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The generalized Douglas–Kroll transformation
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~Received 11 July 2002; accepted 27 August 2002!

We derive the most general parametrization of the unitary matrices in the Douglas–Kroll~DK!
transformation sequence for relativistic electronic structure calculations. It is applied for a detailed
analysis of the generalized DK transformation up to fifth order in the external potential. While
DKH2–DKH4 are independent of the parametrization of the unitary matrices, DKH5 turns out to be
dependent on the third expansion coefficient of the innermost unitary transformation which is
carried out after the initial free-particle Foldy–Wouthuysen transformation. The freedom in the
choice of this expansion coefficient vanishes consistently if the optimum unitary transformation is
sought for. Since the standard protocol of the DK method is the application of unitary
transformations to the one-electron Dirac operator, we analyze the DKH procedure up to fifth order
for hydrogenlike atoms. We find remarkable accuracy of the higher-order DK corrections as
compared to the exact Dirac ground state energy. In the case of many-electron atomic systems, we
investigate the order of magnitude of the higher-order corrections in the light of the neglect of the
DK transformation of the two-electron terms of the many-particle Hamiltonian. A careful analysis
of the silver and gold atoms demonstrates that both the fourth- and fifth-order one-electron DK
transformation yield a smaller contribution to the total electronic energy than the DK transformation
of the two-electron terms. In order to improve significantly on the third-order correction DKH3, it
is thus mandatory to include the DK transformation of the two-electron terms as well as the
spin-dependent terms before proceeding to higher orders in the transformation of the one-electron
terms. However, an analysis of the ionization energies of these atoms indicates that already DKH3
yields a highly accurate treatment of the scalar-relativistic effects on properties. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1515314#
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I. INTRODUCTION

Contemporary chemistry is aware of a large number
systems, whose theoretical description requires an exten
of the framework of nonrelativistic quantum mechanics. F
example, the spectral properties and binding energies
heavy element compounds and transition-metal comple
are strongly governed by relativistic effects. Those intrin
cally relativistic systems require the framework of relativis
quantum chemistry, which is based on the Dirac equatio

HD f5@c a•p1~b21!mc21V#f5E f, ~1!

whereV is the attractive external potential of Coulomb typ
V(r)52Ze2/r , or alternatively a potential derived from a
extended nuclear charge distribution. In order to get e
tronic binding energies comparable to the nonrelativis
Schrödinger theory the energy scale is shifted by the r
energymc2 of the electron. Employing the standard repr
sentation of the Dirac algebra the four Dirac matrices may
given as

a5S 0 s

s 0 D , b5S 1 0

0 À1D ~2!

a!Electronic mail: alexander.wolf@chemie.uni-erlangen.de
b!Electronic mail: markus.reiher@chemie.uni-erlangen.de
c!Electronic mail: hess@chemie.uni-erlangen.de
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with

sx5S 0 1

1 0D , sy5S 0 2 i

i 0 D , sz5S 1 0

0 21D ~3!

being the familiar Pauli spin-matrices. Since in most situ
tions of chemical interest the threshold for pair-creation p
cesses and excitations of the positronic degrees of freedo
far beyond the energy scale of the valence shell, it is a v
good approximation to integrate them out at the very beg
ning, and thus neglect all quantum electrodynamical corr
tions. However, even within this so-called no-pair appro
mation the resulting formalism based on Eq.~1! does still
consist of four coupled differential equations, including bo
spin-free and spin-dependent terms and mixing all four co
ponents of the Dirac 4-spinorf. As a consequence, the com
putational cost of these four-component methods is sign
cantly increased as compared to nonrelativistic calculatio
and they are only applicable to systems of rather modest s
Currently, molecules containing more than two symme
nonredundant heavy-element atoms are hardly accessibl
these methods~compare Ref. 1 for a review of these met
ods!. It is therefore a highly desirable goal to find anoth
representation of the Dirac spinor, where the upper,fL, and
lower, fS, components are decoupled and where the sep
tion of computationally expensive spin-dependent terms
straightforward. The resulting scalar-relativistic tw
5 © 2002 American Institute of Physics
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component theories, which yield highly accurate results
spin–orbit coupling can be neglected, are much better
haved from a computational point of view and can even
applied to large transition-metal complexes with hundreds
electrons for comparatively little cost.

