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Abstract

The purposes of this study were to investigate 
theories that explain why common errors of the type

(a ± b) c - a c ± b c and °<Ja ± b = cJa ± °sfb occur in algebra

problem solving by novices; and to develop and assess 
techniques for remediating these errors. The meaning 
theory of learning (ML), procedural learning theory (PL), 
and implicit structure learning theory (ISL) are 
alternative frameworks for the explanation of the errors. 
The ML theory hypothesizes that experts have rich semantic 
connections to the procedures and symbols of algebra, but 
novices lack such connections (Ausubel, Novak & Hanesian, 
1978; Brownell, 1947; Wearne & Hiebert, 1985). The PL 
theory hypothesizes that adept problem solvers have 
technical proficiency in memorizing and applying mechanical 
rules (Anderson, 1983; Lewis, Milson, & Anderson, 1987; 
Matz, 1980). The ISL theory hypothesizes that students 
enter the classroom with nascent abstract rule structures 
on which to build a more mature "grammar of algebra" 
through inductive processes (Bolio, 1989; Drouhard, 1988; 
Kirshner, 1987).

In order to obtain some measure of the relative 
efficacy of these theories for remedial purposes, three 
brief educational treatments have been designed to reflect
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the three frameworks for learning. An analysis of variance 
for repeated measures was used to assess the effectiveness 
of the treatments in reducing the occurrences of the

{a ± b)c = a c ± b c and °y/a ± b = °Ja ± Cs[b errors.

Forty students participated in the study. They were 
enrolled in four intact developmental intermediate algebra 
classes at Southern University in Baton Rouge. The study 
used a pretest-posttest-retention test, control group 
design with three treatments— ML, PL, and ISL— and one 
control (C) which receives no special instruction 
concerning the errors. Results indicate that no 
significant difference was found in the number of errors 
between the groups on the post and retention tests.
However, there was a significant difference between the 
mean scores of the pretest and the posttest.

These results do not provide support for one theory 
over another in reducing the error types mentioned above, 
but do indicate a small decrease in the error rate for 
distributivity overgeneralization for all treatment groups.



CHAPTER ONE 
STATEMENT OF THE PROBLEM

Students' mathematical performance is a major concern 
for many educators and the focus of much of the current 
literature and research in mathematics education. This 
focus is expressed in articles such as "Math and Science:
A Nation Still at Risk" (Ashworth, 1990); and "Teaching 
Mathematics for Tomorrow's World" (Steen, 1989). These 
authors document that students' performance in mathematics 
is deficient. Steen (1989) cites reports (e.g. Kirsch & 
Jungeblut, 1986; McKnight, Crosswhite, Dossey, Kifer, 
Swafford, Travers, & Cooney, 1987; Dossey, Mullis, 
Linguist, & Chambers, 1988; Mullis & Jenkins, 1988;
Paulos, 1988; Lapointe, Mead & Phillips, 1989) that 
indicate serious deficiencies in the mathematical 
performance of U.S. students. Ashworth cites results from 
the National Assessment of Educational Progress (NAEP) that 
indicate "discrepancies between the level of math taught in 
school and what students can do" (p. 15). NAEP measures 
the educational attainment of U.S. students and supplies 
information which can be useful in determining problem 
areas in education. A review of the NAEP's data on 
students' performance in mathematics sparked the following 
statements:
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No eighth grader showed the breadth of understanding 
necessary to begin the study of relatively advanced 
mathematics (Mullis, Dossey, Owen, & Phillips, 1991, 
p. 7) ; and
Approximately half the twelfth graders graduating from 
today's school appear to have an understanding of 
mathematics that does not extend much beyond simple 
problem solving with whole numbers (p. 8).

Based on the NAEP's 1990 trend data in mathematics, Mullis, 
Dossey, Foertsch, Jones and Gentile (1991) indicate that 
during the 1980s there was a general pattern of growth in 
mathematics proficiency; but that discrepancies exist 
between races/ethnicity (White, Black, Hispanic) and also 
between genders from 1973 to 1990.

Deficiencies in mathematical performance that the 
students are displaying suggest that curriculum changes 
must occur; teaching methods must be innovative; 
assessment techniques must be varied; and the climate for 
learning must be different for the student (Ashworth, 1990; 
Steen, 1989). To help effect these changes, there is a 
need for more mathematically qualified teachers. However, 
Fey (1983) indicates that since 1970 there is a sharp 
decline in the number of U.S. college and university 
students who choose to major in mathematics. Several 
reasons have been offered as explanations for such decline. 
For many students mathematics in general is misunderstood,
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feared and avoided (Steen, 1986). Precollege preparation 
is also offered as a reason for such decline (Fey, 1983) . 
When many students encounter difficulties with mathematical 
fundamentals, they try to avoid as much mathematics as 
possible. Dossey (1988) indicates that in 1986 more high 
school students reported taking advanced courses including 
Algebra II, Geometry and Calculus, but that the overall 
percentage of students taking these advanced courses 
remains low.

Precollege mathematics preparation not only affects 
the number of mathematics majors but it also affects other 
disciplines that require advanced mathematics. That is, 
students who avoid mathematics are generally limited in 
career choices. They tend to choose careers that require 
limited mathematics. Deficiencies in high school 
mathematics preparation act as the "critical filter" 
barring students, especially women and Blacks, from entry 
into universities, scientific/technical college majors, and 
subsequent careers (Sells, 1973; 1976). Other researchers 
such as Whiteley (1987), Bleyer, Pedersen, and Elmore 
(1981), Sherman (1982), and Silva and Moses (1990), report 
similar observations.

On the secondary level, beginning algebra seems to be 
the course in which difficulty initially is encountered for 
many students. When difficulty is encountered at this 
level, many students do not acquire the basic knowledge and



skills that are necessary for higher level mathematics. 
Algebra is therefore a "gatekeeper" to higher level 
mathematics as mathematics is a "critical filter" to 
university entry, scientific/technical majors, and 
broadened career choices. That is, students who do not 
have access to algebra or do not have success in beginning 
algebra tend not to elect higher level mathematics courses. 
Opening the algebra gate is essential because algebra is a 
prerequisite for study in nearly every branch of advanced 
mathematics (Fey, n.d.). Algebra is a basic foundation of 
higher level mathematics.

The Algebra Project (Silva & Moses, 1990) , is one 
attempt to open the algebra gate: "The conviction of the
Algebra Project is that all children can learn algebra" (p. 
375). It is an innovative mathematics program that focuses 
on the students, teachers, and school communities to remove 
barriers and help students succeed in mastering algebra.
In support of the Algebra Project, Kamii (1990) states that 
this project "has challenged the belief that algebra, 
currently a 'gatekeeper' course in secondary mathematics 
education, cannot be grasped by large numbers of inner city 
minority and poor people" (p. 393). However, she also 
indicates that if we could start from fundamental knowledge 
about how all children acquire mathematical concepts then 
this could validate the adoption of specific innovations in 
mathematics and science instruction.



Educators generally agree that fundamental knowledge 
of how students acquire algebraic knowledge is needed to 
understand the difficulties that students have in the 
learning of algebra. And theories of algebra need to be 
applied to problems of curriculum and instruction.

Algebra Instruction
The focus of the standard curriculum is repetitive 

practice, and algebra pedagogy that attempts to develop 
algebra competence through drill and practice may be a 
source of much of the difficulty encountered by students. 
Such pedagogy "works for routine and repetitive problems 
but not for the development of free and creative thinking" 
(Fleming, 1988, p. 19). The logical thinking that is an 
important aspect of algebra competence is replaced with 
mindless exercises of manipulating symbols.

Saxon's Incremental Development Model (Saxon, 1982) is 
an extreme example of such a curriculum. It is based on 
the idea that algebra is a skill and so practice and 
repeated review is the major emphasis. Saxon objected to 
lack of practice time and drill distributed over time as 
presented in most standard textbooks so he developed a 
model of instruction and incorporated it into an algebra 
textbook, whereby the topics are introduced in increments 
and every topic is practiced in every problem set. Such a 
curriculum lends itself to mechanical work. It



de-emphasizes the aspect of algebra which encourages, 
requires, and stimulates thought. A curriculum with such 
emphasis does not enable students to acquire the algebraic 
ideas and methods that are required to reason effectively.

In many cases there is little or no attempt to create 
meaning about the various components of algebraic 
structural knowledge, even though each of the components is 
essential in applying algebraic concepts and processes. In 
the classroom "much time is devoted to the manipulation and 
simplification of algebraic expressions" (Ernest, 1987, p. 
382). Mechanical facility is the focus in the classroom 
and learning and applying rules is stressed. Therefore, 
students think of algebra learning as a problem of learning 
to manipulate symbols according to certain rules (Resnick, 
Cauzinille-Marmeche, & Mathieu, 1987). "For the most part, 
students are unaware of or fail to use metacognitive 
skills" (Schoenfeld, 1989, p. 97). That is, the students 
do not think about their own thinking. Schoenfeld (198 3) 
suggests that students should be taught to think, to 
question and to probe; they should be able to employ ideas 
rather than simply to regurgitate them. However, it is 
possible to acquire some proficiency through repetitive 
practice without meaning, but the resultant learning is 
very fragile as illustrated by common errors.



A Model of Symbolic Algebraic Skill 
"The act of encoding natural language and data into a 

more manageable concise notation is not only advantageous 
but often virtually essential for the solution of real 
world problems" (Resnick, 1982, p. 2). This process of 
encoding natural language and data into a more manageable 
concise notation can be accomplished utilizing algebra. 
Algebra then is powerful in that it can be used to 
represent in concise ways (due to its symbolic system) real 
world situations. A model of algebraic applications is 
presented in Figure 1.

Math
Models

Real World 
Contexts

Real
World

Situations

Algebraic
Solutions/

Interpretations
Symbol

Manipulations

Figure 1. A Model of Algebraic Applications

Figure 1 shows that real world situations can be 
represented by a mathematical model. Formal procedures 
(algebraic transformations) which involve manipulating and 
combining symbols in a systematic way, can then be applied 
to the model so that results can be interpreted 
algebraically. These algebraic interpretations can then be 
related back to the context of the real world situation.

To identify the areas of difficulty as well as the 
specific kinds of difficulty encountered by students in
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algebra, a model of algebra (Figure 2), including algebraic 
knowledge is presented and discussed.

Structural Knowledge

Principles

CONCEPTS PROCESSES

Procedures

SYMBOLIC ALGEBRA

Parsing Semantics Transformations Pragmatics

Figure 2. A Model of Symbolic Algebra

"Algebra can be considered as the formulation and 
manipulation of general statements about numbers" (Kieran, 
1989, p. 33). Algebra is composed of concepts and 
processes. Concepts can be defined as "ordered information 
about properties of one or more things— objects, events, or 
processes— that enables any particular thing or class of 
things to be differentiated from and also related to other 
things or classes of things" (Sowder, 1980, p. 246). The 
processes include the principles/laws (such as commutative, 
associative and distributive) and the procedures (such as 
simplifying, solving, evaluating, and performing



operations) that apply to the concepts. Knowledge of the 
structure of algebra is a key element of algebraic 
competence. Kieran (1989) indicates that the recognition 
and use of structure is the core of algebra. Additionally, 
it is the knowledge of the structure of algebra which 
enables one to apply algebraic concepts and processes.

Yet, certain structural aspects of algebra cause 
difficulty for students. The kinds of errors that students 
make in algebra generally indicate a lack of algebraic 
structural knowledge. The components of algebraic 
structural knowledge can be identified as knowledge of 
parsing, knowledge of transformations, semantic knowledge 
and pragmatic knowledge. These four components of 
algebraic structural knowledge describe the knowledge 
necessary to understand and to apply algebraic concepts and 
processes.

Transformations in Algebra
The components of algebraic structural knowledge are 

necessary to transform expressions. Parsing involves 
knowledge of notational conventions that specify grouping 
rules. Semantic knowledge refers to the referential domain 
of symbols. Pragmatic knowledge refers to knowledge of 
symbol manipulations tasks relevant to selecting 
appropriate transformations. Transformation knowledge 
refers to knowledge of the rules that take one expression



and derive a new one. A typical example illustrating the 
transformation of an expression is x + 4(x + 3) =
X + [4(X + 3)] = X + [4-X + 4-3] = X + [4x + 12] =
[x + 4x] + 12 = [lx + 4x] + 12 = 5x + 12. To transform 
this expression, it is necessary to have the semantic 
knowledge that the x in this expression represents a 
number. It is necessary to understand the parse of the 
expression. That is, addition is the main operator and x 
and 4(x + 3) are subexpressions; multiplication is the 
main operator of the subexpression 4(x + 3); and the
operator of x + 3 is addition. It is necessary to know the
transformations, the distributive property and the 
associative property. It is necessary to know that x has 
the explicit representation lx. Finally, it is necessary 
to have pragmatic knowledge. That is, it is necessary to 
know what to do, what to use and when to use it.

