alterations; it can be applied to all kind of
images, units, or scales; it provides a quantitative measure
for contrast; and it has a simple statistical interpretation,
i.e., the success rate that can be expected from an ideal
observer at the task of separating pixels. We test gCNR on
several state-of-the-art imaging algorithms and, in addition,
on a trivial compression of the dynamic range. We observe
that CNR varies greatly between the state-of-the-art meth-
ods, with improvements larger than 100%. We observe that
trivial compression leads to a CNR improvement of over
200%. The proposed index, however, yields the same value
for compressed and uncompressed images. The tested
methods showed mismatched performance in terms of
lesion detectability, with variations in gCNR ranging from
−0.08 to +0.29. This new metric fixes a methodological flaw
in the way we study contrast and allows us to assess the
relevance of new imaging algorithms.

Index Terms— Contrast, detection, lesion, probability,
ultrasound.

I. INTRODUCTION

T
HE concepts of contrast and lesion detection have been

entwined since the early days of medical ultrasound.

Back in the era of hardware beamforming, higher contrast
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meant easier detection of anatomical and pathogenic features.

This relation was further studied and quantified in the seminal

study by Smith et al. [1]. As a result, contrast and lesion

detectability became synonymous in 1983.

However, it has been recently shown [2] that modern

beamformers can alter the dynamic range of ultrasonic images

and said alterations can, in turn, induce a fictitious increase of

the measured contrast. As a consequence, a search for better

contrast estimators has been called out [2].

This challenge extends beyond the problem of dynamic

range alterations. Initially, in the hardware beamforming era,

ultrasound images were, in essence, the maps of the backscat-

tered wave intensity. However, contemporary ultrasound

images can convey very different types of information, such

as signal coherence [3]–[5], tissue elasticity [6]–[8], viscoelas-

ticity [9], nonlinear elasticity [10], specularity [11], or even a

combination of several heterogeneous parameters.

This new landscape raises some standing questions. How

can we compute contrast across different methods? Should

we use the same expressions to compute it? Should we

use the same units? These questions are probably the cause

for the variety of metrics found in the literature and the

lack of consensus regarding which methods produce a higher

probability of lesion detection.

This article tackles these questions and proposes a new

metric, the generalized contrast-to-noise ratio (gCNR), that is,

a surrogate of the maximum probability of success Pmax of

classic detection theory. We show that gCNR can be estimated

in the same imaging scenarios as the classic CNR [12].

We hypothesize that contrary to CNR, gCNR is resistant to

dynamic range alterations, can be used on any kind of data,

regardless of the signal nature or units, and is a quantitative

metric with a simple statistical interpretation.

This article is organized as follows. Section II revises the

classic contrast metrics and illustrates how they break down if

the dynamic range is altered. In Section III, we show how to

estimate gCNR and derive an analytical expression for gCNR

for delay-and-sum (DAS) in a standard anechoic phantom.

Section IV describes the in silico, in vitro, and in vivo data

used to demonstrate gCNR and briefly describes the state-of-

the-art imaging methods that have been tested. In Section V,

expressions are validated in silico and in vitro, the robustness

of gCNR against dynamic range alterations is demonstrated,

and the gCNR of the studied imaging methods is evaluated.
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The use of gCNR on in vivo data is also illustrated in

Section V. Results are discussed in Section VI, and concluding

remarks are included in Section VII.

II. BACKGROUND

A. Classic Metrics

Let us define a lesion, such as a cyst embedded in a

background area. Let us denote I as an area inside the lesion

and O as an area outside the lesion. Let us denote any quantity

computed within each region with the subindexes i and o,

respectively.

The most popular measure of contrast in ultrasound imag-

ing, often referred to simply as contrast, was already in use

in 1985 [13]

C =
µi

µo

(1)

where

µi = E{|si |
2} (2)

µo = E{|so|
2} (3)

are, respectively, the mean signal powers inside and outside

the lesion, and s denotes the signal. Contrast can take any

positive real value, and C→ ∞ as µo → 0. Contrast is often

expressed in decibels as

C[dB] = 10 log10 C. (4)

An alternative measure of contrast, later known as the CNR,

was introduced in 1983 by Patterson and Foster [12]

CNR =
|µi − µo|
�

σ 2
i + σ 2

o

(5)

where

σ 2
i = E{(|si |

2 − µi )
2} (6)

σ 2
o = E{(|so|

2 − µo)
2} (7)

are, respectively, the variance of the signal power inside and

outside the lesion. CNR can take any positive value, and

CNR→ ∞ when σ 2
i +σ 2

o → 0. For DAS, both speckle signal

and thermal noise follow a circularly symmetric Normal distri-

bution CN (0, 0) [14], meaning that as shown in Section III-C,

the CNR of DAS is bounded to the interval [0,1].