Over the last two decades two major branches of rela
istic two-component quantum chemistry have emerg
which have extensively been discussed in recent review2,3

The so-called elimination techniques exploit the fact that
electronic solutions of Eq.~1! in the case of weak potential
the small componentfS is suppressed by a factor o
(2mc)21 with respect to the large componentfL. Based on
the general theory of effective Hamiltonians,4,5 this facili-
tates the so-called regular approximations~RA!,6,7 whose
zeroth- ~ZORA! and first-order~FORA! variants have suc
cessfully been applied to a variety of systems.8–11 Recently,
Dyall took advantage of the modified Dirac equation12,13and
suggested the method of normalized elimination of the sm
component~NESC!.14–17

The second class of methods employs a suitably cho
unitary transformationU in order to annihilate the coupling
between the upper and lower components, i.e., to remove
odd ~off-diagonal! terms of the Hamiltonian. This yields
decoupled, block-diagonal transformed Hamiltonian,

Hbd5U HD U†5S h1 0

0 h2
D , ~4!

which does still act on wave functions being based on fo
component spinors, but where we now have the possibilit
focus on the positive-energy part of these spinors, i.e.,
upper-left parth1 of the HamiltonianHbd and work with
two-component objects only. The first attempt to achieve
block-diagonalization of the Hamiltonian is due to Foldy a
Wouthuysen in 1950,18 and utilizes an expansion in 1/mc2

while employing the momentum representation of the Ham
tonian. However, this expansion gives rise to highly singu
terms in the presence of an external potential, which m
therefore not be used in a variational calculation. Furth
more, the Foldy–Wouthuysen wave functions are no lon
analytic functions of 1/c in the neighborhood of 1/c50,19–22

at variance with the large componentfL of the original
Dirac spinor,23 resulting in an ill-defined nonrelativistic limit
Only the so-called free-particle Foldy–Wouthuysen~fpFW!
transformation

U05Ap~11bRp!, ~5!

with

Ap5AEp1mc2

2Ep
, Ep5Ap2c21m2c4, ~6!

Rp5
c a•p

Ep1mc2 5a•Pp5Rpa•p, ~7!

may be used in a way avoiding expansion in 1/c. It yields the
Hamiltonian

H15U0 HD U0
†5E01E11O1 , ~8!

where each term may be uniquely classified according to
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
if
e-
e
f

-
d,

r

ll

en

he

r-
to
e

is

l-
r
y
r-
r

ts

diagonal~even! or off-diagonal~odd! form and to its order in
the external potential, which is denoted by the subscript
each term on the right hand side of this equation. The exp
form of this fpFW Hamiltonian reads

E05bEp2mc2, ~9!

E15Ap~V1Rp VRp!Ap , ~10!

O15bAp@Rp ,V#Ap . ~11!

After this initial fpFW transformation the lowest-order od
term O1 is first order in the external potential, instead
zeroth-order as in the original HamiltonianHD . These ex-
pressions for the terms of the fpFW HamiltonianH1 are only
well-defined in momentum space, where the external po
tial V, and hence the first-order operatorsE1 andO1 act as
nonlocal integral operators instead of local, multiplicati
operators, e.g.,

E1 f~pi !5E d3pj

~2p\!3 E1~pi ,pj ! f~pj !. ~12!

That is, the action of the integral operatorE1 is completely
determined as soon as its kernel is specified, which m
immediately be given employing an obvious shorthand no
tion,

E1~ i , j !5AiVi j Aj1AiRiVi j RjAj . ~13!

The stepwise elimination of the respective lowest-ord
odd term of the Hamiltonian by suitably chosen unita
transformations is the central idea of the Douglas–Kr
~DK! transformation. The Hamiltonian is thus expanded
even terms of ascending order in the external potentialV,
whereby odd terms are systematically removed step by s
For this purpose the unitary transformationU of Eq. ~4! is
decomposed into a sequence of unitary transformationsUi ,
( i 50,1,2,3,. . . ) which eliminate the lowest-order odd term
Oi in the i th step in order to arrive at the block-diagon
HamiltonianHbd,

Hbd5U HD U†

5¯U4 U3 U2 U1 H1 U1
† U2

† U3
† U4

†
¯

5 (
k50

`

Ek ~14!