While all four components of structural knowledge are 
necessary for algebra, this study focuses on the 
transformation component. The transformation component, 
sometimes called the systemic structure of an expression 
(Kieran, 1989), is important in the learning of algebra.
The specific transformation that was investigated in this 
study was distributivity. One example is the 
transformation— distribution of multiplication over 
addition, ((a + b)c = ac + be)— that is used to transform 
the expression (y2 + 3)4:
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(y2 + 3)4 = y2(4) + 3(4), (= 4y2 + 12)

(Distributive Law)
Transformation Knowledge 

There are several aspects of the transformation component 
that cause difficulty for students. This component 
specifies the knowledge that extends the properties of 
arithmetic operations to establish the properties of 
algebra, such as the commutative property, the associative 
property, and the distributive property. That is, the 
transformation component explains symbol manipulations in 
algebra. Symbol manipulation is an important aspect of 
algebraic applications and is a major focus of the present 
curriculum; therefore, it should remain among the 
priorities in the algebra curriculum. However, symbol 
manipulation is also a major stumbling block for many 
students. New curricula like Fey's (n.d.) Computer 
Intensive Algebra, recognize a role, though reduced, for 
traditional symbol skills. Kieran (1989) indicates that 
even in a modified algebra environment, there would 
probably still be the need to formalize procedures and 
symbolize them. Symbol manipulation "can do more than 
simulate mindless behavior" (Lewis, 1989, p. 164). But for 
it to be truly useful to students, they must understand the 
processes they are employing.

Several aspects of the transformation component that 
cause difficulty for beginning algebra students and the
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type of errors that are made by students are discussed 
here.

Transformation Errors in Algebra
Errors in algebra are varied and wide ranging, with 

numerous varieties identified by researchers. But there is 
general agreement that the vast majority of errors are 
systematic— the result of definite misconceptions or mal- 
rules— and not chance results of carelessness or 
inattention (Brown & Van Lehn, 1980).

Some common transformation errors that occur in 
algebra have been identified as generic deletion operations 
(also called the cancellation error) and recombination 
confusion errors (Lewis, 1980); and distribution errors 
(Kirshner, 1987; Matz, 1980). Lewis (1980) explains that 
subtraction and division are deletion operations because 
they have the effect of deleting something. For instance, 
x + a -*• x if a is subtracted from x + a; and ax -*• x if ax 
is divided by a for a^O. However, the students in 
observing that subtraction and division have similar 
effects, ignore the difference between these operations.
The result is the deletion error, such as

x + a¥- = x + y . Lewis also explains that in the

rearrangement and replacement of symbols, some students get
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lost in distinguishing between addition and multiplication. 
The correct rearrangement and replacement of symbols for 
two expressions x + x, and x x  are 2x and x2 respectively. 
Thus, the recombination confusion results in errors such as 
x + x = x2 and y + yt = 2yt.

Among the most persistent of the systematic errors are 
errors that overgeneralize distributivity. These are errors 
that researchers/educators frequently attempt to explain 
and remediate. These errors are of the type (a ± b)2 =

a2 ± b2 and Ja~±~b = /a ± J5 . They are among the most

persistent and troubling for students (Laursen, 1978;
Maron, 1979; Matz, 1980; Schwartzman, 1977). The 
explanation and remediation of these errors is the focus of 
this study.

Whereas the education community has agreed that 
systematic errors are the result of acquiring symbol skills 
without meaning, there are widely divergent theories as to 
what constitutes meaning for algebra.

Three Learning Theories 
Many authors have discussed the relationship between 

error analysis and learning. Davis (1979) studied errors 
made by students and suggested a conceptual framework to 
interpret the observations of students learning 
mathematics. Similarly, Davis and McKnight (1979) studied



the mathematical performances of students in order to 
develop a system for analyzing the performances. The study 
of errors can contribute to the understanding of how 
students learn mathematics. But the problem facing 
educators interested in students' difficulties is that 
there is not enough knowledge about how students learn 
mathematics. The difficulties that students have in 
algebra, particularly with its structure, is a major 
concern for educators. So researchers should devise 
studies that will reveal how students come to understand 
the structure of elementary algebra and algebraic methods. 
This particular study is an attempt to contribute to the 
knowledge about how students learn algebra by looking at 
one rule in the transformational component. This study 
will focus on errors that are the result of deficient 
transformational knowledge. A review of three theories 
which explain the source of certain regular error patterns 
follows.

The Meaning Theory of Learning
Brownell (1935) proposed the "meaning” theory of 

arithmetic instruction. He defines meaningful arithmetic 
as "instruction which is deliberately planned to teach 
arithmetical meanings and make arithmetic sensible to 
children through mathematical relationships" (Brownell, 
1947). He further indicates that one of the values of 
meaningful arithmetic is that it safeguards pupils from
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answers that are mathematically absurd. This framework is 
often used by educators to explain why errors occur in 
mathematics (Greeno 1978; Lewis, 1980). Thus, the meaning 
theory of learning (ML) hypothesizes that experts have rich 
semantic connections to the procedures and symbols of 
algebra but novices lack such connections. According to 
this theory, these connections serve to constrain students 
arbitrary mathematics inventions and thus prevent errors 
(Ausubel, Novak, and Hanesian, 1978; Brownell, 1947;
Wearne and Hiebert, 1985).

The Procedural Learning Theory
Procedural learning is often the focus in teaching 

mathematics. The concern generally is which rules to apply 
and when. Procedural learning theories generally attempt 
to explain how students learn rules and/or why students 
make errors. Thus the procedural learning (PL) theory 
hypothesizes that adept problem solvers have technical 
proficiency in memorizing and applying mechanical rules. 
Such approaches have been extensively studied in cognitive 
psychology and modeled by production systems (e.g., 
Anderson, 1983; Lewis, Milson & Anderson, 1987).

Another instance of a procedural learning theory, 
called Repair Theory, was proposed by Brown and VanLehn 
(1980) and applied to procedural errors in arithmetic. The 
arithmetic research of Brown and VanLehn was extended by
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Matz (1980) to algebra. Matz analyzes students' errors as 
unsuccessful attempts to employ extapolation techniques to 
adapt previously acquired rules to new situations. The 
expert solver has learned to constrain extrapolation more 
successfully.

It is important to note that in these theories, the 
main sources of relevant knowledge is in the curriculum.
The base rules are for the most part given in the textbook. 
Extrapolation techniques adapt these rules to the task at 
hand— either successfully (for experts) or unsuccessfully 
(for novices).

The Implicit Structure Learning Theory
An alternative to the procedure learning theory which 

assumes that learning is based on students' initial 
reception of the rules given in the textbook is the 
implicit structure learning (ISL) theory. The ISL theory 
hypothesizes that students approach the algebra learning 
task with nascent rule structures already in place, and 
that their experience with the symbol system serves in part 
to constrain and complete these nascent rules (Kirshner,
1987). Additionally it leaves open the possibility that 
the rules eventually constructed by the successful problem 
solver may not be the "correct" rules (i.e. the usually 
accepted rules of the curriculum) whereas, the procedural 
learning theory holds that the "correct" (i.e. usually
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accepted) rules of the curriculum are the basis of eventual 
mastery.

This study investigated the efficacy of these three 
hypotheses and explored some possible implications for the 
teaching of algebra.

Design of the Study 
Each of the three theories described above has 

specific implications for ways in which algebra should be

taught in order to overcome the errors, (a±jb)c = a c ± b c

and C\ja ± b = °/a ± Cy/B . These implications are explored

in detail in chapter two.
The purposes of the study were (1) to investigate 

theories that explain why common errors of the type,

(a ± b)c = a c ± b c and c</a~±~b = cJa ± °/E occur in algebra

problem solving by novices, and, (2) to
develop and assess techniques for remediating these
errors.

The general strategy of this study was to provide 
alternative experiences for groups of novices that may lead 
to more expert-like performance according to the differing 
theories of expertise. The study included four groups—  

three treatment groups and one control group. Treatment
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group 1 was given a rich semantic treatment of the correct 
rules for expanding squared binomials. This treatment is 
in accord with the meaning theory of algebraic expertise. 
Treatment group 2 was taught about the dangers of 
overgeneralizing distributivity but without a discussion of 
operation levels. This treatment is in accord with the 
procedural learning theory. Treatment group 3 was taught 
the generalized distributive law (GDL) stressing 
explanations of the error types. This treatment is in 
accord with the implicit structure learning theory. 
Discovering which treatment is most successful in remedying

the (a ± b)c = a c ± b c and = C\[a ± CyfB errors

would provide indirect evidence as to the nature of the 
expert's knowledge.

Summary
In this chapter, I presented some current problems in 

the field of mathematics education. These problems include 
the following: deficiencies in students' mathematical
performance; a need for more mathematically qualified 
teachers; students' inadequate precollege mathematics 
preparation; mathematics acts as a critical filter barring 
students from entering universities and limiting their 
career choices; algebra is a gatekeeper that prevents 
students from electing or having success in higher level
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mathematics courses; students lack of logical thinking 
skills; and the need for more knowledge that would enable 
one to understand the difficulties that students have in 
algebra.

Next, I discussed algebra instruction and then 
presented a model of a symbolic algebraic skill, that 
provides insight about the kind of algebraic knowledge 
needed to apply algebraic concepts and processes. Also 
included is an identification and discussion of some types 
of errors that occur in algebra by students.

Finally, in this chapter I discussed three learning 
theories that can be applied to avoid or remediate common

errors of the type (a ± b)c = ac ± b c and

Cy/a ± b = cJa ± Csfh . These theories, the meaning theory of

learning, the procedural learning theory and the implicit 
structure learning provide alternative characterizations of 
algebra competence.

In the next chapter, a review of the literature is 
presented which reports the results and findings of 
research related to the three learning theories and the

errors, (a ± b) c = ac ± bc and °\Ja ± b = C\fa ± C\fE> .
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Additionally, an explanation of how each of the theories 
might be applied to the errors is presented.

In chapter three, the method of the study is given 
which includes the purposes, the general strategy, the 
experimental design and statistical methods used to analyze 
the data, the design caveats, the treatments, a description 
of the subjects who participated in the study and the 
measures and data analysis. In chapter four, the results 
of the study are presented. Finally, chapter five contains 
the discussion of the results of the study, the limitations 
of the study and the implications for research and 
practice.



CHAPTER TWO
REVIEW OF THE LITERATURE

This chapter is a review of the literature which 

focuses on the distributive errors, (a ± b) c = ac ± b c and

c<Ja ± b = Vi ± C\fB and reasons for these errors. Educators

(Brown and VanLehn, 1980; Booth, 1988; Lauren, 1978; 
Kirshner, 1987; Matz, 1980) identify and research errors 
that students make in learning elementary algebra as a way 
of trying to find out what makes algebra difficult for 
students and in order to contribute to the knowledge of how 
students learn mathematics. The three theories, meaning 
theory of learning, (ML), procedural learning, (PL), and 
implicit structure learning, (ISL), (described in chapter 
one and that are about the kind of knowledge experts have 
and how this knowledge is used by experts to prevent 
errors), attempt to explain the distributive errors listed 
above. Thus, the findings as reported in the literature, 
about the distributive property and the three theories, ML, 
PL, and ISL are presented here. Also presented is an 
explanation of how these theories might be applied to 
explain the occurrence of the common errors,

(a ± b)c = ac ± bc and C\fa~±~B = °/a ± V® •
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The Meaning Theory of Learning 
and the Distributive Property

The widespread acceptance of "meaning” in mathematics 
education can be traced back to the work of William A. 
Brownell and to the set of recommendations put forth by the 
Commission on Mathematics of the College Entrance 
Examination Board (Begle, 1979). Brownell (1935) 
formulated the first comprehensive statement of the 
"Meaning Theory" of arithmetic instruction. He also listed 
reasons why meanings should be taught in arithmetic. Some 
of them are: (1) Arithmetic can function in intelligent
living only when it is understood; (2) Meanings 
facilitate learning; (3) Meanings increase the chances of 
transfer; and (4) Meaningful arithmetic is better 
retained and is more easily rehabilitated than is 
mechanically learned arithmetic; (5) Meaningful learning 
equips pupils with means to rehabilitate quickly, skills 
that are temporarily weak and (6) Meaningful learning 
safeguards pupils from answers that are mathematically 
absurd (1945; 1947). Brownell (1947) also made a 
distinction between "meaning of" and "meaning for" in order 
to clarify the term "meaning."

The result of the study "Meaningful vs. Mechanical 
Learning: A study in Grade III Subtraction (Brownell and
Moser, 1949) supported the "meaning theory." This study 
involved teaching subtraction of whole numbers using two
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different methods (decomposition and equal additions) by 
mechanical instruction and meaningful instruction. As a 
whole the findings show that meaningful instruction, 
especially in the case of decomposition, produced results 
superior to those produced by mechanical instruction.

An overview of the development of meaningful 
instruction which deals with the meaning theory of 
arithmetic was discussed by Weaver and Suydam (1972). They 
reported the results of meaningfully versus non- 
meaningfully taught content (such as rote, mechanical or 
rule) and research that explored the effect of teaching 
various procedures with meaning (compared different 
procedures but each procedure was taught meaningfully).
The result of much of the research reported also supported 
the "meaning theory." Some of the findings and conclusions 
of the research of the former type include: greater
transfer when content was meaningfully taught; 
ineffectiveness of premature drill; understanding should 
precede memorization; high scores on computation and 
retention was good when a socially meaningful orientation 
was combined with a mathematically meaningful teaching; 
practice should occur after understanding; and, increased 
ability to solve new processes independently when content 
is meaningfully taught.

