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We derive the most general parametrization of the unitary matrices in the Douglas-Bkoll
transformation sequence for relativistic electronic structure calculations. It is applied for a detailed
analysis of the generalized DK transformation up to fifth order in the external potential. While
DKH2-DKH4 are independent of the parametrization of the unitary matrices, DKH5 turns out to be
dependent on the third expansion coefficient of the innermost unitary transformation which is
carried out after the initial free-particle Foldy—Wouthuysen transformation. The freedom in the
choice of this expansion coefficient vanishes consistently if the optimum unitary transformation is
sought for. Since the standard protocol of the DK method is the application of unitary
transformations to the one-electron Dirac operator, we analyze the DKH procedure up to fifth order
for hydrogenlike atoms. We find remarkable accuracy of the higher-order DK corrections as
compared to the exact Dirac ground state energy. In the case of many-electron atomic systems, we
investigate the order of magnitude of the higher-order corrections in the light of the neglect of the
DK transformation of the two-electron terms of the many-particle Hamiltonian. A careful analysis
of the silver and gold atoms demonstrates that both the fourth- and fifth-order one-electron DK
transformation yield a smaller contribution to the total electronic energy than the DK transformation
of the two-electron terms. In order to improve significantly on the third-order correction DKH3, it

is thus mandatory to include the DK transformation of the two-electron terms as well as the
spin-dependent terms before proceeding to higher orders in the transformation of the one-electron
terms. However, an analysis of the ionization energies of these atoms indicates that already DKH3
yields a highly accurate treatment of the scalar-relativistic effects on propertieX)0® American
Institute of Physics.[DOI: 10.1063/1.1515314

I. INTRODUCTION with
Contemporary chemistry is aware of a large number of 0 1 0 —i 1 0
systems, whose theoretical description requires an extension ax=<1 0), ay—( 0 ) gz—(o 1) (3)

of the framework of nonrelativistic quantum mechanics. For

example, the spectral properties and binding energies qf . . - . . : .
heavy element compounds and transition-metal complexgée'ng the familiar Pauli spin-matrices. Since in most situa-

are strongly governed by relativistic effects. Those intrinsi-10NS of chgmlcgtl |tr_1teres; ;Ee thre_?hol_d fgr palr-crefaftlon dpro-_
cally relativistic systems require the framework of relativistic Cesses and excitations ot the positronic degrees of ireedom 1S

guantum chemistry, which is based on the Dirac equation, far beyond the energy §ca|e of the valence shell, it is very
good approximation to integrate them out at the very begin-

Hp ¢=[C a-p+(B—1)ME+V]p=E ¢, (1)  ning, and thus neglect all quantum electrodynamical correc-
tions. However, even within this so-called no-pair approxi-
whereV is the attractive external potential of Coulomb type, mation the resulting formalism based on Ef) does still
V(r)=—Z¢*r, or alternatively a potential derived from an consist of four coupled differential equations, including both
extended nuclear charge distribution. In order to get elecspin-free and spin-dependent terms and mixing all four com-
tronic binding energies comparable to the nonrelativisticponents of the Dirac 4-spin@f. As a consequence, the com-
Schralinger theory the energy scale is shifted by the resputational cost of these four-component methods is signifi-
energymc? of the electron. Employing the standard repre-cantly increased as compared to nonrelativistic calculations,
sentation of the Dirac algebra the four Dirac matrices may band they are only applicable to systems of rather modest size.
given as Currently, molecules containing more than two symmetry
nonredundant heavy-element atoms are hardly accessible for
a:( 0 ‘7) B:( 10 ) @) these methodécompare Ref. 1 for a review of these meth-
o 0/ 0 -1 ods. It is therefore a highly desirable goal to find another
representation of the Dirac spinor, where the upgér, and
dElectronic mail: alexander.wolf@chemie.uni-erlangen.de Ipwer, ¢S’ compo_nents are deCQUpled.and where the SEpara-
DElectronic mail: markus.reiher@chemie.uni-erlangen.de tion of computationally expensive spin-dependent terms is
®Electronic mail: hess@chemie.uni-erlangen.de straightforward. The resulting scalar-relativistic two-
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component theories, which yield highly accurate results ifdiagonal(even or off-diagonal(odd) form and to its order in
spin—orbit coupling can be neglected, are much better bethe external potential, which is denoted by the subscripts at
haved from a computational point of view and can even besach term on the right hand side of this equation. The explicit
applied to large transition-metal complexes with hundreds oform of this fpFW Hamiltonian reads

electrons for comparatively little cost.

Over the last two decades two major branches of relativ- o= BEp~ me, ©)
istic two-component quantum chemistry have emerged, E=A(V+R,VR)A,, (10
which have extensively been discussed in recent reviéws.

The so-called elimination techniques exploit the fact that for ~ O1= BA[R, ,V]A,. (11

electronic solutions of E(1) in the case of weak potentials
the small componentp® is suppressed by a factor of
(2mc) ~ with respect to the large componept. Based on
the general theory of effective Hamiltoniah3 this facili-

After this initial fpFW transformation the lowest-order odd
term O, is first order in the external potential, instead of
zeroth-order as in the original Hamiltonidt, . These ex-
S 67 pressions for the terms of the fpFW Hamiltonidn are only
tates the so-called regular approximatiofi®A),>" whose \yei.defined in momentum space, where the external poten-
zeroth- (ZORA) and first-order(FORA) variants have suc- i V, and hence the first-order operatgksand O, act as

cessfully been applied to a variety of S_ys'[é}ﬁg' Recently,  noniocal integral operators instead of local, multiplicative
Dyall took advantage of the modified Dirac equatiotfand operators, e.g.

suggested the metilooll7of normalized elimination of the small #
componeni{NESQO.™~ P;

The second class of methods employs a suitably chosen & ¢(pi):f (277ﬁ)351(p‘ Py (p)).-
unitary transformatiorJ in order to annihilate the coupling
between the upper and lower components, i.e., to remove th
odd (off-diagona) terms of the Hamiltonian. This yields a
decoupled, block-diagonal transformed Hamiltonian,

hy O
0 h_

(12

at is, the action of the integral operat®y is completely
etermined as soon as its kernel is specified, which may
immediately be given employing an obvious shorthand nota-
tion,