B. Other Metrics

Simultaneously, with [12], Smith et al. [1] proposed a lesion

contrast metric based on a theoretical analysis of contrast-

detail detectability for an ideal observer

CNR† =
|µi − µo|
�

µ2
i + µ2

o

(8)

which is similar to Patterson–Foster’s CNR. In [1], the analysis

is constructed upon the assumption that the signal power,

both inside and outside lesion regions, follows an exponential

distribution. Under that condition, the variance of the signal

power equals its squared mean σ 2 = µ2, and (5) becomes

equivalent to (8).

Even though (5) and (8) were conceived to be used with

signal power in natural units, many authors have inserted log-

compressed values in them [15]–[18]. This practice can be

defended from an image processing perspective since, in many

cases, detection is carried out on pixel intensity (in dB), not

signal power, and hence, µ and σ 2 should be defined as the

mean and variance of the pixel intensity. However, arbitrarily

large values (CNR�1) are achieved, which raises questions

on the significance of those numeric values.

C. Obsolescence of the Classic Contrast Metrics

The classic definitions, (1), (5), and (8) have become

obsolete due to the following reasons.

1) Some imaging algorithms do not produce an estimation

of the tissue backscattering intensity, but something else.

For example, short-lag-spatial coherence (SLSC) [19]

produces images of the signal coherence, often displayed

in the natural scale [20]. The same can be argued of other

coherence-based algorithms [3], [5], [21].

2) It has been shown that adaptive algorithms can alter the

statistics of the speckle signal [22] and the dynamic

range of the beamformed signal [2]. This hinders

the comparison of the metrics of different algorithms.

To illustrate this, Fig. 1 shows two ultrasound images

produced with DAS: Fig. 1(a) shows conventional DAS,

and Fig. 1(c) shows the same data after being trans-

formed using the S-curve in Fig. 1(b). In Fig. 1(a),

we obtain a CNR = 0.8920, while in Fig. 1(c),

CNR = 2.2887. Dynamic range transformations, such as

the S-curve shown in Fig. 1(b), do not have a positive

impact on lesion detection. At best, they leave the detec-

tion probability unaltered. In effect, if one calculates the

detection probability, using the gCNR as described in

this article, one finds that in both cases, it is 96.9%.

It follows that higher CNR values do not necessarily

imply a higher probability of lesion detection.

3) Often C and CNR improvements are estimated on trivial

lesions, i.e., lesions that are already perfectly separable

in the reference image. From a medical perspective,

increasing the contrast of already detectable lesions is

of little clinical value.

We ought to define a quality metric for lesion detectability

that overcomes these three problems.

III. THEORY

It can be argued that CNR is correlated with the detection

probability under certain conditions. A detection problem can

be posed as a classification problem, where the percentage of

pixels that are correctly classified is the detection probability.

In classification problems, the concept of maximum proba-

bility of success Pmax is often used, defined as the maximum

performance that can be expected from a classifier using

a set of optimal thresholds. The complementary probability

Pmin = 1 − Pmax is known as the minimum probability of

error.
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Fig. 1. Evidence that S-compression alters the estimated CNR. (a) DAS. (b) S-curve. (c) S-DAS.

A. Estimation of Pmax

We aim to estimate the maximum probability of success,

Pmax, in the context of lesion detection. For conciseness, let

us call pathological pixels those that are part of the lesion

(i.e., inside) and healthy pixels those that are not (i.e., outside).

Let us denote the image value at any given pixel as x , also

known as the pixel value. The pixel value x can convey any

kind of information and be expressed in any units, such as

signal power, dB intensity, coherence, and speed of sound.

Let us define the probability density function of the values

taken by the pathological pixels as pi (x) and the probability

density function of the values taken by healthy pixels as po(x).

Here, we concentrate on hypoechoic lesions that have been

historically used to study lesion detectability. Hence, we con-

sider that a pixel is detected if its value x is below a given

threshold �.