5 (
k50

` S Ek1 0

0 Ek2
D 5 (

k50

` S Ek1
sf 1Ek1

sd 0

0 Ek2
sf 1Ek2

sd D .

~15!

The innermost first unitary transformationU0 is always cho-
sen to be the fpFW transformation yieldingH1 , since it can
be performed in closed form and achieves exactly the des
first step. The (434)-matrix operatorsEk consist of two
two-dimensional operatorsEk1 andEk2 , which may always
be decomposed into spin-free~sf! and spin-dependent~sd!
terms, respectively. The DK method does always yield re
lar, i.e., nonsingular and well-defined expressions, which
variationally stable, and establish the possibility of syste
atic improvement by inclusion of higher orders. Furthermo
as will be demonstrated in the third section, this series
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9217J. Chem. Phys., Vol. 117, No. 20, 22 November 2002 Douglas–Kroll transformation
pansion is rapidly converging due to the strong suppres
of higher-order terms by large energy denominators. Bef
proceeding, we should not forget to mention that recen
other transformation techniques have been proposed, w
achieve the block-diagonalization of the Hamiltonian by
ternative methods.24,25 The applicability of these approache
is currently subject to extensive investigations.26,27

The original idea of the DK decoupling procedure of t
Dirac Hamiltonian dates back to 1974 and is due to Doug
and Kroll.28 In the following years it was brought to th
attention of the community and developed to a power
computational tool for relativistic quantum chemistry.29,30 Its
second-order variant, DKH2, was employed to examin
variety of systems over the last 15 years with remarka
success.

There are only a few restrictions on the choice of t
matricesUi . First, they have to be unitary and analytic~ho-
lomorphic! functions on a suitable domain of the on
electron Hilbert spaceH, and, second, they have to permit
decomposition ofHbd in even terms of definite order in th
external potential according to Eq.~14!. It is thus possible to
parametrizeUi without loss of generality by a power-serie
expansion in an odd and antihermitean operatorWi of i th
order in the external potential, where unitarity of the resu
ing power series is the only constraint. Up to now, only tw
very special parametrizations of the transformationsUi have
so far been discussed in the literature: Most frequently
square root parametrizationUi5A11Wi

21Wi has been
employed,28–30and recently it was pointed out that one cou
equally well use theexponentialansatzUi5exp(Wi).

31 In the
following, we investigate the physical consequences of
freedom in the choice of the unitary transformations. The
fore, we start with a discussion of all possible parametri
tions of a unitary transformation in terms of such power
ries expansions in Sec. II. Since one always has to trun
the series expansions in the DK procedure, we will carefu
study the consequences of truncating such power series
pansions after a finite number of terms. In Sec. III, this pr
ciple is applied to the Dirac Hamiltonian in order to deri
HDKH3 to HDKH5 , i.e., the third, fourth, and fifth-order DK
Hamiltonians employing the most general unitary parame
zation of Ui . The resulting operator equations will be d
noted as thegeneralizedDouglas–Kroll ~DK! transforma-
tion, in order to distinguish them from the restricted class
transformations that have so far been discussed in the lit
ture. In Sec. IV, numerical results for both one-electron a
many-electron atomic systems are discussed, and the bin
energies of hydrogenlike atoms are compared to the e
values resulting from the Dirac equation. The effect of t
higher-order DK corrections on both total electronic energ
and relative properties is compared to the effect of the
transformation of the two-electron terms of the many-parti
Hamiltonian. This discussion is concluded in Sec. V. T
Appendix describes aspects of implementation and comp
tional techniques.
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II. GENERAL PARAMETRIZATION OF A UNITARY
TRANSFORMATION

A. Exact unitary transformations

In this section the most general parametrization of
unitary transformationsUi ( i 51,2,. . . ) employed in the
DK transformation sequence defined by Eq.~14! is derived.
As mentioned earlier, these unitary matrices are only ben
cial for the DK procedure, if they are constructed as an a
lytic function Ui5 f (Wi) of an odd and anti-Hermitian op
eratorWi , which is of i th order in the external potential. In
order to simplify the notation, we will drop the subscripti of
both the unitary matricesUi and the odd operatorsWi in this
section and simply use the abbreviationsU andW. However,
the matrixU of this section must not be confused with th
overall unitary transformationU of Eq. ~14!, which is the
product of all DK transformationsUi . One may always
think of U as one particular transformation of the DK s
quence, e.g., the innermost unitary transformationU1 imme-
diately following the initial fpFW transformation.