Hpe=UHpUT= , (4) E(LD=AVATARVRA; . (13

The stepwise elimination of the respective lowest-order
which does still act on wave functions being based on fourodd term of the Hamiltonian by suitably chosen unitary
component spinors, but where we now have the possibility teransformations is the central idea of the Douglas—Kroll
focus on the positive-energy part of these spinors, i.e., theDK) transformation. The Hamiltonian is thus expanded in
upper-left parth, of the HamiltonianH,q and work with  even terms of ascending order in the external poteMial
two-component objects only. The first attempt to achieve thisvhereby odd terms are systematically removed step by step.
block-diagonalization of the Hamiltonian is due to Foldy andFor this purpose the unitary transformationof Eq. (4) is
Wouthuysen in 19567 and utilizes an expansion inmt?  decomposed into a sequence of unitary transformatigns
while employing the momentum representation of the Hamil{(i=0,1,2,3, .. ) which eliminate the lowest-order odd term
tonian. However, this expansion gives rise to highly singular®, in the ith step in order to arrive at the block-diagonal
terms in the presence of an external potential, which mayamiltonianH g,
therefore not be used in a variational calculation. Further- B +
more, the Foldy—Wouthuysen wave functions are no longer Hpg=U Hp U
analytic functions of ¥ in the neighborhood of &~ 0119. 22 ~.-U,U;U,U; H, Ulululul-
at variance with the large componegi- of the original

Dirac spinor?® resulting in an ill-defined nonrelativistic limit. ”
Only the so-called free-particle Foldy—WouthuysépFW) :g‘o & (14)
transformation
= % f d
Uo=Ap(1+BRy), 5 => (SH 0 ):2 bt i 0
. Sl o0 &) &b 0 &+l
with (15
E,+mc The innermost first unitary transformatidh, is always cho-
Ap=\ DZEp . Ep=vVpc’+mict, (®)  sen to be the fpFW transformation yieldifty , since it can
be performed in closed form and achieves exactly the desired
Ca-p first step. The (& 4)-matrix operatorsg, consist of two
Rp= E,rmc Pp=Rpa-p, () two-dimensional operato&,, andé&,_, which may always

] o o ] be decomposed into spin-fréef) and spin-dependernisd)
may be used in a way avoiding expansion io. 1t yields the  erms respectively. The DK method does always yield regu-
Hamiltonian lar, i.e., nonsingular and well-defined expressions, which are

Hy=UgHp U3250+51+ o1, ®) vqriqtionally stable, z?md establish. the possibility of system-
atic improvement by inclusion of higher orders. Furthermore,
where each term may be uniquely classified according to itas will be demonstrated in the third section, this series ex-
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pansion is rapidly converging due to the strong suppression. GENERAL PARAMETRIZATION OF A UNITARY
of higher-order terms by large energy denominators. Beford RANSFORMATION

proceeding, we should not forget to mention that recentlya. Exact unitary transformations

other transformation techniques have been proposed, which
achieve the block-diagonalization of the Hamiltonian by al'unitary transformationsJ; (i=1,2,...) employed in the

ternative metho.d%‘?'ZSThe applicability of these approaches pi transformation sequence defined by Etd) is derived.
is currently subject to extensive investigatigfs’ As mentioned earlier, these unitary matrices are only benefi-
The original idea of the DK decoupling procedure of the cjal for the DK procedure, if they are constructed as an ana-
Dirac Hamiltonian dates back to 1974 and is due to Douglagytic function U;=f(W,) of an odd and anti-Hermitian op-
and Kroll?® In the following years it was brought to the eratorW,, which is ofith order in the external potential. In
attention of the community and developed to a powerfulorder to simplify the notation, we will drop the subscriff
computational tool for relativistic quantum chemistfy®Its ~ both the unitary matriced; and the odd operatol; in this
second-order variant, DKH2, was employed to examine &ection and simply use the abbreviatidh&ndW. However,

variety of systems over the last 15 years with remarkabldn€ matrixU of this section must not be confused with the
success overall unitary transformatiotJ of Eq. (14), which is the

There are only a few restrictions on the choice of theprOdUCt of all DK transformationJ;. One may always

. . . think of U as one particular transformation of the DK se-
matricesU; . First, they have to be unitary and analytio- quence, e.g., the innermost unitary transformatignmme-

lomorphig functions on a suitable domain of the one- giately following the initial fpFW transformation.

electron Hilbert spac@(, and, second, they have to permita  The most general ansatz to construct a unitary transfor-
decomposition oHyq in even terms of definite order in the mationU = f(W) as an analytic function of an antihermitean
external potential according to E(.4). It is thus possible to  operatorW is a power series expansion,

In this section the most general parametrization of the

parametrizelJ; without loss of generality by a power-series "
expansion in an odd and antihermitean operatbprof ith U=ag 1+a,W+a,W2+aWo+---=ay 1+ D a WK,
order in the external potential, where unitarity of the result- k=1

ing power series is the only constraint. Up to now, only two (16)

very special parametrizations of the transformatidhave  which we assume to be convergent within a suitable domain.
so far been discussed in the literature: Most frequently th&Vithout loss of generality we impose the restriction that the
square root parametrizationU;= ‘/1+W2i +W; has been ax may be real coefficients. Exploiting the antihermiticity of
employed?®-3%and recently it was pointed out that one could W, (W'=—W) the power series expansion of the Hermitian
equally well use thexponentiabnsataJ; = exp(M).3t Inthe ~ conjugate transformation is given as

following, we investigate the physical consequences of this  yt=a,1—a,W+a,W2—a;W3+---

freedom in the choice of the unitary transformations. There-
fore, we start with a discussion of all possible parametriza-
tions of a unitary transformation in terms of such power se-

ries expansions in Sec. Il. Since one always has to truncatI% order to construct a unitary transformation, i.&LU"

the series expansions in the DK procedure, we will carefully_ 1, the coefficientsa, have to satisfy a set of constraints,
study the consequences of truncating such power series ey ich may be found by calculating

pansions after a finite number of terms. In Sec. lll, this prin-

ciple is applied to the Dirac Hamiltonian in order to derive U U'=a5 1+ (2a0a,—a) W?+(2aqa,+ a3
Hpkhsz 10 Hpkps » 1.€., the third, fourth, and fifth-order DK
Hamiltonians employing the most general unitary parametri-
zation of U;. The resulting operator equations will be de- +(2a0ag+ 22,85 + 85— 2887~ 285a5) W°
noted as thegeneralizedDouglas—Kroll (DK) transforma-
tion, in order to distinguish them from the restricted class of
transformations that have so far been discussed in the litera- !

ture. In Sec. IV, numerical results for both one-electron and —ag) W+ O(W?)=1. (18)

many-electron atomic systems are discussed, and the bindifgyte that odd powers div do not occur in this expansion
energies of hydrogenlike atoms are compared to the exagjecause of the antihermiticity oV. With the requirement

values resulting from the Dirac equation. The effect of thethat different powers o#V be linearly independent, we arrive
higher-order DK corrections on both total electronic energiesat the followingunitarity conditionsfor the coefficients:

and relative properties is compared to the effect of the DK

[

=agl+ I(Zl (—1)ka, WK, (17)