Let us define the probability of false detection PF (�) as the

proportion of healthy pixels that are detected using a binary

classifier with threshold � and the probability of miss PM (�) as

the proportion of pathological pixels that go undetected using

the same threshold. These two probabilities can be computed

from pi (x) and po(x), as

PF (�) =

� �

−∞

po(x) dx (9)

PM (�) =

� ∞

�

pi(x) dx . (10)

The probability of error Pe can be calculated using the

Bayesian paradigm

Pe(�) = Po PF (�) + Pi PM (�) (11)

where Po and Pi are prior probabilities that are assigned based

on the size of the regions of interest. For simplicity, we assume

that both regions have the same area. Hence, Po = Pi = 0.5

and

Pe(�) =
PF (�) + PM (�)

2
. (12)

It is possible to find an optimal threshold �0 that minimizes

Pe(�), as shown in Fig. 2. When that threshold is chosen,

Fig. 2. Illustration of two probability density functions pi(x) and po(x) and
the resulting missclassification overlap PF(�) and PM(�) for an optimal
threshold �0.

the binary classifier gives the minimum probability of error

Pmin = min
�

{Pe(�)}. (13)

Combining (9) and (13), we see that

Pmin =
1

2

�� �0

−∞

po(x)dx +

� ∞

�0

pi(x) dx

�

(14)

which is equivalent to

Pmin =
1

2

� ∞

−∞

min
x

{po(x), pi(x)} dx . (15)

The integral in (15) is the overlap area between both the

probability density functions (OVL), and hence

Pmin =
OVL

2
(16)

and Pmax = 1 − Pmin is, therefore

Pmax = 1 −
OVL

2
. (17)

If both pi(x) and po(x) overlap completely, OVL = 1 and

Pmax = 0.5. This corresponds to the worst possible classifica-

tion. If pi(x) and po(x) do not overlap at all, then OVL = 0

and Pmax = 1.

The derivation presented here is valid for binary classifiers

using a single threshold. However, OVL is a good estimator
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of Pmin even for multimodal distributions, where a set of

thresholds must be used instead of a single one. For the case

of hyperechoic lesions, the derivation is analogous and yields

the same expression for (16).

B. Lesion Detectability

Even though Pmax conveys all the information needed to

evaluate the detection ability of any imaging algorithm, our

field has long relied on contrast to measure lesion detectability.

It may be convenient to generalize CNR so that it can be

applied to distributions other than the circularly symmetric

Normal distribution CN (0, 0).

The classic CNR in (5), if applied on images generated with

DAS, has two convenient properties.

1) CNR is correlated with Pmax.

2) CNR is bounded to the interval [0, 1].

Fulfilling these two properties, we define the gCNR as

gCNR = 2Pmax − 1 (18)

which can be written in terms of OVL as

gCNR = 1 − OVL. (19)

Notice that gCNR = 0, if pi(x) and po(x) overlap com-

pletely (OVL=1, Pmax = 0.5), and gCNR = 1, if they do

not overlap at all (OVL=0, Pmax = 1). gCNR is always

proportional to Pmax, regardless of the distribution of the

signals.

Furthermore, we argue that gCNR, rather than Pmax, con-

stitutes a definition of what has been commonly referred to

as lesion detectability [1], [13], [23]. gCNR measures how

successful an ideal observer would be at the task of separating

between healthy and pathological pixels.

If all pixels are classified as pathological, then gCNR = 0,

which conveys the information that lesion detectability is zero

and that the detection image holds no useful information. The

same applies to the case where all the pixels are classified as

healthy. If all pixels are correctly classified, then gCNR = 1,

which conveys the idea that a perfect detection of the lesion

is achieved and that the detection image is 100% accurate.

C. Analytical Expressions for DAS

Historically, anechoic cyst phantoms have been used to

estimate contrast improvements. Said phantoms are composed

of a background region with uniform, fully developed speckle,

and an anechoic region. Uncorrelated bandpass noise is often

added to the channel data to simulate different signal-to-noise

ratio (SNR) conditions.

Interestingly, both speckle signal and thermal noise follow

a circularly symmetric Normal distribution CN (0, 0) if they

are beamformed using DAS [14]. This means that the signal

envelope is Rayleigh distributed and that the mean signal

power follows an exponential distribution. Equivalently, this

means that the real and imaginary parts of the demodulated

signal are normally distributed.

Under these circumstances, it is possible to derive analytical

expressions for C, CNR, and gCNR for any linear combination

of the signals across the aperture. Here, we will derive those

expressions for DAS using a uniform flat aperture. Hereinafter,

we assume that the lesion is anechoic and that thermal noise

is present all over the image.

We start by defining the channel SNR as the power ratio

SNR1 =
νS

νN

(20)

where νS is the mean power of the speckle signal in one

channel and νN is the mean power of the uncorrelated noise

in one channel. For simplicity, we assume that M elements

are used on transmit and that the same number of elements

are combined on receive. The SNR after combining the signal

of M elements, for M � 1, is then

SNRM =
µS

µN

=
2/3M2νS

MνN

=
2M

3
SNR1 (21)

where µS is the mean power of the speckle signal and µN

is the mean power of the noise signal. The derivation of (21)

is included in Appendix VII for any number of transmit and

receive elements.