Some of the findings and conclusions of the research 
of the latter type include: no significant difference in
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immediate learning, transfer or retention when drill 
consists of practice through number relationship or drill 
through repetition, but considerable gain when taught 
either method meaningfully and followed by drill; 
computation skill was not an indication of understanding of 
meanings of procedures; children who demonstrated 
understanding of operation revealed high computational 
skill of operation but not vice-versa; higher achievement 
in computation, problem solving and mathematical concepts; 
changes in attitude when meaningful methods of teaching 
arithmetic are used; emphasis upon distributivity led to 
superior results on transfer ability, retention achievement 
and retention of transfer when compared to an approach that 
did not include work with this property; and no 
significant difference in overall learning of a mathematics 
principle between pupils who used a meaningful symbolic 
model and those who used a meaningful concrete model.

Weaver and Suydam conclude from these results that 
particular advantages will accrue from meaningful 
mathematics instruction as opposed to rote instruction but 
that they are less certain about advantages that may accrue 
from one meaningful approach method to another meaningful 
one. Other researchers (Baroody and Hume, 1991; Horak and 
Horak, 1981; Lesgold, 1987; Wearne and Hiebert, 1985;
1988) also affirm and establish the need for meaning in the 
learning of many mathematical concepts and procedures.
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Some of the conclusions from research where the 

distributive property is the content, support the ML 
theory. Distributivity is a property that causes 
difficulty for some students. It is a standard that is 
found in the curriculum of many grade levels. "As a result 
of the emphasis on understanding of arithmetic structure in 
programs of 'new mathematics,' certain ideas have been 
added to the elementary school curriculum or have been 
introduced earlier than previously had been" (Schell, 1968, 
p. 28). The distributive property is one such instance. 
Schell further indicates that in recently published third 
grade elementary school mathematics textbooks, the 
distributive property of multiplication over addition is 
used when introducing multiplication of one-digit 
multiplicands by one-digit multipliers. (e.g. 3 x 7 =
(3 x 4) + (3 x 3)). He found that pupils in grade three 
can learn to use the distributive property of 
multiplication (using one-digit multiplicands and one-digit 
multipliers) but that the distributive property items were 
significantly more difficult for the students than the non
distributive items. Further, he found that while the high 
scoring pupils performed approximately equal on both types 
of items, distributive and non-distributive, the low 
scoring pupils had a more difficult time with the 
distributive property items. Thus, exposure to the 
distributive property did not contribute to the
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understanding of the structure of arithmetic for the low 
scoring pupils. Weaver (1973) also found that students 
perform poorly on items relating to the distributive 
property.

Blume and Mitchell (1983) indicate that recent 
textbooks for grades six through nins_offer little in the 
way of applications of the distributive property. They 
examined some eighth grade students' knowledge of and 
ability to apply the distributive property using two 
inventories. The result of the analysis of the students' 
errors indicates that most students were at a complete 
loss. According to these authors, situations which can be 
modeled by the distributive property are not recognized by 
many students. In teaching distributivity, Blume and 
Mitchell suggest that "first, there should be increased 
focus on distributivity as a mathematical model for the sum 
of two products with a common factor rather than the simple 
pattern recognition inherent in many textbook approaches. 
Second, the vehicle for application of the property should 
be expanded to include a variety of word problems" (p.
221) .

Maron (1979) refers to the error, (x + y)n = xn + yn, 

with special cases, (1) (x + y)2 = x 2 + y 2 , (n=2),
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(2) v/x + y + Jy , (n=%) , and (3) \  (n=-l) ,x  ' y x  y

as an application of the Student's Universal Distributive 
Law (SUDL). That is, for many students f(x + y) = 
f(x) + f(y) for all x and y no matter what the function f. 
In hopes of providing a weapon against chronic offenders of 
the distributive property, Maron suggests using the SUDL to 
show some rather profound results, such as, if

v/x + y = Jx + \[y (where x=y=2) then \/4 = 2̂ /2 or 1 = </2 .

Morelli (1992) and Olson (1991) show how models can be 
used to help students understand mathematical concepts. 
Morelli (1992) illustrates how the distributive property 
can be introduced to students and practiced by students 
using pictures and symbols. She indicates that the 
connection between pictures and symbols of abstract ideas 
can be beneficial for students. Olson (1991) advocates 
teaching algebra from an algorithmic point of view. He 
indicates that in computing, the tree is one of the most 
important data structures and that trees are helpful in 
learning about structural relationships. He illustrates 
how the distributive law can be represented as the 
equivalence of two trees to help students understand its 
application from the structural aspect.
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As a whole, advocates of the meaning theory of 

learning and the findings of many studies that investigate 
meaningful learning versus non-meaningful learning, support 
the arguments for meaning set forth by Brownell (1945;
1947) .

The Meaning Theory of Learning Applied
The meaning theory of learning would explain the

errors (a ± b) c = ac ± bc and c-/a~±~B = Cy]a ± Cy/B as

occurring because students lack meanings connected with 
these expressions. That is, the students have no referents

to connect with the expressions (a ± b)° and c/a~±~b or

their constituent symbols that would warn the students that 
the answer is incorrect.

A number of different sources might be available to 
ground the formulas meaningfully, such as, numerical 
referents (use of numbers to replace variables to establish 
equivalence of expressions), logical axiomatic applications 
(use of axioms and definitions to establish equivalence of 
expressions), and geometrical images (use of geometrical 
figures to establish equivalence of expressions). We can 
see how some of these sources might apply to the particular 
problem at hand. For example, the (a + b)2 = a2 + b2 error
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might be prevented by using (a + b)2 and a2 + b2 with 
geometric representations as areas of squares or sums of

squares. The v/a2 + b2 = a + b error might be constrained

by the connection of variable symbols with a numerical 
domain for a and b. According to the meaning theory of 
learning then, meanings acquired for the expressions

(a ± b)° and °\/a ± b through mathematical relationships 

and connections would prevent the errors (a ± b) c = ac ± bc

and C\ja ± b = cJa ± °sfb .

The Procedure Learning Theory and 
the Distributive Property 

An aspect of becoming an adept problem solver in 
elementary algebra is acquiring procedural skills. 
Procedural learning theories generally attempt to explain 
how procedural skills are acquired and why students make 
errors. The ACT* theory (Anderson, 1983) is an instance of 
a PL theory. Anderson proposes a framework for skill 
acquisition that includes a declarative stage and a 
procedural stage. The declarative stage is the stage "in 
which the facts about the skill domain are interpreted



(Anderson, 1982, p. 3 69) and the procedural stage is the 
stage "in which the domain knowledge is directly embodied 
in procedures for performing the skill" (p. 369). Thus, 
according to Anderson, the basic progression of a skill 
acquisition is as follows. It begins as an interpretation 
of the declarative knowledge where information about the 
skill is received by the learner; next, the information 
about the skill is converted into procedural form; and 
finally the procedural form is refined until the learner is 
able to speed up the process. Anderson refers to this 
progression as a stage analysis of human learning.

Another instance of a PL theory is the Repair theory, 
a generative theory of bugs in procedural skills, proposed 
by Brown and VanLehn (1980). This theory was developed for 
algorithms in arithmetic and is motivated by the belief 
that when a student has unsuccessfully applied a procedure 
to a given problem, (s)he attempts to repair the procedure 
by using general knowledge to "patch" the algorithm so that 
it can be completed. The repair theory predicts the 
systemic errors (bugs) that students will make in learning 
a skill.

The PL theory proposed by Matz (1980) is an extension 
of the research by Brown and VanLehn to algebra. It 
proposes that "errors are the result of reasonable, 
although unsuccessful, attempts to adapt previously 
acquired knowledge to a new situation" (p. 95). The theory



further proposes that problem solving behavior employs two 
components, base rule (rules of the curriculum/textbook 
rules) and extrapolation techniques (ways to bridge the gap 
between known rules and unfamiliar problems). Matz 
indicates that many common errors are due to (1) using a 
known rule in an inappropriate situation and (2) 
incorrectly changing a rule so that it can be applied to a 
new problem.

Yerushalmy (1991) investigated the effect of a variety 
of computerized feedback on the student's performance in 
carrying out algebraic transformations and the student's 
performance in debugging their own working processes 
(procedural learning). The research was based on the 
premise that the source of errors in the simplifying of 
expressions is students' inability to understand the 
correct algebraic algorithm and the students' falsely 
generalizing known rules. There were four groups involved 
in the study. The control group received no treatment.
Each of the other three groups had use of computer 
software. The software tools were (1) a yes/no error 
indicator, (2) a manipulator (a tool used to identify the 
type of legal transformation desired and the terms on which 
to operate), and (3) a graph. The findings were as 
follows: (1) when there was no feedback, the students
continued the task but did not notice if and where they had 
made a mistake; (2) when the feedback was yes/no, the
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students' working process was longer and they did try to 
correct their error but often in vain; (3) the manipulator 
group did achieve higher scores in correct processing than 
all other groups; and (4) the use of the graph moved the 
students from debugging of algebraic transformations to 
identifying and correcting bugs but the use of the graphs 
did not significantly reduce the number of false steps, nor 
the number of uncorrected errors.

Other researchers, (Lauren, 1978; Resnick,
Cauzinille-Marmeche & Mathiew, 1987) support Matz theory. 
Lauren identifies several problem types in first year 
algebra that are particularly difficult for students. She

explains the error, \/aA + h2 = /a2 + /B2 = a + b as an

incorrect application of the principle \/a2 k? = sfeP-sfi? , for

a>0, b>0. Resnick, Cauzinille-Marmeche and Mathieu 
identify Matz's theory as one of two of the best-developed 
theories to date of how algebra malrules are invented.

The Procedural Learning Theory Applied
Matz (1980) has sought to explain the

(a ± b) c = ac ± bc and Cyja ± b = °Ja ± CJE errors according

to the procedural learning theory. She identifies these as



33
part of a class of linear decomposition errors that occur 
as a result of a reasonable attempt to adapt previous 
knowledge to a new situation. This means that the errors 
are the result of the students' attempt to modify a known 
rule of the curriculum to fit the new situation.

For instance, according to the Procedural Learning
theory, this class of errors is the result of linearly
decomposing an expression by distributing the top-most 
operator across its expression parts. However, according 
to the theory, linear decomposition is sometimes correct 
and sometimes not. The correct and incorrect examples of 
linearity applied to various rule patterns are shown below.

Correct Rules 
a(b + c) = ab + ac
a(b - c) = ab - ac

b + c c_
a a a

(ab)0 = acb°

CyfaB = 7 a  VE

Incorrect Rules

•Ja + b = -/a + JE
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(a + b)2 = a2 + b2 
a(bc) = ab-ac

a = _ £ + _ £  
b + c b c

2 a + b  _  2 a +  2 b

2ab = 2a-2b (Matz, 1980)
Matz further explains that the student having been exposed 
to the rules a(b + c) = ab + bc and a(b - c) = ab - ac, 
deviates from it to think that the middle operator can be 
any operator. The student also recalls that other versions 
of the distributive law worked for some operators other

than addition and times such as \fah = yfa\fb and

(ab)2 = a2b2. So the student actually has a wide array of 
linearity rules to motivate the extrapolation to these 
invalid instances. When the student encounters (a ± b)c or

°y/a ± b and does not know what rule to apply (s)he adapts

the linearity rules to get the invalid rules

(a ± b)c = a c ± b° and °sja ± b = °/a ± V® •
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The Implicit Structure Learning Theory and 

the Distributive Property 
The implicit structure learning (ISL) theory 

hypothesizes that students enter the classroom with nascent 
abstract rule structures on which to build a more mature 
"grammar of algebra" through inductive processes (Kirshner, 
1987). According to this theory, errors like those above 
evidence students' search for the appropriate constraints 
under which their nascent rule structures apply.

The ISL theory in algebra is an adaptation of 
Chomskyan linguistic theory— the system of hypothesis 
concerning the general features of human language put forth 
in an attempt to account for a certain range of linguistic 
phenomena (Chomsky, 1975). Chomsky (1975) indicates that 
competence in a natural language is developed by each human 
being for him or herself and can be represented as a system 
of rules called the "grammar" of the language. "Thus a 
person who has acquired knowledge of a language has 
internalized a system of rules that relate sound and 
meaning in a particular way" (Chomsky, 1972, p.26).

ISL theorists have differed in their reliance on 
Chomskyan terms and methods. Bolio (1989) and Drouhard 
(1988) follow Chomsky's (1957; 1965) linguistic conventions 
closely by using labelled nodes in tree diagrams of 
expressions to assign structural descriptions to components 
of expressions. Bolio (1989) develops a generative grammar
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for simple expressions and equations of basic math and 
algebra focusing on the notational language that 
mathematicians use to communicate the elementary concepts 
of basic math and algebra to elementary and secondary 
students. He affirms that there is enough analogous 
syntactical-linguistic elements in mathematical language to 
consider mathematics a language in itself.