—2a,a5)W*+ (2agag+ 2a,a,— 2a,a5— a3)We

+(2apa ot 2a,ag+2a,4a— 2a,89— 2a3a5

transformation of the two-electron terms of the many-particle

Hamiltonian. This discussion is concluded in Sec. V. The a,=1a, ai, (20)
Appendix describes aspects of implementation and computa- -

tional techniques. az=ap(a;az—gay), (21)
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2 3 6 B. Approximately unitary transformations
ag=ag(a,as+ sa3—tajaz+ &ald), (22) Pp y y

However, in actual applications of the DK transforma-

ag=ag(a;a;+azas+ aja, tion the power series expansions of the matridgsalways
have to be truncated after a finite number of terms, resulting
— 2afa3— tadas— 3sad), (23 in an approximate unitary transformation. As a consequence,
the resulting transformed Hamiltonidty,, is only block-
ajg=ap(a;ag+ a3a7+%a§— %aiaf %aiagag, diagonal up to a certain order in the external potential, and
its eigenvalues will both slightly differ from the exact ones
— Sajag+ 2ajai+iajas— saja3+ sszal). and may depend on the coefficierats. It is thus very im-
(24) portant to fix the odd coefficients in the best possible way,

which would be to minimize the deviation of the eigenvalues
The first coefficienta, is fixed apart from a global minus of the transformed Hamiltoniakipky, (obtained with the
sign and can thus always be choserags 1. As it will be  truncated expansion fdJ;) from the eigenvalues of the cor-
shown later, the even terms in the decoupled DK Hamil-respondingnth order approximation tddp given by Eg.
tonian do not depend on this choice fag. Note that all ~(14). For this purpose we shall assume that this may the
constraints imposed on lower coefficients; (i better be achieved the more unitary the transformatldns
=0,2,...,%) have already been applied to express the conare, i.e., the smaller the operator nofoyU'—1| is. In the
dition for the next even coefficiert,, .. , in Egs.(19)—(24). following we will exploit this principle to determine the op-
Therefore all odd coefficients may be chosen arbitrarily, andimal parametrization of the unitary matriced; (i
all even coefficients are functions of the lower odd ones, i.e.=1,2,...) in order to derive the decoupled DK Hamilto-
niansHpknn » Which are correct up tath order in the exter-
ay,="f(ag,a;,as,as, ...,ax 1), Vkel\ (25 nal potential.
Since on the one hand the fpFW Hamiltonieln does

By_ using the general POWEr Series expansion Uoall the_ not contain a zeroth-order odd term and on the other Wend
infinitely many parametrizations of a unitary transformatlonhas to be an odd operator by construction, the derivation of

are treated on equal footing. However, the question about t e second- and third-order DK approximation requires at

equivalence of these parametrizations for application in th‘?nost a consideration of the expansion Wfup to second
Douglas—KTroll method, which represents a crucial point, isorder inW only, i.e

more subtle and will be analyzed in the next section. It is B

furthermore not cleaa priori, if the anti-Hermitian matrixyV/ U=ay1+a;W+a,W>. (26)
can always be chosen in the appropriate way; the mandator: . L - +
properties ofW, i.e., its oddness, antihermiticity and behav- ‘lyo this order the minimization of the deviation 0U' from

ior as a certain power in the external potential, have to béhe, |dent|té/3L'JU TI 4??1W ' y;}sldsal 0. Dlge to the uni I
checked for every single transformatidh of Eq. (14) ap- tarity hcon |t|ol?s adUot erl dccge 'ﬁ'efgs wou auftomatl_c aly
plied to the Dirac Hamiltonian. vanish as well, and) would be the identity transformation.

The radius of convergend®, of the power series de- The coefficienta; has thus necessarily to be chosen different

pends strongly on the choice of the odd coefficients as mag]om ﬁero. Sin.cr?al d:afines fonly a s:mpltal scaling (V]E/ itj b
be demonstrated by the following very special three ex- ay hence without loss of generality always be fixed by

amples, which can be given in closed form: settinga, =1.
P 9 The derivation of the fourth- and fifth-order DK Hamil-

(8 Square root parametrization: U= 1+W?+W, tonian requires explicit care of all terms of the innermost

R.=1, unitary transformatiotJ 1, abbreviated in this section &s,
(b) Cayley parametrizatiord = (2+W)/(2— W), R.=2, up to at most fourth order illV. Consequently, the deviation
(c) Exponential function parametrizationJ=expW), of U from unitarity is given by

R.=c.

¢ UUT—1=(-a3+ada;— tad)We

As long as exact unitary transformations, i.e., infinite
power series with coefficients, satisfying the unitarity con-
ditions given above, are applied to transform the Hamil-

tonian, the energy eigenvalues of the transformed Hamil:l_h_ _ i | be minimal if the first t .
tonian Hpyun = UHpUT will exactly be the same as of the is expression will in general be minimal if the first term in

original Hamiltonian Hy. Therefore, the eigenvaluek parentheses vanishes. As a quadratic expressiomfihas
= (Hpo)=(H ) of t[r)1e completel’y decoupled Hamil two solutions. In order to achieve the smallest deviatiob of
- - DKHee -

tonianH 4 will certainly not depend on the choice of the odd from unitarity possible at that point, we willprefer the
coefficientsa, 1. All infinitely-many different unitary pa- smaller of these two solutions, which reads
rametrizations derived above are completely equivalent in 2-v2

this sense. It is important to note, however, that the indi- 332733*0-1464561?- (28
vidual evené, terms of the infinite sum given in Eq14)

may in general depend on the chosen coefficients of th&Vith this optimum choice ofagy the deviation ofU from
power series expansions of the unitary transformatlons unitarity is given by

1
+ ?a§(8a3—a:f)zwg. (27)
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1 TABLE |. Coefficients a, of the power series expansion of the unitary
uuf—1= —(2v2— 3)? a? W8~4.5995710 4 a? We, transformationU for four different parametrizations. The first two coeffi-
2 cients have been fixed tap=a;=1. All coefficients are given with an