The most general ansatz to construct a unitary trans
mationU5 f (W) as an analytic function of an antihermitea
operatorW is a power series expansion,

U5a0 11a1W1a2W21a3W31¯5a0 11 (
k51

`

akW
k,

~16!

which we assume to be convergent within a suitable dom
Without loss of generality we impose the restriction that t
ak may be real coefficients. Exploiting the antihermiticity
W, (W†52W) the power series expansion of the Hermiti
conjugate transformation is given as

U†5a0 12a1W1a2W22a3W31¯

5a0 11 (
k51

`

~21!k akW
k. ~17!

In order to construct a unitary transformation, i.e.,U U†

51, the coefficientsak have to satisfy a set of constraint
which may be found by calculating

U U†5a0
2 11~2a0a22a1

2!W21~2a0a41a2
2

22a1a3!W41~2a0a612a2a422a1a52a3
2!W6

1~2a0a812a2a61a4
222a1a722a3a5!W8

1~2a0a1012a2a812a4a622a1a922a3a7

2a5
2!W101O~W12!5

!

1. ~18!

Note that odd powers ofW do not occur in this expansion
because of the antihermiticity ofW. With the requirement
that different powers ofW be linearly independent, we arriv
at the followingunitarity conditionsfor the coefficients:

a0561, ~19!

a25 1
2 a0 a1

2 , ~20!

a45a0~a1a32 1
8 a1

4!, ~21!
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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a65a0~a1a51 1
2 a3

22 1
2 a1

3a31 1
16 a1

6!, ~22!

a85a0~a1a71a3a51 3
8 a1

5a3

2 3
4 a1

2a3
22 1

2 a1
3a52 5

128a1
8!, ~23!

a105a0~a1a91a3a71 1
2 a5

22 1
2 a1

3a72 3
2 a1

2a3a5

2 5
16 a1

7a31 15
16 a1

4a3
21 3

8 a1
5a52 1

2 a1a3
31 7

256a1
10!.

~24!

The first coefficienta0 is fixed apart from a global minu
sign and can thus always be chosen asa051. As it will be
shown later, the even terms in the decoupled DK Ham
tonian do not depend on this choice fora0 . Note that all
constraints imposed on lower coefficientsai ( i
50,2,. . . ,2k) have already been applied to express the c
dition for the next even coefficienta2k12 in Eqs.~19!–~24!.
Therefore all odd coefficients may be chosen arbitrarily, a
all even coefficients are functions of the lower odd ones,

a2k5 f ~a0 ,a1 ,a3 ,a5 , . . . ,a2k21!, ;kPN. ~25!

By using the general power series expansion forU all the
infinitely many parametrizations of a unitary transformati
are treated on equal footing. However, the question abou
equivalence of these parametrizations for application in
Douglas–Kroll method, which represents a crucial point
more subtle and will be analyzed in the next section. It
furthermore not cleara priori, if the anti-Hermitian matrixW
can always be chosen in the appropriate way; the manda
properties ofW, i.e., its oddness, antihermiticity and beha
ior as a certain power in the external potential, have to
checked for every single transformationUi of Eq. ~14! ap-
plied to the Dirac Hamiltonian.

The radius of convergenceRc of the power series de
pends strongly on the choice of the odd coefficients as m
be demonstrated by the following very special three
amples, which can be given in closed form:

~a! Square root parametrization: U5A11W21W,
Rc51,

~b! Cayley parametrization:U5 (21W)/(22W), Rc52,
~c! Exponential function parametrization:U5exp(W),

Rc5`.