Drouhard's (1988) grammar is more directed towards 
providing structural descriptions of students' 
understanding of expressions. His attempt is to develop an 
algebraic metalanguage based on structural descriptions and 
transformations in the grammar that match the structures 
students develop through their immersion in the algebra 
class. Kirshner's (1987) theory is like these in using 
grammatical methods to describe implicit knowledge of 
algebraic structure; however, he does not rely on labelled 
nodes for structural descriptions, investing more of his 
theory in the transformational and transnational 
components.

In their famous debate, Chomsky and Piaget argue about 
the processes of language development in the child 
(Piatelli-Palimarini, 1980). The two theorists agreed that 
linguistic structure must be induced by the learner based 
on their experience in a language community. But they 
disagreed sharply as to the nature of the inductive 
mechanisms. Piaget believed that general learning



mechanisms were sufficient for inducing linguistic 
structure. Chomsky believed that syntax is far too complex 
to be acquired from general learning capacities, and that 
innate language-specific knowledge of a "universal grammar" 
must be postulated. The universal grammar thus provides a 
general starting point for linguistic development, with 
one's experience in a particular language community serving 
to specialize the general linguistic endorsement to the 
local language.

ISL theories subscribe to the notion of abstract, 
preexisting algebraic structure without necessarily 
endorsing an innate stance. For instance, Kirshner (1987) 
proposes that abstract generalized knowledge of 
distributivity could reflect distributive structures that 
already have become established in natural language. 
Sentences like, "I like cake and ice cream," which can be 
interpreted as "I like cake and I like ice cream" or "I 
like cake and ice cream" (together), illustrate that 
English speakers are continually determining whether 
distributivity applies in some circumstance or another.
This natural language experience could be the basis for 
students' unconscious grappling with distributive structure 
in algebra. Thus there is no need to take a stance as to 
whether distributivity or other possible algebraic 
structures stem from some innate endorsement or from 
natural language experience.
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The notion of operation levels is an important part 

of the GDL. This idea was introduced by Schwartzman (1977) 
as he explains the errors

(a ± b) 2 = a2 ± b2, /x2 - y2 = /x5 - y/y2 = x - y, a (xy) = ax-ay

as the inability of students to recognize when one 
operation distributes over another. To offset the problem, 
Schwartzman defines operation levels and explains that 
"distributing is applying an operation from a given level 
to two quantities related by operations of the next lowest 
level only" (p. 594).

The Implicit Structure Learning Theory Applied

As Matz (1980) notes, the (a ± b) c = a° ± bc and

Cy/a ± b = °y/a ± °yfb errors are instances of an

overgeneralization of distributivity. But whereas Matz 
(1980) presumes that the basis for overgeneralization is 
the rules that previously have been learned, Kirshner 
(1987) hypothesizes that the learner approaches the study 
of algebra with nascent distributive structures already in 
place. For instance, in natural language, Kirshner (1987) 
identifies linguistic processes that are of the same form. 
The sentences, 'John and Mary went to the store' (meaning
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John went to the store and Mary went to the store), and 
'The old man and woman came down the stairs' (an ambiguous 
statement) are examples.

According to the ISL theory, the mastery of algebra 
consists not so much in learning rules from the curriculum, 
but in constraining the nascent rule structures that 
precede algebra instruction. Kirshner (1987) explains the

(a ± b) c = ac ± bc and °\Ja ± b - ĉfa ± errors in the

following way. Initially, students enter with a very 
general distributive structure that might be represented by 
(a * b) @ c = (a 0 c) * (b 0 c), where * and 0 represent 
arbitrary operations. Mastery consists of achieving an 
abstract (but unconscious) set of constraints on the 
operations. Using a system of operation levels introduced 
by Schwartzman (1977), (see Table 1), the maximal

appropriate constraints can be symbolized as |@| = |*| + 1 

where |@| is the level.
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Table 1
Levels of Operations

Level II Level III
Multiplication Exponentiation
Division Radical

Level I
Addition
Subtraction

Note that this rule subsumes eight standard curricular 
rules that Matz (1980) takes to be the fundamental sources 
of distributive structure.

Level 2 over Level 1 Level 3 over Level 2
(a + b) c = ac + bc (ab) ° - acb c

a c 
b c(a - b) c = ac - bc

a + b _a _b
c c c

a - b a b

(iY-
yah = V a  V 5  
"a _ Va

According to Kirshner (1987) , the (a ± Jb) c = ac ± hc

and ± ± V® errors represent a penultimate state

*The rules involving the radical operation appears in surface 
form to be left-distributive; however, Kirshner (1987, p. 93) 
argues that the deep representation of the radical operation is 
reversed from its surface form.
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of mastery in which the constraints on operation levels are 

not fully developed: |@| > |*| instead of |@| = |*| + 1 .

In this case the students' abstract but unconscious grammar 

permits the (a ± b) c = ac ± bc and Cy/a~±~E = °\fa ± CJ5

errors (level 3 over level 1) as well as the usual correct 
instances of distributivity.

The three hypotheses and their applications of the 
errors presented above provided the basis for the 
development of the techniques used for the remediation of

the (a ± b) c = ac ± bc and cJa~±~5 = °Ja ± °\fb errors.



CHAPTER THREE
METHOD

Design of the Study 
The purposes of this study were (1) to investigate 

theories that explain why common errors of the type

(a ± b)c = a c ± b c and °/a~±~b = cJa ± CJB occur in algebra

problem solving by novices, and, (2) to develop and assess 
techniques for remediating these errors.

General Strategy
The general strategy of the study was to provide 

alternative experiences for groups of novices intending to 
lead to more expert-like performance, according to the 
three differing theories of expertise in algebra described 
in chapter one. The success of one treatment over another 
would provide indirect support for the theory— meaning 
theory of learning, procedural learning theory or implicit 
structure learning theory— underlying that method. The 
general character of each of these theories is briefly 
summarized here, and then the design is described more 
fully.

The meaning theory of learning hypothesizes that 
experts have lots of rich meanings connected with 
procedures and symbols but novices lack these connections.

42
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Thus, according to this theory, the errors 

(a ± b ) c = a c ± b c and cJa ± b = Cs[a ± CJE are the result of

a lack of connections and references for expressions and 
symbols involved. Such connections serve to help students 
remember rules and to constrain students arbitrary 
mathematics inventions, according to the meaning theory of 
learning.

The procedural learning theory hypothesizes that adept 
problem solvers have technical proficiency in memorizing 
and applying mechanical rules. They are able to match the 
structure of the problem with the structure of the rule 
that is to be applied. According to Matz (1980), students 
errors are the result of unsuccessful attempts to employ 
extrapolation techniques to adapt previously acquired rules 
to new situations. The adept problem solver has learned to 
constrain extrapolations more successfully. Thus according

to this theory, the errors (a ± b ) c = a c ± b c

and C\!a ± b = Cyfa ± Cs[b result from the students employing

inappropriate extrapolations.
The implicit structure learning theory hypothesizes 

that people skillful at elementary algebra have developed 
an unconscious abstract rule system that underlies their
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successful performance. According to this theory, students 
enter the classroom with nascent abstract algebraic rule 
structures on which to build; and then they begin to sort 
out the conditions under which the particular structures 
apply. That is, the students are inductively and 
unconsciously experimenting to fashion an abstract 
"grammar" of algebra.

According to this theory, the errors

( a ± Jb)c = a c ±jbc and °<Ja ± b = cJa ± CJ5 are the result

of the students (in the process of maturing) experimenting 
with an abstract distributive rule, (a * b) @ c = (a@c) * 
(b@c), in search of the maximally permissible context in 
which it applies in algebra. In the end, the successful 
ones have learned that addition and subtraction are level 
one operations; multiplication and division are level two 
operations; exponentiation and radical are level three

operations; and that |@| = |*| +1 where " * " is an

operation, and " |*| " represents its level. The

constraint to be learned is that the operation being 
distributed must be one level higher than the other 
operation.

These three theories give differing explanations about 
why errors occur and lead to differing predictions about
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what kind of remedial strategies ought to be most effective 

in overcoming the (a ± b) c = a° ± bc and °sja ± b = °/a ± C\[B

errors. Remedial techniques were designed on the basis of 
the three theories. Implementing these strategies and 
their effectiveness provided interesting insights into the 
nature of symbolic competencies in algebra.

The null hypothesis is that there is no significant 
difference in the number of errors between the four groups 
on the post and retention tests.

Experimental Design and Statistical Methods
The study was a quasi-experiment conducted at Southern 

University in Baton Rouge, LA. The study used a pretest- 
posttest-retention test, control group design with three 
treatments— meaningful learning (ML), procedural learning 
(PL), and implicit structure learning (ISL),— and one 
control (C) which received no special instruction 
concerning the errors.

An analysis of variance for repeated measures was used 
to analyze the data. One factor, between subjects, was 
instructional methods (meaningful learning, procedural 
learning, implicit structure learning and a control); a 
second factor, within subjects, was repeated measures 
(pretest, posttest and retention test). A post hoc test 
(the Duncan-Range) was used to evaluate the main effects if
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there was an overall significant difference.

Design Caveats
The purpose of the study was not to provide definitive 

proof as to the psychological validity of the three 
theories; but to carefully frame the theories and to 
illustrate their applications to curriculum. Whereas the 
design does have some merits as an empirical test of the 
theories' validity, the test is very indirect and the data 
highly interpretable.

The first caveat stems from the indirectness of the 
link between the theory (as implemented in the treatment) 
and the learning outcome. For instance, the meaning theory 
of learning specifies extensive and complex conceptual and 
semantic connections. A brief instructional treatment 
cannot make more than modest progress towards this goal. 
Additionally, the ML treatment is somewhat restricted in 
that the semantic connections or referents used in this 
study are all mathematical. That is, no real world 
referents were used. The instruments provided some 
specific measures of the students' meaningful 
understanding; so the effectiveness of the treatment was 
assessable in the study. But, whereas the general position 
that an increase in meaningful learning predicts a decrease 
in error rates seems tenable, knowing the degree of error 
decrease may depend upon a mere complex analysis of what
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aspects of meaningful understanding actually have been 
acquired.

A second design caveat concerns the nature of the 
implicit structure learning treatment. According to the 
theory, expertise is gained through the development of 
unconscious constraints in the application of rule 
structures. But the treatment leads to the conscious, 
explicit elaboration of the constraints. Thus there is an 
implicit assumption in the design that consciously held 
structures can function as constraints on behavior 
analogously to unconscious ones. This is an assumption 
that may have pedagogical significance, but it is not part 
of the ISL theory per se. For such reasons as these, the 
design is not sufficiently robust to serve as a definitive 
guide to the validity of the three theories. Nevertheless, 
it provides a basis for a rich contrast and comparison of 
three very different approaches to a significant education 
topic.

Treatments
An overview of each treatment is given here. (see 

Appendices D, E, and F for the detailed instructional 
sessions for the treatment). The meaningful learning 
treatment (ML) consisted of a variety of rich semantic 
experiences: (1) Numerical instances were used to evaluate
whether proposed rules are correct or incorrect; (2)
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Axiomatic methods were used to establish equivalent 
expressions; and (3) Geometrical models of expressions 
were constructed to verify equivalences.

The procedural learning treatment (PL) consisted of 
reviewing the textbook rules and illustrating these rules 
with numerical instances. Expressions where these rules 
can or cannot be applied were identified. Possible new 
rules were generated by the students for situations in 
which the given rules are inapplicable, and the validity of 
these new rules was assessed. The dangers of 
overgeneralizing given rules without verification were 
stressed. In addition to usual algebra, a contrived rule 
system was used to further the students' procedural 
competence.

The implicit learning treatment consisted of 
experiences that enabled students to determine the 
constraints of distributivity: (1) Examples of the
distributive structure in natural language were presented 
and discussed; (2) The students generated correct and 
incorrect rules of distributivity in algebra to compare and 
contrast; and (3) The operation levels were presented to 
provide an additional catalyst that would assist students 
in determining the constraints of distributivity.

A brief description of the daily activities for the 
three instructional sessions is given here. See Appendix



49
D, E and F, for the complete lesson plan for each of the 
three instructional sessions.

The Meaningful Learning Instructional Sessions
The goal of the meaningful learning sessions was to

remediate errors of the type (a ± b ) ° - a c ± b c and

csfa~±~B = °yfa ± V® / according to the ML theory.

Day One
The first day's session was designed to help students 

make the connection between variable symbols and numbers, 
and to use this connection to evaluate the equivalence of 
expressions. The first activity involved: determining if
expressions were equivalent; establishing how one can 
determine equivalent expressions; and establishing the 
meaning of equivalence and non-equivalence. The second 
activity was an exercise in which the students used 
numerical instances to determine equivalence or non
equivalence of expressions.
Day Two

The second day's session was designed to introduce a 
second method to determine equivalence of expressions. 
Following a brief illustration of the limitations of 
numerical methods, a review of definitions and axioms was
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given. The definitions included squaring and cubing. The 
axioms included the commutative, associative and 
distributive axioms. The learning activity was an exercise 
for the students to establish equivalences using the 
axiomatic method.
Day Three

The third day's session began with a review of day one 
and day two's sessions. This session was designed to

reinforce some formulas geometrically. (a + b )2 was

represented using a square, and /a2 + iP was represented

as the hypotenuse of a right triangle. The first activity 
involved the teacher and the students reviewing the concept 
of area. The area of a rectangle and square was discussed. 
This was followed by the teacher assisting the students to

construct a geometric model of (a + Jb)2 , and to

establish its equivalent, a2 + 2ab + b2. The second 
activity involved constructing a geometric model of

s/a2 + b2 . The students were assisted by the teacher. The 

students established that /a2 + b2 * a + b . The students

were required to make the constructions at their seats
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using rulers as the teacher directed the constructions at 
the board.