If we neglect resolution effects and acoustic noise, we can

assume that inside the lesion, only thermal noise will be

present, while outside the lesion, both speckle signal and

noise will be found. Since both signals follow CN (0, 0), it is

possible to calculate the mean signal power in both regions as

µi = µN (22)

µo = µS + µN . (23)

1) Contrast of DAS: The contrast between both the regions

is computed by inserting (22) and (23) into (1)

C0 =
µi

µo

=

�

µS

µN

+ 1

�−1

(24)

and by inserting (21) into (24), it yields

C0 =
3

2M SNR1 + 3
. (25)

2) CNR of DAS: The sum of two signals that follow

CN (0, 0) will also follow a CN (0, 0) distribution. Conse-

quently, the mean signal power in both regions will follow an

exponential distribution and σ 2 = µ2. Then, expressions (5)

and (8) become equivalent, and CNR becomes

CNR0 =
|C0 − 1|
�

C2
0 + 1

(26)

which is bounded between [0,1].

3) Maximum Probability of Success of DAS: Since the signal

power in both regions follows an exponential distribution, their

probability density functions are given by

pi(x) =
1

µi

e−x/µi (27)

po(x) =
1

µo

e−x/µo (28)

where x is, in this case, the mean signal power, and hence,

it is bounded by the interval [0,∞). By inserting (27)
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Fig. 3. B-mode images beamformed with DAS of ten of the in silico data sets used in this study for SNR1 ∈ [−21, 6] dB.

and (28) into (9) and (10), respectively, we obtain

PF (�) = [−e−x/µo]�0 = 1 − e−�/µo (29)

PM (�) = [−e−x/µi ]∞� = e−�/µi . (30)

By inserting (29) and (30) into (12), we obtain the total

probability of error

Pe(�) =
1

2
+

1

2
(e−�/µi − e−�/µo). (31)

By differentiating (31), we find that it has a minimum at

�0 =
µiµo ln(µi/µo)

µi − µo

. (32)

By substituting � = �0 in (31), we obtain the minimum

probability of error

Pmin,0 =
1

2
+

1

2

�

−C
−

C0
C0−1

0 + C
− 1

C0−1

0

�

(33)

and Pmax as the complementary probability

Pmax,0 =
1

2
+

1

2

�

C
−

C0
C0−1

0 − C
− 1

C0−1

0

�

. (34)

By solving (26) for C0 and inserting it into (34), it is

possible to express Pmax,0 in terms of CNR0. By plotting the

resulting expression for CNR0 ∈ [0, 1], it becomes obvious

that Pmax,0 and CNR0 are correlated.

4) gCNR of DAS: Finally, by inserting (34) into (18),

we obtain

gCNR0 = C
−

C0
C0−1

0 − C
− 1

C0−1

0 . (35)

This derivation can be extended to cysts with a defined

intensity (i.e., hypoechoic rather than anechoic) by redefining

(22) and (23) as the mean signal power in each region plus

the mean noise power; however, from (26), the derivation

will remain unchanged. It must be noted that the analyti-

cal expressions derived here are only valid if the signal in

the regions under test is a combination of uniform, fully

developed speckle, and the additive bandpass Gaussian noise.

New expressions would be needed if the speckle amplitude

follows a non-Rayleigh distribution, such as Rician [24] or

Nakagami [25].

IV. METHODS

We used Field II [26], [27] to simulate a 3-mm-radius

anechoic cyst at 20-mm depth. A 128-element, 300-µm pitch,

linear array was used to transmit a 5.13-MHz, 60% rela-

tive bandwidth pulse. A synthetic transmit aperture imaging

sequence (STAI) was used, and the RF channel data were

acquired; 100 different simulations of the same phantom

were computed using independent and identically distributed

speckle realizations to take into account the effect of speckle

variability. Bandpass uncorrelated noise following a CN (0, 0)

distribution was added with different intensity levels so as to

simulate SNR1 ∈ [−21, 6] dB.

In vitro data were collected using the Verasonics Vantage

256 research scanner. A 128-element, 300-µm pitch, linear

array (Verasonics L11) was used, transmitting at 5.13 MHz.

The probe was set against a CIRS multipurpose phantom

(Model 040GSE). A 4.5-mm-diameter anechoic cyst located

at 16-mm depth was selected as the lesion. Several STAI data

sets were recorded using different transmit voltages, ranging

from 10 to 0.4 V, to simulate different SNR conditions.