(29 accuracy of three digits.
whose leading order has been reducedbby the special

choice ofas. Since all other possible unitary parametriza- U=V1+W+W U:% U=expW) S
tions would feature a leading order ¥f®, i.e., they will in
general lead to a larger deviationdffrom unitarity, we will a 5.000E-1 5.000E-1  5.000E-1 5.000E-1
denote the DK transformation with this best choice of the & 0 2500E-1  1.667E-1 1.464E-1
ccz)%:‘ficients as theptimal unitary tr_ansformatiorUOp‘, e.g., :‘5‘ 7(1)'25051 éégggg g:;gzgg —2:;(‘)125421
U™ for the innermost transformation. ag 6.250E- 2 3125E-2 1.389E-3  —6.505E-4
Similarly, the sixth- and seventh-order DK approxima- g, 0 1563E-2  1.984E-4 4.006E-5
tions requireU to be considered at most up to the term of ag —3.906E- 2 7.813E-3  2.480E-5 4.006E-5
orderW®. Having previously fixedh; according to Eq(28), ag 0 3.906E-3  2.756E-6 —3.102E-6
the transformatiorl closest to unitarity, i.e., the optimal @o 2.734B-2  1.953E-3  2756E-7  —3.102E-6
transformation for application in the DK method is achieved
by the choice R 1 2 i
24-1W2 45
ag=——g—a;~—6.5047810 "a;j, (30 o
2 all other parametrizations. It should not be forgotten that the
which guarantees a unitary transformatidrup to terms of ~ fruncation of any power series applied in the DK transforma-
leading orde™?, i.e., tion does necessarily require that the operator noriWa$
3 smaller than 1, since otherwise the higher-order termd/in
UUT_IZF(ISI_ZAQ) alowio would dominate the expansion. This leads to an evtfn better
performance of the optimal unitary parametrizatidf™ as
——2.832.10°5 compared to all other choices for the coefficients than it is
| evident by the numerical results in Table Il. As a conse-
2 1212 quence, the eigenvalues of the transformed Hamiltonian
T (A4 1V2)Ta W 3y Hpkun=UHpUT will be significantly closer to the exact ei-
R genvalues of the Dirac Hamiltoniald if the optimal pa-

rametrizationU°", instead of any other parametrization, is
The same ideas may be repeatedly applied to derive highetruncated after a finite number of terms. Obviously, in the
order terms of the optimal parametrizatioii* to be applied  limit of considering infinitely many terms of the power series
in the DK method. This procedure will fix the higher-order for U these differences will, depending on the chosen param-
odd coefficientsa,y; uniquely. Since these higher-order etrization, altogether more or less rapidly tend to zero.

DK transformations will not be carried out in this work we

only briefly give the results for the following two coeffi-

cients: Ill. DERIVATION OF THE DK HAMILTONIANS

3 In this section the sequence of unitary transformations
a7=2—11(28—181ﬁ) aj]~4.0056510 °a;, defined in Eq.(14) is set up and the block-diagonal Hamil-
tonianH,q is constructed step by step. In order to investigate
1 1 9 6.0 (32 a potential dependence of the DK Hamiltoniadgy, on
89=>15(3-27°~868972) a;~—3.1019110 " a;. the coefficientsa; ,, we do not restrict the derivation to the
) ) ) ) optimal parametrization of the transformatiddsderived in
In general, if the power series expansionlbfis truncated  he [ast section, but apply the most general parametrization
after the term of ordeWV*, application of the optimal DK ¢ U; with the coefficients; , satisfying the unitarity condi-

parametrizationU®"" guarantees that the leading term of tions Eqgs.(19)—(24) only. The first subscript of the coeffi-
UUT—1 is of orderWX"* instead of ordeiV*? as for all

other unitary parametrizations.

The superior performance of the optimal parametrizationrapLE I1. Lowest-order terms ofJUT—1, for given truncation of) after
U°Ptis also documented by Tables | and Il. In Table I, the O(W¥) for four different types of parametrizations. The first two coefficients
coefficientsa, of four different parametrizations dff are have been fixed tay=a,=1. All values are given with an accuracy of three

compared. Both the exponential and the optimal unitary pad9"™

rametrizationU° are rapidly converging. For truncated ex- 21w t
. . . . . wpe — — o]

pansions ofU the optimal parametrization behaves signifi- X U=VI+W4W y=-—2  U=ext) U

cantly better than all other choices for the coefficiemts as " - -
is clearly demonstrated by the deviationsLbfrom unitarity ~ 4 ~1250E-1W 6.250E-2W° 1.389E-2W°  4.600E-4W’
. . . 6  7.813E-2W° 1563E-2W° 3.472E-4W° -—2.832E-5W
presented in Table Il. Especially for DKH5, i.e., for a trun- 8 _5469E-2WY° 3906E-3WL 4.960E-6 WP 2 193E- 6 W2
cation ofU after the term of fourth-order iV, the operator 15 4102E2W2 9 766E-4 W2 4593E-8W!2 — 1.908E-7 W
norm|UUT— 1] for U°P'will be dramatically smaller than for
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cients a; x characterizes the corresponding unitary matrix  In general, the first 2+1 even terms oM,y depend

U, . For later convenience the odd and antihermitean exparenly on then lowest matricedV; ,\W5, ... W), i.e., they are
sion parameter is denoted Y, instead oW . Although we  independent in particular of all succeeding unitary transfor-
have already derived the DK expressions up to fourth ordemations. This remarkable property of the even terms origi-
(DKH4),> we recall the results here since the DKH5 termsnates from the central idea of the DK method to choose the
depend on all preceding steps. The transformation of théatest odd operatdtV; always in such a way, that the lowest
fpFW HamiltonianH ; with U yields of the remaining odd terms is eliminated. TherefoWg is

chosen in order to guaranté®? =0, and thus the following

Ho=Us H,y Ul=| ay oL+ D an WiK| (Eg+ &+ 0y) condition forW; is obtained:
k=1
/ a10
% [lego]:_aiolv (41)
k 1k 11
x| agolt X, (—1)ay,W; N . o
k=1 which is satisfied if and only if the kernel &¥; is given by
=&+ &+ 0P +6+ 0P+ & L aig Oi(i)
+ @§2)+g¢4 (EQ+0), (33 This choice ofW satisfies all constraints, namely that it
is an odd and antihermitean operator of first ordev irNote
with that W; depends on the beforehand arbitrarily chosen coef-
) , ficientsa; ganday 4, i.e., it is linear ina, o/a; ;. We there-
O17=01+a;,@11[ W1, &l, (34 fore introduce the modified operatav, defined by
E2=ay @11 W1, 0]+ 321 1 [ W1 [ W1, &l (35 - o Oa(i)
e Wa(i,j) =2y s Wil ) =B £ (43)
0P=a; @11 [W;,&1], (36) o _ . b o
which is manifestly independent of the coefficieras .
E3= %ail[wi,[wi,gﬂ], (37) With this choice of W; and by utilizing relation(41) the

above results may be simplified to a large extent,
ng)z %a%,l[wi [W1,01]]- %al,oailwi[wi Eo]Wq