The Procedural Learning Instructional Sessions
The goal of the procedural learning sessions was to

remediate errors of the type (a ± b ) c = a c ± b c and

Cy/a ± b = Cyfa ± C\[h , according to the PL theory.

Day One
The first day's session was designed to help students 

identify expressions for which rules can or cannot be 
applied. Some of these rules were standard textbook rules 
and others were contrived formal constructions. The first 
activity involved reviewing and applying rules that the 
students had previously encountered. After the teacher 
reviewed the rules, the students studied given expressions 
and decided whether a rule applied, and if so, they applied 
that rule. The second activity involved a similar exercise 
except the rules involved were contrived formal 
constructions. In both cases, the rules to be applied were 
visually available to the student.
Day Two

The second day's session was designed to help students 
identify expressions where rules can and cannot be applied,
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to write general rules, and to extend rules where possible. 
The rules used were not visually available to the students, 
but needed to be recalled. The first activity involved 
applying previously encountered rules and then students had 
to write down a general statement of the rule applied. The 
second activity involved extending rules when possible and 
verifying the rules using the axiomatic method.

The Implicit Structure Learning Sessions
The goal of the implicit structure learning sessions

was to remediate errors of the type (a ± b ) c = a c ± b c

and Csja ± b = c-/a ± CJ5 , according to the ISL theory.

Day One
The first day's session was designed to help students 

identify the distributive structure in natural language; 
and to help them identify and generate rules, distributive 
rules and non-rules in algebra. The first activity 
involved looking at some English statements, explaining 
their meaning, formalizing them (using letters) and 
observing their distributive structure. This was followed 
by an activity in which the students related the above 
activity to algebra. They were asked to generate a list of 
algebra rules of the same form as the statements.
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Day Two

The second day's session was designed to help students 
discover constraints on the application of distributivity 
in algebra. The first activity involved the teacher 
identifying the correct rules that were on the list of 
generated rules from the previous day. The second activity 
involved the teacher introducing the operation levels. The 
third activity involved the students comparing the rules 
(correct and incorrect) in order to formulate expert 
constraints on distributivity.

Subjects
The subjects in the study were enrolled at Southern 

University in Baton Rouge. The student population is 
predominantly Black Americans (96.4 %) and includes Whites 
(1.9 %) , Hispanics (.2 %) , Asians or Pacific Islanders 
(.1 %) and others (1.4 %). Four intact sections of the 
developmental intermediate algebra (Math 107) were used. 
Students who were enrolled in this course met one of the 
following criteria: They obtained less than 11 on the ACT
but passed a Developmental Beginning Algebra course with a 
grade of "C" or better; or obtained an ACT score of 11 - 
16. The majority of these students have non-science 
majors. Their majors include accounting, marketing, 
business administration, economics, sociology, music and 
education.
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Measures and Data Analysis 

The measures that were used in the study were the 
pretest, the posttest, and the retention test. The 
pretest, posttest and retention test are matching test 
constructed by the investigator (see Appendices A, B, and C 
respectively). The pretest was administered prior to 
treatment to assess students incoming strengths and 
knowledge of the distributivity property. The posttest was 
administered following treatment to assess the immediate 
effect of the treatment. The retention test was 
administered approximately three weeks following the post 
test to assess the long term or retention effect of the 
treatment.

The data was analyzed using the following procedure. 
The dependent variable was determined by the number correct 
responses on the pretest, posttest and the retention test. 
Each of these tests was divided into four parts. Part 1 
consisted of 15 multiple choice items involving the 
distributive property and required selecting equivalent 
expressions. Two of these items are,

(1) (x + y) z =
(A) x + yz (B) xz +yz (C) xz + xy (D) xz + yz 
(E) none
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(2) y /5 T T y  =

(A) yfx + yfy (B) x + y (C) x2 + y2

(D) \[xy (E) none.

A subtest of part 1, identified as error items only, (EIO), 
was also analyzed. This subtest, EIO, consists only of 
items from part 1 that involve the error types

(a ± b)c = a° ± bc and c>J(a ± b) = cJa ±CyfB . The

explanations and remediation of these error types was the 
focus of this study.

Part 2 was applications of (a ± b)c and °/a~±~B and

consisted of 4 items. Two of these items are,
(1) Solve for x: (x + 3)2 - 9 = 16. Show your work.
(2) A flat rectangular packing case is 5" wide by 12” 

long. What is the length of the longest knife 
that could be placed in the case? (Hint: use 
the diagonal). Show your work.

Part 3 consisted of five items based on the ML theory. 
Two of these items are,

(1) What do you think is meant by equivalent



expressions.
(2) Are the expressions (3x)3 and 27x3 equivalent?

(a) If so why? or if not, why not?
(b) Can you think of another way of proving or 

demonstrating the equivalence or 
nonequivalence of (3x)3 and 27x3.

Part 4 consisted of four items based on the PL theory. 
The students were given a set of contrived rules and asked 
to determine if any of the rules could be applied. If so, 
they were to write the new expression using the rule 
selected and indicate the rule used. The rules were,

(A) (~x)y - yx
(B) x(~y) y
(C) *(xy) -> x

(Note: x and y are variables) and two of the items are,
(1) 3(*k) -_________________

Rule: (A) (B) (C) (D) none
(2) (2f)~(gA5ht) -> ______________

Rule: (A) (B) (C) (D) none.
(For comments on these rules, see the limitation section in 
chapter five).

The data analyses involved use of a two-way Analysis 
of Variance for repeated measures where the first factor, 
which is between subjects, is teaching method and the 
second factor, which is within subjects, is repeated 
testing. The repeated measures used to determine the
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immediate effect were the pretest and the posttest. The 
repeated measures used to determine the retention effect 
were the pretest and the retention test. However, posttest 
to retention test gains also were examined to determine if 
there was more consistency between the posttest and 
retention test than between the pretest and retention test 
and to help explain some of the unexpected results. The 
analyses were performed on each of the four parts of the 
test and on the subtest of part 1, error items only, (EIO).



CHAPTER FOUR

RESULTS

This chapter presents an analyses of the data 
resulting from this study. Analyses of the data from all 
40 subjects is presented below. It should be noted that 
not all subjects received all parts of the treatment due to 
absences. A comment will be made on this later.

Tables 2, 3, and 4 show the mean correct answers for 
the pretest, the posttest and the retention test, 
respectively for each group.

Analysis of variance (ANOVA) was performed on the 
pretest to establish whether the groups were initially 
eguivalent. The analysis of the pretest that was taken by 
all the students showed no significant difference between 
the groups on any part of the test; thus establishing 
initial group equivalence. Additionally, the pretest 
analysis showed that the EIO subtest is below chance for 
the groups. This is evidence that students have not just 
learned, they have mis-learned.

The Immediate Effect
The analysis of part 1 (Distributive Subtest) showed 

no significant difference between the groups, but it showed 
a significant difference (p < .005) between the mean scores 
of the pretest and the posttest. The mean of the posttest

58
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is significantly higher than the mean of the pretest (see 
Table 5).

Table 2
Mean Scores of Pretest

PRETEST
Group n Part 1 EIO
ML 6 • 00 . 67
PL 12 00•

in .917
ISL 13 6.0 .923
CONTROL 9 4.7 .67

Zn = 40
Total Possible

Points 15.0 5.0

Part 2 Part 3 Part 4
1.7 6.2 2.8
2.9 8.8 3.33
2.6 7.1 3.31
1.7 6.1 3.2

8.0 20.0 8.0

Table 3

Mean Scores of Posttest
POSTTEST

Group n Part 1 EIO Part 2 Part 3 Part 4
ML 6 5.3 .33 1.7 7.7 2.8
PL 12 7.2 1.33 2.7 7.6 5.2
ISL 13 7.23 1.38 2 .23 6.8 3.2
CONTROL 9 5.8 1.11 2 . 0 6.4 2 . 3

Sn = 40
Total Possible 

Points 15.0 5.0 8.0 20.0 8.0
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Table 4
Mean Scores of Retention Test

RETENTION TEST
Group n Part 1 EIO Part 2 Part 3 Part 4
ML 6 4.7 .83 2 . 0 6.2 2.5
PL 12 7.2 1.16 3.0 9.3 4.4
ISL 13 6.4 .923 2.4 4.5 3.2
CONTROL 9 5.6 .556 1.8 3.9 1.4

o■31IICw

Total Possible 
Points 15.0 5.0 8.0 20.0 8.0

Table 5
Immediate Effect for Part 1 (Distributive Subtest)

Source DF SS MS F-Ratio p>F
Teaching Method 3 36.71 12.23 1.29 .29
Repeated Testing 1 25. 31 25. 31 9. 62 .0037*
Interaction 3 1. 51 .50 . 19 .90
Error 36 94.7 2 . 6
*Significant

An analyses of the error items only, (EIO), part 2 
(Application Subtest), and part 3 (ML Subtest), showed no 
significant differences between groups.
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For part 4 (PL Subtest), the analysis showed a 

marginally significant interaction between teaching methods 
and repeated testing. The marginally significant 
difference was due to the PL group— the mean of the 
posttest is significantly higher than the mean of the 
pretest. The procedural group made greater gains than the 
other groups on this portion of the test directly relevant 
to the procedural treatment (see Table 6 and Figure 3).

Table 6
Immediate Effect for Part 4 (PL Subtest)

Source DF SS MS F-Ratio p>F
Teaching Method 3 28.59 9.53 1.17 .33
Repeated Testing 1 2.11 2.11 .81 . 37
Interaction 3 21.65 7.21 2.77 .056**
Error 36 93.7 2.6
** Marginally Significant
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Figure 3: Teaching Method and Repeated Testing
Interaction for Part 4 (PL Subtest)- 
Immediate Effect

The Retention Effect 
The analysis of part 1 (Distributive Subtest) showed 

no significant difference between the groups. However, 
the analysis showed a marginally significant difference 
between the mean scores of the pretest and the retention 
test. The mean of the retention test is marginally 
significantly higher than the mean of the pretest (see 
Table 7).

For the error items only, (EIO), and part 2 
(Application Subtest), the analyses showed no significant 
differences between groups.



For part 3 (ML Subtest), the analysis showed a 
marginally significant difference between the groups with 
the Procedural Learning group marginally significantly 
higher than the other three groups. A significant 
difference was found for repeated testing (the pretest and 
the retention test) with the pretest significantly higher

Table 7
Retention Effect for Part 1 (Distributive Subtest)

Source DF SS MS F-Ratio p>F
Teaching Method 3 37.48 12.49 1.5 .23
Repeated Testing 1 9.79 9.79 3.8 .059**
Interaction 3 5.47 1.82 .71 . 55
Error 36 92 .7 2 . 58
** Marginally Significant

than the retention test. (This was not expected and will 
be discussed in Chapter 5). There is also a significant 
interaction between teaching method and repeated testing. 
The significant interaction was due to the ISL group as 
well as the control group between the pretest and posttest. 
In both the ISL group and the control group, the mean score 
of the pretest was significantly higher than the mean score 
of the retention test. This was not expected and these
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differences will be discussed in Chapter 5 (see Table 8 and 
Figure 4).

For part 4 (PL Subtest), the analysis showed a 
marginally significant interaction. The marginally 
significant interaction was due to the PL group as well as 
the control group. The mean of the retention test is 
marginally significantly higher than the mean of the 
pretest for the PL group. However, the mean of the pretest 
is marginally significantly higher than the mean of the 
retention test for the control group. The latter was not 
expected and will be discussed in Chapter 5 (see Table 9 
and Figure 5).

The pretest scores and the retention test scores are 
the measures that were used in the analyses to determine 
the retention effect reported above. However, to better 
understand the unexpected results above, the retention 
effect was also calculated with the posttest and retention 
test as measures. Some differences between the analyses 
(pretest, retention test versus posttest, retention test) 
were found and are summarized here. On part 1 
(Distributive Subtest), no significant difference was found 
between the mean scores of the posttest and the retention 
test; previously, the mean score of the retention test was 
marginally significantly higher than the mean score of the 
pretest. On part 3 (ML Subtest), no significant difference 
was found between the groups; previously, a marginally



significantly difference was found between the groups with 
the mean score of the PL group marginally significantly 
higher than the mean scores of the other three groups. On 
part 4 (PL Subtest), a significant difference was found 
between the groups with the mean score of the PL group 
higher than the mean score of the other three groups; 
previously, no significant difference was found between the 
groups. The results of the analyses for the EIO subtest 
and part 2 (ML subtest) were the same as the pretest- 
retention test results. No other differences were found.