For both simulated and in vitro data, M = 45 elements

were used both on transmit and receive, yielding a transmit

and receive aperture size of 13.5 mm and an F-number of

F = 1.48 at the lesion depth. Fig. 3 shows ten of the in silico

data sets using a gray scale with a 60-dB dynamic range where

the white color is set to the 99th percentile in each image.

The use of gCNR is also illustrated in vivo. A focused

beam data set was acquired with the Verasonics Vantage

256 research scanner. A 128-element, 300-µm pitch, linear

array (Philips L7-4) was used, transmitting at 5.2 MHz. In this

case, M = 32 elements were used on transmit, and a constant

F-number F =1 was used on receive. As a target, we selected

a cross section of the common carotid artery on a healthy

volunteer.

The derivation in Section III-C purposely leaves out the

effect of resolution and lesion size, i.e., the effects that would

complicate the analytical solutions, limiting its usefulness.

To validate them, we select two regions (I and O) that avoid the

edges of the cyst. We chose the full-width at half-maximum

of a uniformly weighted DAS beamformer as the system

resolution. The lateral resolution can then be approximated
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Fig. 4. Two regions of interest I (inside red circle) and O (inside blue
square) for (a) in silico, (b) in vitro, and (c) in vivo cases.

by 1.2λF [28], resulting in a value of 0.53 mm. For both

in silico and in vitro data, the inside region I is defined as

the area inside the red circle in Fig. 4 with 2.47-mm radius.

The outside region O is defined as the area within the blue

square in Fig. 4 with sides of 4.378 mm. The areas of both

regions are 19.17 mm2. For the in vivo case, region I is

enclosed by a 3-mm-radius circle, and region O is bounded by

a 5.317-mm-side square, both having an area of 28.27 mm2,

as shown in Fig. 4(c).

The mean and standard deviation of the signal in both

regions are estimated to compute the classic C and CNR.

In order to calculate gCNR, the probability density functions

in both regions are estimated by estimating the histogram over

100 bins covering the whole signal dynamic range. Fig. 5

shows the probability density function, inside and outside,

of the signal envelope obtained for DAS and an SNR1 = 0 dB.

We study C, CNR, and gCNR in seven imaging methods:

1) DAS;

2) DAS compressed with the S-curve in Fig. 1(b) (S-DAS);

Fig. 5. Estimated probability density function for the signal envelope of
DAS for SNR1 = 0 dB.

3) Mallart–Fink’s coherence factor (CF) [3];

4) Camacho et al.’s phase CF (PCF) [5];

5) Li–Li’s generalized CF (GCF) [21];

6) Matrone et al.’s delay-multiply-and-sum (DMAS) [29];

7) Lediju et al.’s SLSC [19].

Details of the implementation of each of the methods can

be found in [2] and [19] and will, therefore, be omitted. For

those methods with user settable parameters, we used γ = 1

for PCF, M0 = 4 for GCF, and for SLSC a short-lag value

Mmax = 14 (denoted as M in [19]) and a kernel size of λ. All

implementations are included in the UltraSound ToolBox [30]

that can be download from http://www.ultrasoundtoolbox.com.

The data sets used in this article and the scripts

needed to reproduce the figures can be downloaded from

http://www.ultrasoundtoolbox.com/publications/gcnr.

V. RESULTS

Fig. 6 validates the analytical expressions (25), (26), and

(35) against the estimation of C, CNR, and gCNR on simulated

data using (1), (5), and (19). We see a good agreement between

theory and simulation.

Fig. 7 shows the in silico B-mode images produced by all

the tested methods for SNR1 = 6 dB. Fig. 7 also shows the

estimation of C, CNR, and gCNR for SNR1 ∈ [−21, 6] dB.

The analytical solutions for DAS are plotted as reference.

We observe that C and CNR vary significantly from method

to method. S-DAS shows less contrast (C less negative) than

DAS but higher CNR for SNR1 > −10 dB. CF shows more

contrast (C more negative) but significant lower CNR for

SNR1 ∈ [−15, 5] dB. GCF shows similar contrast to DAS

but considerably higher CNR for SNR1 > −5 dB. Both PCF

and DMAS show more contrast (C more negative) than DAS

but lower CNR. In general, we observe variations in CNR that

range, approximately, from −50% to +250%.

This large variation is not present in gCNR. As expected,

S-DAS has the same gCNR as DAS since it is a mere

transformation of the dynamic range. Compared with DAS,

the two methods, CF and PCF, show lower gCNR than DAS,

with a maximum difference of −0.04 ± 0.01 at SNR1 = 6 dB

(CF) and −0.07 ± 0.03 at SNR1 = −6 dB (PCF); the three
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Fig. 6. In silico validation of expressions (25), (26), and (35).

methods, GCF, DMAS, and SLSC, show higher gCNR than

DAS, with a maximum difference of 0.07 ± 0.02 at SNR1 =

0 dB (GCF), 0.07 ± 0.03 for SNR1 = −6 dB (DMAS), and

0.22 ± 0.03 at SNR1 = −6 dB (SLSC).