13 &= 3[W1,04], (44)
+a3,1,3[Wi°, &, (38 @
(2) 3 P 0=W.&l, (45)
EW=aqa, [ W3 W, ,E]1—2a7 [ W;4,[W;4,&
+ = fu s Wa Vs dall e Wae Wl Eo=LTW, [Wy,&7], (49

+ay A3 Wi3,0:]— %al,Oail\N],.[W:,L NOA\E

a3
(39 OF)=3[Wy [Wy, O1]]+ 3W101 Wy + —3=[WE &,
1,1
£QP=—ga) [Wi2[Wj2 1] (47)
(2)—1
+ay ay s[ Wi, [Wg,E]]. (40 Ey7=5[Wye,[Wy,[Wy,04]1], (48

Since this presentation focuses on the fifth-order DK Hamil-
tonian, only those terms are explicitly given at this first
stage, which are required to derive the final fifth-order eve
terms, and all higher-order terms are suppressed. Note th
&, &1, and O, are independent dfv; and thus completely
determined from the very beginning. The subscript attache
to each term of the Hamiltonian denotes its order in the ex
ternal potential, whereas the superscript in parentheses in
cates that such a term belongs to the intermediate, partiall
transformed Hamiltonian relevant only for the following
higher-order terms. Only those even terms, which will not be
affected by the succeeding unitary transformatidhs (i

=2,3,...) bear no superscript and may already be identified

with the corresponding terms in the expansiorHgf; given

by Eq. (14). It is a consequence of the so-called
(2n+1)-rule, thaté, and & are already completely deter-
mined after the first unitary DK transformatids, . Hence,
Hyq is already defined up to third order in the external po-
tential although the second order te(ﬁgz) is still present
and will be eliminated in the next transformation step.

with

EP=—§[W3,[WZ 6411+ %f[ws [Wi&d]. (49

"We find that all terms contributing to the fourth-order DK
ﬁamiltonianHDKHA, are independent of the coefficieras, ,
i.e., they are invariant under an arbitrary change of the pa-
ametrization ofU,. Terms contributing to the fifth- and

ligher-order DK corrections, however, depend on the param-
trization ofU;. The next unitary transformatiod, is ap-
Rflied in order to eliminate the odd term of second order,

Hs=U,H,U}=

K
ap pl+ k21 ap W5 }

XH,

arol+ gl (—1)k az,kwék}

] 0

5
=k§:‘,o 5k+k2 &+ k; o (50)

=6
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0P =0P+a,@,,[W},5], (51) Es= [ Wa,[Wa, & 1T+ 5[W,,[Wy,[Wy,041]]
E4=EP + a5 @51 [ W5, 01+ 385, [W5,[W),&]], + 5[ Wo, Wy O3 Wy T+ — 5[W3,[W2,&4]]
(52
a3
Es=EF)+ a2 [ W5, 01+ 3 05, [W; [Wy, &1]]. + g3 (W Wil.&l, (58)
(53 ’

d_where we have extensively taken advantage of (B4) in
order to simplify the expressions. It should be mentioned that
earlier Nakajima and Hirao have already tried to derive the
formulas for both the kernel a/,, Eq.(55), and the fourth-
and fifth-order Hamiltonians, Eq$57) and (58), employing

the exponential parametrization of the unitary matrites.
However, they have not yet given any numerical results for
the fourth- and fifth-order DK correction. Furthermore, their

Again, W, is conveniently chosen to eliminate the secon
order odd term®$, i.e., it has to satisfy the condition,

/ a0 Az
[W;,E0]=— == 0P =~ —"[Wy,&]. (54)
a1 a1

After introduction of the modified operatorW,
=a, @, W5, this is guaranteed if and only if the kernel of

W is given by expressions contain some misprints and are based on the ex-
. Wi(i,))E1(),K) = E1(1,] )W (], k) ponential instead of the most general parametrization of the
Wal(i,j.k) = E +E, - unitary matrices.

) o While the termé&, is still independent of the chosen pa-
Since even and odd operators obey the same multiplicatiopy metrizations of the two unitary transformatiénthe sub-

rules as natural numbers, i.e., even times odd is odd, etc., th?equent even ternfis depends on the coefficients, ; and
is obviously an odd and antihermitean operator of seconglys of the parametrization of the first DK transformation
order in the external potential, which is independent of the " we will therefore fix the coefficieng, 5 according to
chosen parametrizations of the unitary transformatidsis  gq (28 of the discussion in Sec. II. This procedure guaran-
thus a second-order integral operator in momentum Spacges that the eigenvalues Bifs will deviate as litle as

whose action on a 4-spina# is defined by possible from the exact eigenvalueshbf,, as we have de-
d®p,d®py scribed in detail in the last section.
W, o(py) = f sz(l)i Py P AP =f(P1). The electronic, i.e., upper-left (22)-blocks of the ker-
(56) nels of the lowest order terms may be explicitly given as
With this choice ofW, the final results for the fourth- and Eo+ () =E;—m¢, (59
fifth-order even terms are given by E11 () =A Vi + PV P)A+iA, o (PXV,P)A,.
E4=5IWy, [Wy [Wy, 0111+ 5[Wo, [Wy,&]],  (57) D) ALGD - (60)

+Ai g Pi V”AJ Ajv]k g- Pk Ak+ A,V”AJ PJZ Ajv]kAk—A,V,JA] Aj ag- PJ V]k g Pk Ak}, (61)
|
Ea(iLj k) =3{A o pi'\'/i]_ o Pj A AjvjkAk &k, The expressions for higher-order kgrnels are _hal’dly more
complicated, but very lengthy, and will not be given here in
e (62)  full detail. They can easily be constructed by evaluating the

expressions of the operatofs, &,, and & given by Egs.

where the abbreviation (46), (57), and(58) with the help of Eqs(10), (11), (43), and

o _ Vi _ V(pi.p)) 63) (59).
"E+E] pic?+mPct+ \pPc?+ m¥c? IV. RESULTS
has been introduced. Furthermore, Dirac’s relation The numerical performance of the generalized DK trans-

formation up to fifth order is investigated for both hydrogen-

- PiVij - P =Pi- Vi P+ o (PXV;Py) ©®4 ke ions and many-electron atomic systems. The scalar-
for Pauli spin matrices has been used, which, in the case dglativistic HamiltoniansHp; up to Hpkys have been
vanishing potential, simplifies to implemented into an atomic Hartree—Fock program based on

the work by Roothaan and BagtfsThe DK transformation
o-Pjo-P=P}. (65  was only applied to the one-electron terms of the Hamil-
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TABLE Ill. Ground state energies for one-electron hydrogenlike systems with varying nuclear éhangelartree atomic units. All calculations were
performed with a relativistic universal Gaussian basis(Bef. 33 with originally 32 s-functions, augmented up to S03functions for systems with high
nuclear charge. The speed of light 137.035989 5 was used for all calculatidief. 34.