Table 8
Retention Effect for Part 3 (ML Subtest)

Source DF SS MS F-Ratio p>F
Teaching Method 3 204.46 68.16 2.41 . 08**
Repeated Testing 1 28.80 28.80 7.36 . 01*
Interaction 3 39.38 13.13 3.36 . 03*
Error 36 140.8 3.9
♦Significant **Marginally Significant
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Figure 4; Teaching Method and Repeated Testing 
Interaction for Part 3 (ML Subtest)- 
Retention Effect

Table 9
Retention for Part 4 (PL Subtest)
Source DF SS MS F-Ratio p>F
Teaching Method 3 27.79 9.26 1.29 .29
Repeated Testing 1 .45 .45 . 15 .697
Interaction 3 21.19 7. 06 2.41 . 08**
Error 36 105.36 2.93
**Marginally Significant
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Figure 5 : Teaching Method and Repeated Testing
Interaction for Part 4 (PL Subtest)- 
Retention Effect

Attendance Filtered Analysis 
The reader should note that all of the results above

include data of students who did not receive all parts of
the treatment. Since attendance is a factor that may
affect the result of the treatment, the researcher also 
analyzed the data collected from the subjects who were in 
attendance at each session of the treatment. However, a 
warning is issued that filtering attendance reduces n for 
the ML group to two, for the PL group to seven, for the ISL 
group to 11, and for the control group to eight.
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The analysis of the immediate effect with attendance 

filtered was the same except on part 4 (PL Subtest). 
Previously, a marginally significant interaction was due to 
the PL group with the mean of the posttest marginally 
significantly higher than the mean of the pretest. With 
attendance filtered, no significant interaction occurred.

The analysis of the retention effect (the difference 
between the retention test score and the pretest score) 
with attendance filtered was the same except on part 1 
(Distributive Subtest) and part 4 (PL Subtest).
Previously, on part 1 (Distributive Subtest), the mean of 
the retention test was marginally significantly higher than the 

mean of the pretest. Now, when attendance is filtered, the 
mean of the retention test is significantly higher than the 
mean of the pretest. Previously, on part 4 (PL Subtest), a 
marginally significant interaction was due to the PL group 
and in the control group. Now, when attendance is filtered 
no significant interaction is found. No other differences 
were found.

Summary
The analyses show no significant differences between 

the groups on any part of the test (including the subtest, 
EIO) when analyzing the pretest and the posttest for the 
immediate effect. The analyses show the mean of the 
posttest significantly higher than the mean of the pretest 
on part 1 (Distributive Subtest). Additionally, there is a
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marginally significant interaction due to the PL group 
between teaching method and repeated testing on part 4 (PL 
Subtest).

The analyses show no significant difference between 
the groups on parts 1 (Distributive Subtest), part 2 
(Application Subtest) and part 4 (PL Subtest) of the test 
nor the subtest (EIO) when analyzing for the retention 
effect. There is a marginally significant difference 
between the groups on part 3 (ML Subtest), with the mean of 
the PL group higher than the mean of the other three 
groups. The analyses also show the mean of the retention 
test marginally significantly higher than the mean of the 
pretest on part 1 (Distributive Subtest); the mean of the 
pretest is significantly higher than the mean of the 
retention test on part 3 (ML Subtest); and there is a 
significant interaction due to the PL group and the control 
group between teaching method and repeated testing on part 
3 (ML Subtest).

The analyses with attendance as a filter show on part 
4, the interaction disappears when analyzing the immediate 
effect. When analyzing the retention effect, the 
marginally significant advantage of the retention test over 
the pretest on part 1 became significant. Further, the 
interaction found on part 4 disappears. A discussion of 
these results is found in chapter 5.



CHAPTER FIVE
DISCUSSION AND IMPLICATIONS 

Discussion
The purposes of this study were to investigate three 

theories that explain why common errors of the type

(a ± b) ° = a c ± b c and C\ja ± b = c<Ja ± Cyfh occur in algebra

problem solving by novices, and to develop and assess 
techniques for remediating these errors. The study was a 
quasi-experiment conducted at Southern University in Baton 
Rouge, LA. It used a pretest-posttest-retention test, 
control group design with three treatments— meaningful 
learning (ML), procedural learning (PL), and implicit 
structure learning— and one control, which received no 
special instructions concerning the errors.

The study provided alternative experiences for groups 
of novices intending to lead to more expert-like 
performance, according to the three differing theories of 
expertise. The success of one treatment over the others 
would provide indirect support for the theory underlying 
that method.

The meaningful learning treatment consisted of a 
variety of rich semantic experiences: (1) Numerical
substitutions were used to evaluate whether proposed rules

70
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were correct or incorrect; (2) Axiomatic methods were used 
to establish equivalent expressions; and (3) Geometrical 
models of expressions were constructed to verify 
equivalences.

The procedural learning treatment consisted of 
reviewing the textbook rules and illustrating these rules 
with numerical instances. Expressions where these rules 
can or cannot be applied were identified. Possible new 
rules were generated by the students for situations in 
which the given rules are inapplicable, and the validity of 
these new rules was assessed. The dangers of 
overgeneralizing given rules without verification was 
stressed. In addition to usual algebra rules, a contrived 
rule system was used to further the students' procedural 
competence.

The implicit learning treatment consisted of 
experiences that enabled students to determine the 
constraints of distributivity: (1) Examples of the 
distributive structure in natural language were presented 
and discussed; (2) The students generated correct and 
incorrect rules of distributivity in algebra to compare and 
contrast; and (3) The operation levels were presented to 
provide an additional catalyst that would assist students 
in determining the constraints of distributivity.

The null hypothesis was that there would be no 
significant difference in the number of errors between the
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four groups on the posttest and the retention test. The 
results failed to reject the null hypothesis. That is, no 
significant difference was found in the number of errors 
between the four groups on the pretest and posttest. 
However, the results indicate a significant difference 
between the mean scores of the pretest and posttest. But 
this improvement accrued to the control group as well as 
the treatment groups. Thus the various treatments cannot 
be individually credited for the gains.

After a period of three weeks, there was still no 
significant difference between the groups, but the mean 
score of the retention test was marginally significantly 
higher than the mean score of the pretest. This suggests 
that the several improvements noted in the posttest 
persisted beyond the immediate treatment period.

Parts of the pretest, posttest and retention test were 
designed to determine if the knowledge components of the ML 
theory and the PL theory were learned by the subjects in 
the ML treatment group and the PL treatment group, 
respectively. The analysis of the knowledge component of 
the ML theory (part 3 of the tests) for the immediate 
effect of the treatment, showed no significant difference 
between the groups. This suggests that the ML group did 
not learn or internalize the knowledge component of the ML 
theory as presented during treatment.



The analysis of the knowledge component of the PL 
theory (part 4 of the tests) for the immediate effect of 
the treatment, showed a marginally significant interaction 
due to the PL group between the pretest and posttest. The 
mean score of the posttest was marginally significantly 
higher than the pretest. This suggests that the PL group 
did make some gains on their procedural skills during 
treatment.

The analysis of the retention effect of the treatment 
for part 3 (ML subtest) showed a significant difference 
between the pretest and the retention test (see Table 8) 
with the mean of the pretest significantly higher than the 
mean of the retention test; and a significant interaction 
due to the ISL group as well as the control group between 
the pretest and retention test (see Figure 5), with the 
mean score of the pretest higher than the mean score of the 
retention test for each of these two groups. This result 
may indicate that since this was the third time a test was 
given and the questions had not been discussed during 
treatment, the subjects in both the ISL group and the 
control group did not put much effort into answering the 
questions on part 3 (ML Subtest). This is also the 
explanation offered for the marginal significant 
interaction due to the control group between the pretest 
and posttest on part 4 (PL Subtest), where the mean score
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of the pretest is higher than the mean score of the 
retention test.

The analysis of the retention effect also showed a 
marginally significant difference between the groups with 
the PL group marginally significantly higher than the other 
three groups (see Table 8). On part 4 (PL Subtest), the 
retention effect of the treatment showed a marginally 
significant interaction due to the PL group between the 
pretest and the retention test. The mean score of the 
retention test was marginally significantly higher than the 
mean score of the pretest. These results suggest that the 
PL group's superior performance over the other groups was 
due to the fact that the students learned the knowledge 
component of the PL theory. In addition, the overall 
better performance of the PL group on part 3 suggests that 
they were able to apply or extend this knowledge even to 
the ML items.

When the retention effect was determined using the 
posttest and the retention test as the measures, a 
significant difference was found between the groups on part 
4 (PL subtest), with the mean score of the PL group higher 
than the mean score of the other three groups. This 
suggests that over a period of time, the improvement due to 
the PL treatment was significant on the PL items.
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Limitations

The first limitation of this study stems from the 
development of the instructional session for the ML 
treatment. A pretest was administered but was not used in 
the development of the instructional sessions for the ML 
treatment. Confrey (1990) includes preconceptions as one 
of the conditions for meaningful learning and he indicates 
that preconceptions should be used to determine the 
appropriate starting points for instruction. That is, a 
student's prior knowledge should be understood and should 
have been used in the development of the instructional 
sessions for the ML treatment.

A second limitation of the study is that the number of 
sujects that received all parts of the treatments was 
small. The number of subjects that received all parts of 
the treatment was 28 of the 40 subjects.

A third limitation of the study deals with the 
contrived rule system which was designed to further 
students procedural competence. The directions for part IV 
of the pretest, posttest, retention test and exercise 1 
(see Appendix E, PL treatment, Day One) lacked a complete 
clarification about the variables and the symbol 
representing an operation of the rule system. There needed 
to be an indication that all variables such as m, n and k 
are numeric variables and that letters written next to each 
other does not necessarily mean multiplication.
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Additionally, the Rules (A) (/'m)n -*• nm, (B) m(An) -+ n, and
(C) A (mn) -*• m were found to be inconsistent (in the sense 
that there can be no actual operation that simutaneously 
satisfy all three rules) and should be replaced with 
consistent rules.

Implications
This study investigated three theories— ML, PL, and 

ISL— that are about the kind of knowledge experts have and 
that attempt to explain why common errors of the type,

(a ± b) c = ac ± b c and ± & = ± V® occur in algebra

problem solving by novices. Below are the implications for 
future research and for practice that are based on the 
results of this study.

Implications for Research
The results of this study do not provide support for 

one theory over another in terms of reducing the error 
types mentioned above, so replications of the study are 
suggested with the following conditions: (1) make sure
more subjects receive all parts of the treatment; (2) use 
intermediate algebra students that are not all 
developmental; and (3) increase the length of the 
treatments so that more subjects can internalize the 
knowledge component of the particular treatment.
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The results of this study further verify that students 

do have difficulty with the structure of algebra, so it is 
suggested that more research be done that deals with the 
structural aspect of algebra in order to find out specific 
aspects causing difficulty.
Implications for Practice

National assessments indicate continuing deficiencies 
in students' mathematical competence. Educators such as 
Kieran (1989) have identified algebra, particularly the 
structure of algebra as an area of great weakness. This is 
particularly significant in view of the gatekeeper function 
of algebra to careers in science and technology.

The curriculum is the cause of much of the difficulty 
students encounter in algebra. Many activities in the 
current algebra curriculum engage students in mindless 
repetitive drill and practice. But not all students are 
performing equally poorly with this current curriculum. A 
curriculum that is not inherently meaningful has very 
little intrinsic value or interest to students. Indeed 
minorities, students with lower SES, and women tend to do 
less well than other students who have more external 
support and motivation from their families and general 
societal expectation. Thus, a mindless curriculum, while 
optimal for no student does serve to entrench the 
inequities of our society.

Whereas, the problems with meaningless mathematics are
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widely agreed upon by educators, there is less consensus 
about what constitutes meaningful study of algebra. 
Achieving consensus on this issue is a necessary step in 
changing current education practices.

This study examined three theories of meaning in 
algebra, comparing and contrasting them and investigating 
their relative success in reducing common errors. This 
kind of study is designed to help arrive at the consensus 
needed for change. The results of this study indicated a 
small decrease in the error rate for distributivity 
overgeneralization for all treatment groups, including the 
control group which studied unrelated parts of algebra.
This confirms the general observation that students engaged 
in mathematical activity do make gradual progress towards 
mastery. Unfortunately the relative ineffectiveness of the 
treatments, as administered in the study, prevents us from 
claiming more specific conclusions concerning the relative 
efficacy of these methods.
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Appendix A
TEST I (PRETEST)
NAME _______________________________
(Print)
S.S.#_______________________________
SEX ________________________________
CLASS TIME _________________________
DATE



PRETEST

I . Which expression is equivalent to the given 
expression?