The in vitro results are shown in Fig. 8. In this case,

uncertainty intervals cannot be calculated as a single speckle

realization is available. We observe a very good agreement

between experimental data and (25), (26), and (35). As earlier,

we observe a large variation between methods in C and

CNR values, while the variation in gCNR is relatively small.

As expected, S-DAS shows identical gCNR values to DAS.

For the other tested techniques, we observe the same trend.

CF and PCF show lower gCNR than DAS, with a maximum

difference of −0.07 at SNR1 = 8.8 dB (CF) and −0.08

for SNR1 = 8.8 dB (PCF); GCF, DMAS, and SLSC show

higher gCNR than DAS, with a maximum difference of 0.10

for SNR1 = −5.2 dB (GCF), 0.12 for SNR1 = −11.1 dB

(DMAS), and 0.29 for SNR1 = −11.1 dB (SLSC).

The gCNR values plotted in Figs. 7 and 8 are included in

Table I.

In Fig. 9, we illustrate the use of gCNR in vivo, using an

image of the cross section of the common carotid artery. In this

case, no noise is added to the data set, and hence, a single value

is shown in Fig. 9 for each method and indices C, CNR, and

gCNR.

As in previous scenarios, we observe a large variation in

C and CNR between the methods. All methods show more

contrast (C more negative) than DAS. In this case, most of the

methods show smaller CNR than DAS, with the exception of

S-DAS and SLSC that show, respectively, an increase of 37.6%

and 74.5%.

As expected, the gCNR of S-DAS is almost identical to that

of DAS. In this case, CF, PCF, and DMAS show lower gCNR

than DAS, with variations of −0.108 (CF), −0.116 (PCF), and

−0.049 (DMAS). GCF and SLSC show an increase in gCNR

with variations of +0.032 (GCF) and +0.049 (SLSC).

VI. DISCUSSION

By comparing the results of DAS and S-DAS, for various

SNR conditions, we observe that DAS and S-DAS obtain

equal gCNR values. This supports the hypothesis that gCNR is

resistant to dynamic range transformations. We cannot argue

that gCNR is immune to transformation because its result may

change in case the transformation is noninjective, i.e., when

two input values get the same output value. However, even in

this case, the gCNR will never increase after transformation,

which guarantees that gCNR cannot be spuriously increased

due to dynamic range alteration.

The probability density functions, and hence, gCNR, can be

computed on any kind of pixel data, regardless of their nature

and physical meaning. This confirms the second hypothesis

that gCNR can be used on a wide variety of imaging methods.

From (18), it is seen that gCNR is proportional to the maxi-

mum success rate Pmax, and hence, it conveys the same mean-

ing. In addition, we argue that gCNR is a proper definition of

lesion detectability, as the separability rate between healthy

and pathological pixels. This way, a gCNR of 0.9 means that,

at best, 90% of the pixels can be separated. This allows for

a quantitative, meaningful comparison of imaging methods,

which confirms our third hypothesis.

The gCNR metric can, therefore, be used to solve the

methodological flaw of using C and CNR to measure contrast

and properly compare the lesion detectability of different

imaging methods.

The analytical expressions derived in Section III-C for DAS

can serve as a sanity check for those aiming to benchmark

different imaging algorithms. Said expressions are only valid

for homogeneous, fully developed speckle. The alternative

expression would be needed for other speckle models, such as

Rician or Nakagami. However, it should be noted that gCNR

remains an optimal separability test also for those distributions,

as it imposes no condition on the probability density function

of the signal.
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Fig. 7. Comparison of the performance of C, CNR, and gCNR in silico.

The size of the regions of interest can have an impact on

the estimation of gCNR. To obtain an accurate estimation of

the PDF and, hence, of OVL, both regions should be large

enough so as to contain multiple resolution cells, defined
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Fig. 8. Comparison of the performance of C, CNR, and gCNR in vitro.

as the −6-dB area of a single point scatterer. In the exper-

iments presented here, the ROIs covered around 68 res-

olution cells, which was enough to produce an accurate

estimation of gCNR. However, the impact of the spatial

resolution on the estimation of gCNR must be studied

further.
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Fig. 9. Comparison of the performance of C, CNR, and gCNR in vivo.