z 20 40 60 80 100 120

n.r. —199.999 984 —799.999 988 —1799.999 97 —3199.99991 —4999.999 8 —7199.9995
DKH1 —201.341 494 —823.894 221 —1934.202 84 —3686.448 68 —6472.402 6 —12132.6799
DKH2 —201.072538 —817.615772 —1893.897 64 —3523.32484 —5906.1918 —9594.096 0
DKH3 —201.076 660 —817.820 110 —1895.844 04 —3533.119 56 —5942.369 4 —9712.9311
DKH4 —201.076 508 —817.804 850 —1895.627 02 —3531.708 56 —5936.4739 —9698.5235
DKH5 —201.076 523 —817.808 095 —1895.702 82 —3532.461 47 —50941.5285 —9730.968 4
DEQ? —201.076 523 —817.807 498 —1895.682 36 —3532.19215 —5939.1954 —9710.7835

#Analytical value according to the Dirac equation, see ©6).

tonian and the nonrelativistic two-electron Coulomb repul-tained 50s-functions and exponents up to*#0The numeri-
sion terms remained unchanged. For all calculations we haveal results for six exemplary systems with increasing nuclear
employed the uncontracted relativistic universal Gaussiagharge are shown in Table lIl.

basis set provided by Mallet al,*®* comprising 32 even- The exact nonrelativistic result was recovered for all cal-
tempered exponents. The value for the speed of lightulations to very high accuracy. The very small deviation of
c=137.0359895 was taken from Ref. 34. at most 10%% proves that the basis set chosen is able to

describe the wave function close to the nucleus very well, at
least for the nonrelativistic description based on the Schro
dinger equation. DKH2 represents a significant improvement
The numerical accuracy and basic features of the variougyer the nonrelativistic result for all values of the nuclear
DK approximations are investigated. Therefore, the groun@hargez, whereas the first-order DK correction dramatically
state, i.e., $ energies of hydrogenlike ions for the whole gyerestimates the binding energy, as it is well known for a
periodic table are determined for the nonrelativistitr)  |ong time3® Due to this huge over-binding the first-order DK
case as well as for the various Douglas—Kroll (DKH  approximation does not have any practical value. For in-
Hamiltonians. Since these systems feature only one 5i”9|@reasing values of, however, also DKH2 does no longer
electron in ans-orbital, no inaccuracy is introduced by the describe the relativistic effects on thatal energy appropri-
neglect of the spin-dependent terms and of the DK transforately, as, e.g., already f@= 100 the absolute error is about
mation of the two-electron terms. A point-nucleus model was33 hartrees, increasing rapidly up to about 137 hartrees for
applied in order to compare the results to the analyticallyz=120. For those highly relativistic systems higher-order
known exact eigenvalues resulting from the Dirac equatiorhpproximations are important and, indeed, the results ob-

A. One-electron systems

(DEQ), which are given by tained with DKH3, DKH4, and DKH5 are in much better
Ei. =mc( 1= (Za)?—1) (66) agreement with the exact Dirac eigenvalues. One necessarily
S1/2 ’

has to go beyond the established second-order DK method
whereq is the fine structure constant. The smallest exponenfior highly accurate total energies of systems including heavy
of the universal Gaussian basis set is given by 0.021494. Inuclei. Fortunately, the third- and fourth-order corrections
order to achieve sufficiently high accuracy to resolve theDKH3 and DKH4 do already remove the major part of the
higher-order DK corrections properly even for systems withdeficiencies of the second-order approximation.
very large nuclear chargg, we have augmented this basis There is one further subtlety connected with higher-order
with 18 additional large exponents. The ratio between twdDK transformations one should be aware of. The energies
subsequent additional exponents we have added is 2.054 43#tained with odd DK corrections, i.e., DKH1, DKH3, and
according to the even-tempered ratio derived from the origiDKH5 are always below the exact Dirac eigenvalues, which
nal exponents of Malliet al3® The resulting basis set con- is demonstrated by Table Ill. This indicates clearly that

TABLE IV. Ground state energies for hydrogenlike systems with high nuclear clzafge three different basis sets in Hartree atomic units. See text for
further details. The speed of light=137.035 989 5 was used for all calculatiqief. 34.

32 exponents 41 exponents 50 exponents

z 100 110 120 100 110 120 100 110 120
DKH1 —6461.94 —8554.97 —11638.82 —6472.07 —8609.99 —12041.41 —6472.40 —8613.85 —12132.68
DKH2 —5905.26 —7513.94 —9569.10 —5906.18 —7518.39 —9593.20 —5906.19 —7518.46 —9594.10
DKH3 —5940.92 —7578.06 —9682.54 —5942.36 —7584.09 —9712.07 —5942.37 —7584.16 —9712.93
DKH4 —5935.12 —7567.66 —9665.80 —5936.46 —7573.69 —9697.12 —5936.47 —7573.82 —9698.52
DKH5 —5939.63 —7578.09 —9689.30 —5941.50 —7586.09 —9728.78 —5941.53 —7586.31 —9730.97
DEQ? —5939.20 —7579.69 —9710.78 —5939.20 —7579.69 —9710.78 —5939.20 —7579.69 —9710.78

@Analytical value according to the Dirac equation, see ©6).
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TABLE V. Ground state energies for the silver atom and cation in Hartree atomic units. For all calculaticsZ9p2®8@l universal Gaussian basis $&tef.
33) was usedsee text for details All energy difference\ E= Exyn— Epgrc refer to the 4-component DFC values. The ionization energy was calculated as
IE=E(Ag")—E(Ag®). The speed of light=137.035 989 5 was used for all calculatigifef. 34.

Ag° Ag®
E AE Home E AE IE
n.r. —5197.6980 +117.04 —0.2120 —5197.4809 +117.03 0.2171
DKH1 —5340.6559 —25.915 —0.2394 —5340.4206 —25.913 0.2353
DKH2 —5311.8945 +2.8459 —0.2368 —5311.6617 +2.8456 0.2328
DKH3 —5312.9985 +1.7419 —0.2369 —5312.7656 +1.7417 0.2329
DKH4 —5312.9019 +1.8385 —0.2369 —5312.6689 +1.8384 0.2329
DKH5 —5312.9263 +1.8141 —0.2369 —5312.6934 +1.8139 0.2329
DFC® —5314.7404 +0.0000 —0.2372 —5314.5073 +0.0000 0.2331

30rbital energy of the highest occupied orbital, i.e., tledsbital for Ad".
b4-c0mp0nent DFC results obtained witloLFpIr (Ref. 36.