1. (x + y) z =
(A) x + yz (B) xz + yz (C) xz + xy (D) xz +
(E)none

2. (x + y) + z =
(A) (xy)z (B) (x + z) + (y + z) (C) xy + z
(D) xz + yz (E) none

3. (xy)2 =
(A) xy + xy (B) xy2 (C) x2 + y2 (D) x2y2
(E) none

4. \/x + y =

(A) sfx + s[y (B) x + y (C) x2 + y2 (D) sfxy
(E) none

5. 5 (x + y) =
(A) 5xy (B) lOxy (C) 5x + 5y (D) 5x + y
(E) none

y + z

(A) —  (B) —  + —  (C) xy + xz (D) y *-zyz y z x
(E) none
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7. (x + y)2 =
(A) xy + xy (B) x2 + y2 (C) x2 + 2xy + y2
(D) x2y (E) none

_ Fx + GyO • — —
x + y

(A) FG (B) F + G (C) X * yFx + Gy

(D) - I E -  * - § L -  (e ) nonex + y x + y

(x - y)z =
(A) xz - yz (B) xz - yz (C) xyz (D) - x y  
(E) none

10. v/xz - y2 =

(A) V(x - y)2 (B) x2 - y2 (C) x - y
(D) v/x2 - ^y2 (E) none

11. zxy =

(A) zx zy (B) zx • zy (C) zx + zy (D) (zx)y
(E) none

12. 2x+y =

(A) 2xy (B) 2X 2y (C) 2x • 2y (D) x2 + y2
(E) 2X +2y
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13. /xy =

(A) yfxfy (B) /x + y (C) x2 + y2 (D) xy 
(E) none

(A) _z_̂ _2 (B) 2 (c) (D) ^

(E) none

15. z2 + y2 =
(A) (zy)2 (B) 2 (z + y) (C) (z + y)2 (D) zy4
(E) none

I I .
1. Solve for x: 5(x - 2) = 15. Show your work.

2. Solve for x: (x + 3)2 - 9 = 16. Show your work.

3. If y/a2 + h2 = c ,  b = 8, c = 10, find a. Show
your work.



A flat rectangular packing case is 5" wide by 12” 
long. What is the length of the longest knife that 
could be placed in the case? (Hint: Use the
diagonal). Show your work.

Answer each of the following.

Write down two different expressions that you think 
are equivalent.

What do you think is meant by equivalent 
expressions?

Are the expressions (3x)3 and 27x3 equivalent?
(a) If so, why? or if not, why not?

(b) Can you think of another way of proving or 
demonstrating the equivalence or 
nonequivalence of (3x)3 and 27x3.

Make up an example of your own of two expressions 
that are not equivalent.
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5. What does (a + b) c mean?

IV. Imagine a new system of mathematics with the following 
rules (see below) in which x, y, and z are variables. 
The parentheses and brackets are used to group symbols 
(as in algebra).
RULES: (A) (Ax)y -> yx

(B) x(~y) -» y
(C) A(xy) -+ x

Each rule can be applied to some expressions to get 
new expressions. For example, if you applied rule 
(A) to (Af)(5g), you would get (5g)f.

Look at the expressions (1-4) below and see if any of 
the rules can be applied. If so, circle the rule and 
show what new expression you would get. If no rule 
applies, just circle NONE.

1. 3(Ak) - ________________________________
RULE: (A) (B) (C) (D) NONE

2. A[(2ax)(5y)] -
RULE: (A) (B) (C) (D) NONE

3. (2f)A(gA5ht) -
RULE: (A) (B) (C) (D) NONE

4. (abc) [A (be) ] -*
RULE: (A) (B) (C) (D) NONE



Appendix B
TEST II (POSTTEST)
NAME _______________________________
(Print)
S . S . #_______________________________
SEX_________________________________
CLASS TIME_________________________
DATE
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POSTTEST
I . Which expression is equivalent to the given 

expression?
1. (m + n) + k =

(A) (m + k) + (n + k) (B) mn + k (C) mk + nk
(D) (mn)k (E) none

2. sjm + n =

(A) m2 + n2 (B) sfmh (C) <fm + f̂n
(D) m + n (E) none

Hm + Kn
m + n

(A) HK (B, - J f -  + - f -  (C) J l i -m + n m + n Hm + Kn
(D) H + K (E) none

4. s/rrF- - nz =

(A) J W  - yfr? (B) m - n (C) m2 - n2
(D) \/ (m - n)s (E) none

5. (in + n)k =
(A) mk + mn (B) m + nk (C) mk + nk
(D) mk + nk (E) none
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(A) A (B) M  (c) Ail (D) Ail
(E) none

7. (mn)2 =
(A) mn2 (B) mn + mn (C) m2n2 (D) m2 + n2
(E) none

8. kmn =

(A) kmkn (B) (km)n (C) km • kn (D) km + kn
(E) none

9. Jmn =

(A) m2 + n2 (B) mn (C) Jmfh (D) + n
(E) none

m + n

(A) 1  + A  (B) km + kn (C)m n k

(D) —  (E) none
mn

11. (m + n)2 =
(A) m2 + 2mn + n2 (B) m2 + n2 (C) m2n
(D) mn + mn (E) none
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12.

13 .

14 .

15.

II.
1.

(m - n)k =
(A) mk - nk (B) mnk (C) mk - nk (D) -mknk
(E) none

m̂+n __

(A) 3nm (B) 3m + 3n (C) m3 + n3 (D) 3m • 3n
(E) 3m3n

3 (m + n) =
(A) 6mn (B) 3m + 3n (C) 3m + n (D) 3mn
(E) none

k2 + n2 =
(A) (kn)2 (B) (k + n)2 (C) kn4 (D) 2(k + n)
(E) none

Solve for x: 3(x + 5) = 18. Show your work.

2. Solve for x: (x + 2)2 + 16 = 25. Show your work.
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3. If yja2- + b2 = c, a = 4, c = 5, find b. Show your 
work.

4. A rectangular screen is 6' wide by 8' long. How many 
feet of wire was used to support the screen if the 
wire runs diagonally across the screen? Show your 
work.

III. Answer each of the following.
1. Write down two different expressions that you think 

are equivalent.

2. What do you think is meant by equivalent expressions?

3. Are the expressions (7y)2 and 49y2 equivalent?
(a) If so, why? or if not, why not?

(b) Can you think of another way of proving or
demonstrating the equivalence or nonequivalence 
of (7y)2 and 49y2.

4. Make up an example of your own of two expressions 
that are not equivalent.



5. What does (m + n)k mean?
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IV. Imagine a new system of mathematics with the following 
rules (see below) in which m, n, and k are variables. 
The parentheses and brackets are used to group symbols 
(as in algebra).
RULES: (A) (Am)n -> nm

(B) m (An) -*• n
(C) A (mn) -> m

Each rule can be applied to some expressions to get 
new expressions.
For example, rule (A): (Am)n -*• nm

applied to (Aa) (4b) -» (4b)a.
Look at the expressions (1 - 4) below and see if any 
of the rules can be applied. If so, circle the rule
and show what new expression you would get. If no
rule applies, just circle NONE.
1. (3a)A(bA3cd) -> ____________________________________

RULE: (A) (B) (C) (D) NONE

2. (fgh)[A(gh)] -

RULE: (A) (B) (C) (D) NONE

3. A[(3gf)(7h)] -

RULE: (A) (B) (C) (D) NONE

4. 5(Ay) -

RULE: (A) (B) (C) (D) NONE



Appendix C
TEST III (RETENTION TEST)
NAME _______________________________
(Print)
S.S.# ______________________________
SEX ________________________________
CLASS TIME _________________________
DATE
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RETENTION TEST
I. Which expression is equivalent to the given 

expression?
1. r2 + q2 =

(A) 2 (r + q) (B) (rq)2 (C) rq4 (D) (r + q) 2
(E) none

2. 4(p + q) =
(A) 4p + q (B) 4pq (C) 8pq (D) 4p + 4q
(E) none

3. yjp + q =

(A) sfpq (B) p2 + q2 (C) p + q 
(D) yfp + 4q (E) none

(p + q) r =
(A) pr + qr (B) p + qr (C) pr + qr
(D) pr + pq (E) none

5. (P + q) + r =
(A) pq + r (B) (pq)r (C) pr + qr
(D) (p + r) + (q + r) (E) none

6. Px + Qy = 
x + y

(A) P + Q (B) PQ (C) Px + Qy.x + y x + y

(D) -~+ y (E) nonev ; Px + Qy v '



auou (a)
bJ + (a) bJdJ (O) • da (g) b(da) (v)

( a )

a

£ / XW  < a >

zb — zd

= bd̂  'ZX

9UOU (a)
b_j_df- (o) zb + zd (g) bd (v)

= bOf *it

auou (a) ad+bd (a)
r /x / x J * / X
“ 5" (D) T  (fl) d  + d  (v)

auou (a) £>S • dg (a)
fiS-cfS (0) sd + sd (g) bg + ds (V)

auou (a) 

(3)  ̂1 rr (9) 7T (V)Z + d  Z + d  va/ cf

e e
z + d

auou (a) b - d (a) 
(o) z(£ - d),A (g) 2&yA - jdyA (v)

= ^

01

b + d S  * 6

TOT
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13. (p + q)2 =
(A) p2q (B) p2 + 2pq + q2 (C) pq + pq
(D) p2 + q2 (E) none

14. (pq)2 =
(A) pq2 (B) p2 + q2 (C) p2q2 (D) pq + pq
(E) none

15. (p - q)r =
(A) pr - qr (B) pqr (C) -prqr (D) pr - qr
(E) none

II.
1. Solve for x: 4(x - 3) = 20. Show your work.

2. Solve for x: (x + 2)2 + 9 = 25. Show your work.

3. If sjaz + h2 = c, a = 6, c = 10, find b. Show 
your work.
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4. How long is the diagonal of a rectangular sign 
that is 3' wide by 4' long.

III. Answer each of the following.
1. Write down two different expressions that you 

think are equivalent.

2. What do you think is meant by equivalent 
expressions?

3. Are the expressions (2x)3 and 8x3 equivalent?
(a) If so, why? or if not, why not?

(b) Can you think of another way of proving or 
demonstrating the the equivalence of 
nonequivalence of (2x)3 and 8x3.

4. Make up an example of your own of two expressions 
that are not equivalent.

5. What does (p + q)r mean?
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IV. Imagine a new system of mathematics with the following 

rules (see below) in which p and q are variables. The 
parentheses and brackets are used to group symbols (as 
in algebra).

(A) ("p)q - qp(B) p("q) -* q(C) "(pq) -*■ p
Each rule can be applied to some expressions to get 
new expressions.
For example, rule (A) : ("P)q qp

applied to (Am) (2n) -*• (2n)m.
Look at the expressions (1-4) below and see if any of 
the rules can be applied. If so, circle the rule and 
show what new expression you would get. If no rule 
applies, just circle NONE.

1. (fgh) [A (gh) ] -» ----------------------------------
RULE: (A) (B) (C) (D) NONE

2. 5(~y) ->___________________________________________
RULE: (A) (B) (C) (D) NONE

3. (3t)*(u~2vw) - __________________________________
RULE: (A) (B) (C) (D) NONE

4. * [ (5mn) (2k) ] -> _________________________________
RULE: (A) (B) (C) (D)NONE
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Appendix D
INSTRUCTIONAL SESSION - GROUP 1 
MEANINGFUL LEARNING TREATMENT (ML)
GOAL - TO REMEDIATE ERRORS OF THE TYPE

(a ± b) c = a c ± b c and °sja ± b = c-{a ± °sfb using the 
meaning theory of learning.
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Group 1 - Meaningful Learning Treatment 
Day one (ML)
The goal for the first day's session will be to help 
students make the connection between variable symbols and 
numbers, and to use this connection to evaluate the 
equivalence of expressions. Application will include
(a + b)2 * a2 + b2 ; yja + b * Ja + \[E> and
(a + b)2 = a2 + 2ab +b2 .

The teacher will introduce the day's session by stating a
modified form of the day's goal. That is, today's session
will involve determining if expressions are equivalent, and 
how one can go about determining equivalent expressions.
The first activity will involve equivalent and 
nonequivalent expressions. The teacher will begin by

* Ax + xwriting the two expressions  ——  and A + 1 on the
board and then ask the following questions. Are these 
expressions equivalent? How do you know? What does it 
mean to say that the expressions are equivalent? Can you 
give an example of two expressions that are not equivalent? 
How do you know these are not equivalent? What do you 
think non-equivalence mean? How can we determine whether 
or not expressions are equivalent?
The second activity will be an exercise (see exercise #1 
below) in which students will determine equivalence using 
numerical instances. The teacher will begin by stating the 
following. Now that you have decided how to determine 
whether expressions are equivalent, let's look at a few 
more expressions. The first four problems will be done as 
a whole class activity. The teacher will show one problem 
at a time, giving each student time to work the problem.
The teacher will ask the following questions for each of 
the four problems. Are these equivalent? Can you verify?.