The comparison of the gCNR of state-of-the-art methods, in

silico and in vitro, reveals that some methods (CF and PCF)

worsen the probability of lesion detection with an absolute

decrease in gCNR between −0.04 and −0.08. Other methods
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TABLE I

GCNR VALUES OBTAINED FOR ALL TESTED METHODS AND SNR1 FOR BOTH In Silico AND In Vitro DATA SETS

(GCF and DMAS) improve it slightly with an absolute

increase between 0.07 and 0.12. One of the tested methods

(SLSC) produced a relevant increase in detection probability

with an absolute increase in gCNR between 0.22 and 0.29,

meaning that an optimal observer would be able to separate

between 22% and 29% more of the total number of pixels

using this method than by using DAS.

The use of gCNR was also illustrated on an in vivo

data set. The result followed the same general trend, with

GCF and SLSC showing higher gCNR than DAS. Numer-

ical values cannot be compared across scenarios since,

in this case, the SNR is unknown. Comparison is also

hindered by the presence of reverberation noise and the

possibility of different speckle distributions. Even though

the performance of different methods can vary between

scenarios, gCNR remains a separability test even under those

conditions.

It must be noted that the implementation of the state-of-

the-art methods used here may not be specifically tuned to the

problem of lesion detection. It is not the aim of this article to

provide a benchmark of current beamforming technology but

to propose the tools to do so.

The tested algorithms may not be particularly suited to the

task of detecting cyst-like lesions. There is evidence showing

that coherence-based methods may be better suited to improve

the visualization of highly coherent echoes, such as delineation

of tissue interfaces [32], microcalcifications [22], or solid

content in hypoechoic lesions [33]. The problem of detecting

uniform, purely scattering cysts may be better solved by

speckle reduction techniques, such as spatial and frequency

compounding [34] or nonlocal means [35]. The fact that

spuriously large C and CNR values have been obtained with

coherence-based methods may have misled the community

into thinking that coherence methods could be used to increase

the probability of detection of uniform cysts. Our results seem

to indicate that only one of the coherence-based methods

resulted in a significant increase in the probability of lesion

detection, and it is yet to be proven if that improvement

may be due to secondary factors, such as an inherent spatial

smoothing.

It should be stressed that the scope of the comparison

presented here is limited to uniform cysts in speckle in the

presence of bandpass uncorrelated noise. The detection of

lesions in the presence of other types of noise or unwanted

signals, which can appear in vivo, remains to be investigated.

It must be noted that gCNR cannot be the only quality

metric. Simply, by spatial smoothing, one can get a significant

increase in gCNR, much greater than those obtained by the

methods tested here. This, of course, makes sense; spatial

smoothing reduces the variance of the probability density

functions pi (x) and po(x) and makes separation easier. There

is, therefore, a tradeoff between spatial resolution and lesion

detectability. Obtaining a high gCNR with low spatial resolu-

tion can be trivial. Both gCNR and spatial resolution must be

studied simultaneously to assess the significance of any image

formation algorithm.

VII. CONCLUSION

We present a new image quality metric, the gCNR, which

is resistant to dynamic range alterations. gCNR can be esti-

mated on all kind of images, regardless of compression,

scale, or output units. We show that gCNR is a measure

of lesion detectability as it measures the success rate of an

optimal detector at the task of separating between healthy and

pathological pixels.

This metric solves the methodological flaw of using the

classic C and CNR with algorithms that alter the probability

density function of ultrasound signals. However, by using

gCNR alone, one cannot assess the significance of new imag-

ing techniques. The spatial resolution must be also assessed

to take account of trivial spatial averaging. Other metrics

can also be included, such as the recently proposed lag-one

coherence [36].

The imaginary border that separated the disciplines of

beamforming and image processing is bound to disappear.

We live in an era in which algorithms could be more advanced

than our understanding of how they work. We must face the

possibility that some data-driven algorithms may work just by

finding loopholes in our experimental method and improve the

tools we use to measure scientific relevance.
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Fig. 10. In silico validation of (39) and (49).

APPENDIX

MEAN POWER OF SPECKLE SIGNAL AND THERMAL

NOISE AFTER BEAMFORMING

Pieces of this derivation can be found in [3] and [36].

We include it here for convenience, and we expand the

derivation for different aperture sizes both on transmit and

receive.

Let us assume we have a linear array and that MT active

elements have been used to transmit an ultrasonic pulse using

a uniform apodization (=1). Let us assume that MR elements

are combined on receive, also with uniform apodization. Let

us assume that the pulse is optimally focused in all the

beamformed pixels.

After demodulation, both speckle signal and thermal noise

follow a circularly symmetric normal distribution, and hence,

both its real and imaginary parts are normally distributed. Let

us denote γS as the variance of the real and imaginary parts

of the speckle signal and γN as the variance of the real and

imaginary parts of the thermal noise.