Hpks andHpiys are only variationally stable but not varia- presence of very strong electric fields as it is the case for
tional approximations to the exact electronic Hamiltonian.these highly-charged heavy ions. We should note that this
However, an extension of the DK method to the next everfleficiency is only of minor importance for chemical pur-
order in the external potential does always cure this defiposes, where we usually deal with neutral or weakly-charged
ciency of the odd DK approximations. The binding energiessystems.
calculated withh , derived from DKH4 are always found to
be above the corresponding Dirac values, supporting the corg Manv-electron atoms
jecture that DKH4 is a variational method. The overestima-—" Y
tion of the 1s binding energy is a very important feature of Tables V and VI show the results of calculations on the
DKH3 that has not yet been observed in the only earliesilver and gold atom for the nonrelativistic case as well as for
study about the third-order DK methdtlit is only revealed the various DK approximations and the DFC Hamiltonian.
by application of very large basis sets, since very high expoWe used a 3&29p20d15f uncontracted universal Gaussian
nents are necessary to model the region very close to theasis set for all calculatioris.For the neutral silver and gold
nucleus in such highly charged one-electron ions. atoms the?S ground state configuration, i.g.Kr]4d'%s!
The necessity for sufficiently large basis sets in order tdor Ag® and [Xe]5d*%s! for Au® was investigated. The
resolve DK corrections for highly charged systems properlyclosed-shell cations Agand Au" were obtained by remov-
is documented in Table IV. Only large basis sets with morang the highess-orbital electron.
than 40 exponents yield correct DK energies and reproduce All 4-component DFC calculations were performed with
the above mentioned features of the DK transformation. OumoLFDIR.3® Since MOLFDIR employs a Gaussian nuclear
smallest basis with 32 exponents is not able to reveal thenodel, we have described the desired pointlike nucleus by
overbinding of the odd DK Hamiltonians. Furthermore, all increasing the exponent for the Gaussian nuclear charge dis-
energies obtained with this small basis set are significantlyribution to 1¢° A comparison of our calculated DFC results
too small in absolute value, i.e., too positive, since one is fafor the neutral atoms with the numerical 4-component DFC
away from the basis set limit. benchmark results for point nuclei provided by Visscher and
For systems with nuclear chargegreater than 104 we Dyall®’ revealed only an insignificant error of the order of
find the DKH5 energy always to be below the result obtainedhe error introduced by the limited size of the basis set. The
with DKH3. This could possibly indicate a divergence be-deficiency of the latter was found to be smaller than 0.003
havior of the higher-order DKH corrections. However, it is a.u. (<10 %%) for silver and 0.259 a.u.<{10 3%) for
most likely that even our largest basis with 50 exponents igold.
not suitable to model the region close to the nucleus in the For both atoms the nonrelativistic total energy is

TABLE VI. Ground state energies for the gold atom and cation in Hartree atomic units. For all calculatia29pZXRI15f universal Gaussian basis $Bef.
33) was usedsee text for detai)s The same symbols and conventions are employed as in Table V.

Au® Au™
E AE E£HOMO E AE IE
n.r. —17865.394 4 +1174.19 —0.2208 —17865.1770 —1174.13 0.2174
DKH1 —19339.308 8 —299.723 —0.3061 —19339.0129 —299.710 0.2959
DKH2 —18993.7221 +45.8635 —0.2894 —18993.441 6 —45.8612 0.2805
DKH3 —19014.2952 +25.2904 —0.2904 —19014.0138 —25.2890 0.2814
DKH4 —19011.3473 +28.2383 —0.2903 —19011.066 0 —28.2368 0.2813
DKH5 —19012.8103 +26.7753 —0.2904 —19012.5289 —26.7739 0.2814
DFC —19039.585 6 +0.00000 —0.2919 —19039.302 8 +0.00000 0.2828
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found to deviate sizeably from the exact, i.e., 4-componentential. The only constraints are the unitarity conditions for
DFC values. An application of the DK approximation up to the even coefficients of this power series. In particular, the
third order significantly improves on the total energy. A fur- traditional square root parametrization introduced by Dou-
ther extension of the DK transformation to fourth and fifth glas and Kroll,U;= \/1+Wi2+Wi , is only one special case
order yields only minor contributions. The order of magni- of infinitely many equivalent possibilities.

tude of these higher order corrections, i.e., the changes be- In practical applications one always has to truncate the
tween DKH3 and DK (n=4,5), are 0.1 a.u. for silver and power series expansion fa}; after some finite number of

3 a.u. for gold. These changes are smaller than the effect @érms, depending on the order of the DK approximation
the DK transformation of the two-electron terms, which wassought for. However, due t@/; being anith-order operator
earlier found to be about 1.1 a.u. for silver and 6.5 a.u. foiin the external potential, it is mandatory to expand the inner-
gold** It seems thus necessary to take care of both the Dknost unitary transformations to higher orderj than the
transformation of the two-electron terms and the spin-outer transformations. For example, the consistent derivation
dependent terms that were neglected in this implementatiogf H,,,s requiresU; to be expanded up to terms of order
before extending the scalar-relativistic DK transformation ofw¢, butU, only up to terms ofws.

the one-electron terms to higher orders. Furthermore, due to  These truncations of the power series expansiond;of

the previously discussed over-binding of the third-order DK|ead to deviations from unitarity, which depend on the cho-
correction, DKH3 does always yield the best approximationsen parametrization. In order to minimize these errors, we
to the exact total energy. It is therefore recommendable t@erived the coefficients of the optimal parametrizatidt"
prefer DKH3 instead of the standard DKH2 variant for rela-\yhich is still closest to unitarity if it is truncated after any
tivistic many-electron calculations of quantum chemistry. arbitrary order inW; . In general, if the power series expan-
The same conclusion may be drawn by an investigatiorjon of U; is truncated after the term of ordv*, applica-
of the dependence of relative energies like the ionizatioRion of the optimal DK parametrizatiot °™ guarantees that
energy IE=E(X") —E(X°) (X=Ag, Au) and the energy of e |eading term ofU;Uf— 1 is of orderW<** instead of
the highest occupied orbital oy on the order of the DK orderWik*z as for all other unitary parametrizations.
transformation. Both IE and,oyo change significantly up Applying the most general parametrization 1df, we
to DKH3, but are almost unchanged by transition to DKH46,nq the DK Hamiltonians up to DKH4 to be independent
and DKHS. Again, the deviation of the DKH ionization en- 4, the chosen parametrizations of the unitary transformations
ergy from the DFC value is due to the neglect of the spinyy, tpe fifth- and all higher-order Hamiltonians, however,
dependent terms and the DK transformation of the tWOyepend on the choice of the coefficients of the power series

electron terms. parametrizations. This arbitrariness in the DK Hamiltonians

It should be mentioned that our calculated results have,,iches consistently by application 0f", leading to ei-
necessarily been compared to the 4-component DFC valuegenyajues of the transformed DK Hamiltonians that are as
and not to experimental values. Both our Hartree—Fock DK;|oge a5 possible to the ones of the original Dirac Hamil-
and the relativistically analogous Dirac—Fock SCF calculaygpnign.