Then the students will be divided into small groups. They 
will continue to determine whether the expressions in each 
of the problems #5 - #10 are equivalent. The students will 
present and explain their findings.
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Exercise 1 (ML-Day One)
Determine whether or not the following expressions are 
equivalent.
1. (ab)3 = a3 b3
2. 3(x + y) = 3x + 3y

3. 15-— —  = 5 - x

4. a .... = a + a. 
b + c b c

5. (a - b)3 = a3 - b3
6. a(be) = ab • ac

7. \/a2 - 16 = a - 4

( —  )2 =
K b &

9. abc = ab ac
10. (x + 3) (x - 3) = x2 - 9

Day Two (ML)
The goal for the second day's session will be to introduce 
the axiomatic method and use it to establish equivalent 
expressions.
The teacher will begin the session by stating that today we 
will explain another method for determining equivalence.
As we indicated during the last session, the method of 
using numerical instances is good. However, today we want 
to note that it could have some drawbacks. That is, let's 
look at the expressions x3 and x. Are they equivalent? 
Let's verify. (The students will be given the opportunity 
to select values to determine equivalence.)
The teacher will then ask, what if we had selected the 
values, 0, 1, and -1? ( The students will be given time to 
evaluate the expressions for those values.) Does this mean
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that the expressions are equivalent? What does this tell 
us? After comments from the students, the teacher will 
state that even though the method of using numerical 
instances is a good method for determining equivalence, it 
should be used with caution: If you find non-equivalence
then you can be sure of it. But with equivalence, you 
might want to try one or 2 more values.
The method that will be used today is the axiomatic method. 
This method involves using axioms and definitions. Let's 
begin by reviewing a few axioms that we may need to use as 
we establish some equivalent expressions.
The teacher and students will review definitions and the 
commutative, associative and distributive laws. After this 
the teacher will initiate using the axiomatic method to 
establish the equivalence for several expressions. The 
first expression will be (ab)2. The students will be 
reminded that the axiomatic method involves using axioms 
and definitions. The teacher will begin by asking, "What 
does n2 mean?" That is, what does the square tell us?
Okay, so what does (ab)2 mean? Now what do you think we 
need to do next? Are there any axioms that we can use at 
this point. Yes, we can use the associative and commutative 
laws. So we have (ab)2 = (ab)(ab) = a(ba)b = a(ab)b =
(aa) (bb) = a2b2.
The teacher and students will then follow the same 
procedure to establish equivalent expressions for (a/b)3, 
(a2)3, and (a + b)2.
The second activity will be an exercise (see exercise #2 
below) in which the students will use the axiomatic method 
to determine equivalence. (These exercises are the same as 
those in exercise #1)
Exercise 2 (ML-Day Two)
Use the axiomatic method to determine whether the following 
equations are true. Show all of your work.
1. (xy)5 = x5y5
2. 2 (x + y) = 2x + 2y

a a_ _a
b + c b c
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5. (a - b)3 = a3 - b3
6. 5 (be) = 5b • 5c

7. s/a* - 36 = a - 6

9. xmn = xmxn
10. (X + 4) (X - 4) = X 2 - 16

Day Three (ML)
The goal for the third session will be to establish and 
reinforce some formulas geometrically. ( (a + b)2 will be
represented using a square, and /a2 + b2 will be 
represented as the hypotenuse of a right triangle.)

The teacher will begin the day's session by initiating a 
summary of day one and day two activities and stating the 
goal for the day. That is, we've seen many expressions and 
we've looked at methods to decide equivalence. But it 
helps if we understand formulas from many perspectives. 
Today we will make geometric models for some of the 
formulas. (The students will construct models at their 
seats using rulers as the teacher construct a model on the 
board).
First let's talk about area. What do we mean by the area 
of a rectancle or square? Yes, it is the enclosed space of 
a rectangle and square. Now, how can we find the area of a 
rectangle and a square?
Next, the teacher will say "let's look at a geometric model 
of (a + b)2." How can this be done? Well, suppose we let
a be one length, _________ , and Jb be another,  .

Now can anyone think of how to model (a + b)2? Well let's 
break it down. How can we model just (a + b)? The teacher 
will ask the students to model
a + b at their seats. The teacher will continue, now if 
we want to model (a + b)2, do you think we can relate this 
to area? If so, how? So if we construct a square so that
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each side will have length (a + b) , the enclosed space is 
(a + b)2. Now let's see if we can represent this area 
another way. Do you think there is a way to divide the 
area into sections?
The teacher will allow the students to make suggestions and 
if necessary guide them so that the square will be divided 
into four sections with areas, a2, ab, ab, and b2. Then 
the students will be asked to represent the area of the 
square using the area of these four sections. i.e.
(a + b)2 = a2 + 2ab + b2. Thus establishing equivalence.

The next geometric model introduced will be of \Ja2 + b2 . 
The teacher will begin by asking the following questions.
What is Ja2 + b2 equal to? (Students may answer, a + b) .
The teacher continues, let's make a picture. The teacher 
draws a rectangle, labeling the width, a and the length, b. 
and the students will do likewise at their seats.Does 
anyone know how to find the length of a diagonal of the 
rectangle? Does anyone remember the Pythagorean theorem?
(Eventually the answer, diagonal = \/a2 + b? ) Now, from
the diagram, is <Ja2 + &  =
a + b? Why or why not?
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Appendix E

INSTRUCTIONAL SESSION - GROUP 2 
PROCEDURAL LEARNING TREATMENT (PL)
GOAL - TO REMEDIATE ERRORS OF THE TYPE

(a ± b)c = a c ± b c and °\Ja ± b = °Ja ± C\fb using the 
procedural learning theory.
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Group 2 - Procedural Learning Treatment 
Day one (PL)
The goal for the first day's session will be to review and 
give examples of rules (particularly rules of 
distributivity) that students have previously encountered 
and will modify (sometimes incorrectly) to solve a new 
problem; and to apply rules (familiar and new) wherever 
they can be applied.
The teacher will introduce the day's session by stating 
that today we want to review, give examples of and apply 
some rules that you have previously encountered. We will 
then apply some rules you have never seen.
The first activity will be to present, and illustrate the 
following rules:
1. A(B + C) = AB + AC
2. A(B - C) = AB - AC
3. (AB)c = ACBC

5 A - B A. _ J?
c C C

6. s/AB = Ja/B

The teacher will present each rule, one at a time and 
illustrate each with one example. One such example is 
2 (x + y) = 2x + 2y.
The second activity will be an exercise (see exercise #1 
below) in which the students will examine a list of 
expressions and determine if there is a rule for each of 
the expressions in the list. If there is a rule for any of 
the expressions, the students will be asked to apply the 
rule.
Exercise 1 (PL-Day One)
Do any of the above rules apply to the following? If so, 
apply them.
1. z(3x + y)
2. (x - y)0

2x 
y + z
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4. [ (x - y) (z + w2 - 4) ]5
5. a2[(x + y) + z]
6. \/x4 - y 4

2x2 - 3x 5 
z

8. f (2x + 1) - (5y) ]3
9. i/12 y 3
10. 5y + (z ® pq)
11. 3x(5x2 + 2x - 6)

The second activity will involve learning to apply the 
rules. Suppose we had a new mathematics with odd symbols. 
All we know is that a, b, and c are variables, parentheses 
and brackets are used to group symbols (like in algebra), 
and we have the rules listed below. The teacher will list 
the following rules:
1. (;a)b -*• ba
2 . a! (;b) -» b!a
3 . ,* (a!b) -» ab
The teacher will illustrate applying rule #1. Example - 
(;x) (yz) -* (yz)x.
The students will be given expressions and asked to 
determine which rule applies and then use it to write an 
equivalent expression.
Exercise 2 (PL-Day One)
Choose the rule which applies for each of the expressions 
below and then apply it. If neither rule applies then so 
state.
1. (;k) 8 ->
2. ;[t!(pq)] -
3. (2x) ! [; (pt) ] -*•
4. (2xy);(4k) -
5. [;(5xy)]!(9yz)
6. (5zt) ! [; (mn) ] -*•
7- [;(xy)](xy) -
8. (;x) ! (yz) -»

Day Two (PL)
The goal for the second day will be to apply previously
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encountered rules (but not given); to write down the 
general rules after they haven been applied; and to extend 
rules.
The teacher will begin the session by stating that today we 
want to apply some rules and then write down the general 
rule for each rule applied. We will then extend rules 
where necessary.
The first activity will involve applying rules. The 
teacher will write on the board the expression,
[3(x2 + l)]7 and ask the students to simplify the 
expression using a rule (i.e. [3(x2 + 1) ]7 = 37(x2 + l)7). 
Then the students will be asked to write the general rule 
that was used [ [i.e. (ab)n = anbn]. The same format will 
be used for the problems in exercise 3 below.
Exercise 3 (PL-Day Two)
Simplify each of the following where possible. Write the 
general rule used.

2. x3(y3 + z3)
3. (2x • yz)3
4 . \ / x 2 - 4y2

Ix2 - 3y 5 
4z

6. y/(x - y) (p + q)
7 . x 2a+3i>
8. (4z - 5y)7
9 . j2Lt_a*r
10. 5x(y4 - z4)
11. 5xyz[2 + x - 7y + 3z]
12. (3x + 2y)4
13. { ^ ? y r ~:~¥yr^ rl~2S
14. [(2x)(5y)(3z)]5
1 C 7x2y  - 3yz + 9

6xyz
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16. 3x
2x + 3y + 4z

17. }/25y6  rr 5

The second activity will involve extending rules when 
necessary. The teacher will state during our last class 
session and during this class session we concluded that we 
did not have a rule in our list for expressions such as 
3x(5x2 + 2x - 6). What do you think we could do if we 
wanted an expression that is equivalent to this one? How 
do you think we can verify that this is correct using our 
known rules? The students will be allowed to show that 
3x(5x2 + 2X - 6)= 3x[(5x2 + 2x) - 6] = 3x(5x2 + 2x) - 3x(6) 
= 3x®5x2 + 3x®2x - 3x®6.
The students will then be asked to review the problems in 
exercise 3 and simplify expressions, where possible, by 
extending a rule. They will then be asked to write the 
general rule that was used and verify each new rule using 
the axiomatic method.



Appendix F

INSTRUCTIONAL SESSION - GROUP 3
IMPLICIT STRUCTURE LEARNING TREATMENT (ISL)
GOAL - TO REMEDIATE ERRORS OF THE TYPE

(a ± b)c = a c ± b c and Cy/a ± b = cJa ± Csfb 
using the implicit structure learning theory.
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Group 3 - Implicit Structure Learning Treatment 
Day One (ISL)
The goal for the first session will be to generate some 
algebra rules (particularly distributivity) and some non 
rules.
The teacher will introduce the session by stating we 
usually think of algebra and language as being separate, 
but this is not the case. Let's look at some statements 
(see below). The teacher will write the following 
statements on the board, one at a time, and ask the 
following questions. What does the statement mean? Can we 
put in parentheses? Can we formalize (use letters)?
(It will be expected that the students will detect 
ambiguity in some of the statements).
The teacher and students will analyze each statement below 
using the following format.
Original Statement: a.
Another Meaning: b.
Symbolic 
representation of a: c.

Symbolic
representation of b: d.
Statements:
1. John and Mary went to the store.
2. Honesty and integrity are good qualities.
3. The old man and woman came down the stairs.
4. Peanut butter and jelly go well together.
5. I like cake and ice cream.
After the students give the meaning of the statements, put 
in parenthesis and formalize the statements, they will be 
asked to generate a list of algebra rules of the same form 
as the statements. Some of these may be non-rules.
The teacher will extend the list of rules and non-rules to
include the ones listed below.
Rules and Non-rules:
1. (a + b)c = ac + be

John and Mary went to the store.
John went to the store and Mary 
went to the store.
(J & M) w 

(Jw) & (Mw)

2 . s/a + b  = s f a  + sfB
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a + b a_ b_
c c c

4.
5.
6.

8 ,

9,

(-g)c = —b b c
(a - b)c = ac - be 
(a - b)c = ac - bc
a - b _a

c
b
c

x a + b  _  x ax b

(ab)° = a°bc
10. sfab - sfayfb

11. x

12.

ab Xa + b

_a _
*> s[b

Day Two (ISL)
The goal for the second day will be to identify the correct 
rules, introduce operation levels and formulate a rule 
(GDL) using operation levels to decide which distributivity 
rules (of algebra) are true or false.
The teacher will write the list of rules on the board that 
were generated the previous day. The teacher will state 
which are correct and which are not.
The teacher will then state, obviously we need some way to 
keep track of which are true rules and which are non-rules. 
Obviously, it depends on the operations levels.
The teacher will then introduce the operations levels. The 
teacher will state, the operations that we encountered in 
the rules were addition, subtraction, multiplication, 
division, exponentiation, and root. Addition and 
subtraction are inverse operations; multiplication and 
division are inverse operations; and exponentiation and 
root are inverse operations. So we will rank them by 
levels. Level 1- addition and subtraction; level 2- 
multiplication and division; and level 3- exponentiation 
and root.
The teacher will continue. Now look at the list of correct 
rules and the list of non-rules. Try to formulate a rule 
using operation levels to decide which rules are true or
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false.
After the rule (GDL) is formulated, the teacher will give 
examples of good and bad applications (see exercise 1 
below). The students will have to decide which are good or 
bad and why.
Exercise 1 (ISL-Day Two)
Determine which of the following rules are correct and 
which are incorrect. Explain.
1. (5b)3 = 53 b3
2. (3xz + 5z2)y = 3x2y + 5z2y
3. y/a* - 16 = a - 4
. 15 - x 15 x4‘ “ I—  = T  ’ T

6. (2a - b)3 =(2a)3 - b3

_ yfa

8. a(be) = ab • ac
9. (x4 - y)z = x4z - yz

a v 2 3l‘4
b' &

11. abc = ab ac

12 . y/ab = i/a/b
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