The mean signal power follows an exponential distribution,

whose probability density functions, for both speckle and

noise, are

pS(x) =
1

νS

e−x/νS (36)

pN (x) =
1

νN

e−x/νN (37)

where νS = 2γS and νN = 2γN are, respectively, the mean

signal power and mean noise power, in any of the elements.

The aim of this section is to derive the mean power of

speckle signal µS and thermal noise µN after the combination

of the signals received by MR elements. As an intermediate

step, we will calculate the variance of the real and imaginary

parts of the speckle signal 0S and thermal noise 0N .

Hereinafter, we will use the symbol Nm to denote the

thermal noise picked up by element m and Sm to denote the

speckle signal received by the element m.

A. Thermal Noise

The thermal noise is independent and identically distributed

in all the elements in the aperture, meaning that after beam-

formation, the real and imaginary parts of the thermal noise

will be normally distributed with mean zero and variance

0N = Var

�

MR
	

m=1

Nm




= MR γN . (38)

The mean power of the beamformed noise will then be

µN = 2 0N = 2 MR γN = MR νN . (39)

In other words, after beamformation, the mean power of

thermal noise increases linearly with the number of elements.

B. Speckle Signal

The speckle signal received by all elements is identically

distributed, but it will be partially correlated along the aperture.

Being circularly symmetric distributed, the mean of both the

real and imaginary parts will be zero, and their variance will

be given by sum of the covariances

0S = Var

�

MR
	

m=1

Sm




=

MR
	

m=1

MR
	

n=1

Cov(Sm , Sn) (40)

which is equivalent to

0S = MRγS + 2

MR
	

m=1

MR
	

n=m+1

Cov(Sm , Sn). (41)

Since all channels have identical variance, γS can be taken

out of the covariance calculation and

0S = MR γS + 2 γS

MR
	

m=1

MR
	

n=m+1

R (Sm , Sn) (42)

where R denotes the correlation coefficient. The van Cittert–

Zernike theorem [3] states that the correlation coefficient of

speckle signal is given by

R(|n − m|, MT ) =

⎧

⎨

⎩

1 −
|n − m|

MT

, if |n − m| < MT

0, otherwise.
(43)

Inserting (43) into (42), we obtain

0S = MR γS + 2 γS

MR
	

m=1

MR
	

n=m+1

R (|n − m|, MT ) . (44)

For the case MR < MT , the series in (44) has the solution

shown in (45), as shown at the top of the next page. For

MR ≥ MT , the series in (44) can be written as the sum of the

two series with the solution shown in (46), as shown at the

top of the next page.

Inserting (45) and (46) into (44), we obtain

0S = γS8 (47)
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MR
	

m=1

MR
	

n=m+1

R(|n − m|, MT ) =

MR
	

m=1

MR
	

n=m+1

�

1 −
|n − m|

MT

�

=
MR

6MT

(1 − MR)(MR − 3MT + 1) (45)

MR
	

m=1

MR
	

n=m+1

R(|n − m|, MT ) =

MR
	

m=1

MR
	

n=m+1

�

1 −
|n − m|

MT

�

−

MR−MT
	

m=1

MR
	

n=m+MT

�

1 −
|n − m|

MT

�

=
1

6
(1 − MT )(MT − 3MR + 1)

(46)

where

8 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
M3

R

3MT

+ M2
R +

MR

3MT

, if MR < MT

−
M2

T

3
+ MT MR +

1

3
, if MR ≥ MT .

(48)

The mean power of the speckle signal after beamformation

is then

µS = 20S = 28γS = 8νS (49)

where νS is the mean power of speckle noise for a single

channel. The so-called beamformer gain of DAS is then given

by the ratio of the SNR after and before beamforming

G =
µS/µN

νS/νN

=
8

MR

. (50)

In particular, for the case of MR = MT , we find that

µS =

�

2

3
M2

R +
1

3

�

νS . (51)

In other words, after beamformation, the mean power of

the speckle signal increases quadratically with the number of

elements.

In that case, the beamformer gain is

G =
2

3
MR +

1

3 MR

. (52)

For MR > 10, these last two expressions can be approxi-

mated as

µS ≈
2

3
M2

RνS (53)

and

G ≈
2

3
MR . (54)

Fig. 10 shows an in silico validation of expressions (39)

and (49), performed on data generated with Field II for a

128 elements λ pitch linear array transmitting at 5.2 MHz,

for MT = 33. We see that (49) slightly overestimates the

mean power ratio µS/νS for MR > 40, which was expected

since (43) does not take into account the effect of element

directivity.
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