tions do not include any electron electro_n (_:orrelatlon effects  The DK method features excellent convergence behavior
except exchange. By contrast, the deviation of our results. . ~ !
. . : ince thenth-order kernel contains— 1 factors ofV defined
from the experimental values is mainly due to the neglect o . o
. y Eg. (63), i.e., it is damped by a factor smaller than
correlation effects. However, our Hartree—Fock-type calcula;

. 2mc®) """l An extension of this generalized Douglas—
tions represent a test of the methodology rather than a com): . . ) )

. . . roll transformation to sixth and higher order in the external
parison with experiment.

The estimate of the ionization energy via Koopmans,potential is straightforward, but will yield only tiny correc-
. tions as compared to DKH5. Furthermore, before extending
theorem 1E=—eyomo approaches the experimental values, " " o coqure to higher than third order in the external
with slightly higher accuracy than oukSCF calculations. b g

This is due to the well-known effect of the neglect of the potential, it is more important to previously consider the

) . ) : .~ spin-dependent terms and the DK transformation of the two-
orbital relaxation, which partially compensates the error in-

troduced by the nealect of correlation effects electron terms of the many-particle Hamiltonian. It was
The regults of gables V and VI indicate .clearly that ashown that the modification of the one-electron integrals
scalar-relativistic implementation of the one—elect;on DKinIdS the major contribution to physical observables, as the

transformation up to any order is insufficient for highly ac- transformation of the two-electron integrals does most likely,

curate calculations of the relativistic effects on the total en-| general, not I(_ead o significant changes on relative ener-

. . . gies and properties.
ergy. However, for most chemical applications relative ener-
gies and properties, for which already DKH3 yields very

satisfactory results, are by far more important.
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M 2 N 2 N M 2
standard procedure: _ 1 E Z,u,ZVe n E p; n E E _Z,ue
Calcula.te n.r. kinetic energy T and external potential V in _E,U,,V:l |RM RV| ~ ﬁ by |r'_RM|
AQ basis x: nEv
T = {x: | P*/2m|x; ), Vi = (x: |V x5 ): see Eq. (A1) —_—

Hy T v
N 2
1 e
= > , (A1)
DKH Calculate additional (p-Vp)-integrals in 2 j=1 |r i F j|
AO basis x: it
detour (pVp)i; = (xi |p-Vp | X; >: see Eq. (71) H,

and contains zero-, one-, and two-electron terms. Only the

= | f the kineti d the el

= Diagonalize n.r. kinetic energy T to obtain one-electron terms of the kinetic energyand the electron-

o p2-basis, i.c., the unitary matrix : see Eq. (68) nucleu_s interaction potenti& are a}ﬁected by the DK trans-

o formation presented here. Especially the two-electron terms
'ﬁ of the electron—electron repulsion potenti$ remain un-

~ i changed.

= Transform all one-electron operators with ) to The natural formulation of the DK transformation, as
s p-space, e.g. V, p-Vp, or evaluate them . . . . . .

Z directly in p*space, e.g. R, A: presented in this work, is given in momentum space, which
2 see Eqgs. (6), (7), (68), (69) emerges out of the standard coordinate space formulation by
[=

(=]

o

a Fourier transformation. The basic feature of a momentum
space formulation is the diagonal form of every function of
n the momentuny, i.e., after introduction of a basis it has a
Calculate Hamiltonian Hpxm = _ & in diagonal matrix representation. However, the general DK
pPspace: see Eqs. (57)-(61) =0 HamiltonianH pxy,, contains only terms which are functions
of the quadratic momentum operafwt[see Eqs(59)—(64)].
It is therefore sufficient for the evaluation of the DK Hamil-
tonian to replace the computationally very demanding exact
Transform Hamiltonian with QF back to original Fourier transformation into momentum space by a much
coordinate space: H = QF Hpgan Q simpler representation wheng® is diagonal. This unitary
transformation() can easily be accomplished within every
quantum chemical basis set program, where the matrix rep-
resentation of the nonrelativistic kinetic eneffy: p%/2m is
already available. The desired matrix representatioft oén
then be obtained by a diagonalizationTf i.e.,

standard procedure: start Hartree—Fock SCF cycle (plus
subsequent treatments of electron correlation)

FIG. 1. Diagrammatic presentation of the implementation of the DK trans- T=0TQ'= (t)i=1 . n» (A2)
formation of the one-electron terms ingtandardquantum chemical pro-
grams. See text for detailed description. where T’ is a diagonal matrix with the eigenvaluds

=pi2/2m as entries, and where the finite basis employed in
the actual calculation was assumed to consist &later or
Gaussian orbitals and will be denoted jyy={x; :R3—C,i
APPENDIX: COMPUTATIONAL DETAILS =1 o nj. l.ASd foo'ﬂ as th? “t”'tary matt”ﬁ 1S k”gwrt" 'tt
AND IMPLEMENTATION may be applie c_)a2 one-electron operators in order to trans-
form them to theilp“-representation. As a consequence, this
. . . new matrix representation is diagonal for all functiong®f
In order to provide all necessary information on the . )
and they may easily be evaluated. For example, the diagonal

computanor.lal methodology, the |mplgmentat.|on of the DKentries of theR-factors defined by Eq7) are given by
transformation is briefly discussed. It is certainly one of the

greatest advantages of the DK transformation that its spin- c

c
free. variant can be Fmplemented_ into every nonrelativistic P Epi+mc2 2mtc?+ m2c?+ me
basis-set program with comparatively little effort. Only the

calculation of the integrals at the very beginning has to belhe A-factors and the relativistic energy—momentum rela-
modified, but the subsequent SCF or correlation calculationion given by Eq.(6) are diagonal irp®-space as well.
remain unchanged, and even the most sophisticated correla- After these preliminaries the desired DK Hamiltonian,
tion methods are available within the DK approdske Fig. n
1 for a data flow diagrain Hokun= > & (Ad)

The nonrelativistic electronic Hamiltoniad for a mo- k=0
lecular system made up ™ electrons and nuclei is in  may be evaluated. For this purpose the nonrelativistic kinetic
Born—Oppenheimer approximation given by energyT has to be simply replaced by the relativistic kinetic

(A3)
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