As long as exact unitary transformationsU, i.e., infinite
power series with coefficientsak satisfying the unitarity con-
ditions given above, are applied to transform the Ham
tonian, the energy eigenvalues of the transformed Ham
tonian HDKHn5UHDU† will exactly be the same as of th
original Hamiltonian HD . Therefore, the eigenvaluesE
5^Hbd&5^HDKH`& of the completely decoupled Hami
tonianHbd will certainly not depend on the choice of the od
coefficientsa2k11 . All infinitely-many different unitary pa-
rametrizations derived above are completely equivalen
this sense. It is important to note, however, that the in
vidual evenEk terms of the infinite sum given in Eq.~14!
may in general depend on the chosen coefficients of
power series expansions of the unitary transformationsUi .
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
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B. Approximately unitary transformations

However, in actual applications of the DK transform
tion the power series expansions of the matricesUi always
have to be truncated after a finite number of terms, resul
in an approximate unitary transformation. As a consequen
the resulting transformed HamiltonianHDKHn is only block-
diagonal up to a certain order in the external potential, a
its eigenvalues will both slightly differ from the exact one
and may depend on the coefficientsak . It is thus very im-
portant to fix the odd coefficients in the best possible w
which would be to minimize the deviation of the eigenvalu
of the transformed HamiltonianHDKHn ~obtained with the
truncated expansion forUi) from the eigenvalues of the cor
respondingnth order approximation toHbd given by Eq.
~14!. For this purpose we shall assume that this may
better be achieved the more unitary the transformationsUi

are, i.e., the smaller the operator normuUiUi
†21u is. In the

following we will exploit this principle to determine the op
timal parametrization of the unitary matricesUi ( i
51,2,. . . ) in order to derive the decoupled DK Hamilto
niansHDKHn , which are correct up tonth order in the exter-
nal potential.

Since on the one hand the fpFW HamiltonianH1 does
not contain a zeroth-order odd term and on the other hanW
has to be an odd operator by construction, the derivation
the second- and third-order DK approximation requires
most a consideration of the expansion ofU up to second
order inW only, i.e.,

U5a0 11a1W1a2W2. ~26!

To this order the minimization of the deviation ofUU† from
the identity,UU†215 1

4 a1
4W4, yieldsa150. Due to the uni-

tarity conditions all other coefficients would automatica
vanish as well, andU would be the identity transformation
The coefficienta1 has thus necessarily to be chosen differe
from zero. Sincea1 defines only a simple scaling ofW, it
may hence without loss of generality always be fixed
settinga151.

The derivation of the fourth- and fifth-order DK Hami
tonian requires explicit care of all terms of the innermo
unitary transformationU1 , abbreviated in this section asU,
up to at most fourth order inW. Consequently, the deviatio
of U from unitarity is given by

UU†215~2a3
21a1

3a32 1
8 a1

6!W6

1
1

26 a1
2 ~8a32a1

3!2 W8. ~27!

This expression will in general be minimal if the first term
parentheses vanishes. As a quadratic expression fora3 it has
two solutions. In order to achieve the smallest deviation oU
from unitarity possible at that point, we will prefer th
smaller of these two solutions, which reads

a35
22&

4
a1

3'0.14645a1
3. ~28!

With this optimum choice ofa3 the deviation ofU from
unitarity is given by
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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9219J. Chem. Phys., Vol. 117, No. 20, 22 November 2002 Douglas–Kroll transformation
UU†215
1

26 ~2&23!2 a1
8 W8'4.59957•1024 a1

8 W8,

~29!

whose leading order has been reduced toW8 by the special
choice ofa3 . Since all other possible unitary parametriz
tions would feature a leading order ofW6, i.e., they will in
general lead to a larger deviation ofU from unitarity, we will
denote the DK transformation with this best choice of t
coefficients as theoptimal unitary transformationUopt, e.g.,
U1

opt for the innermost transformation.
Similarly, the sixth- and seventh-order DK approxim

tions requireU to be considered at most up to the term
orderW6. Having previously fixeda3 according to Eq.~28!,
the transformationU closest to unitarity, i.e., the optima
transformation for application in the DK method is achiev
by the choice

a55
24217&

26 a1
5'26.50478•1024 a1

5 , ~30!

which guarantees a unitary transformationU up to terms of
leading orderW10, i.e.,

~31!

The same ideas may be repeatedly applied to derive hig
order terms of the optimal parametrizationUopt to be applied
in the DK method. This procedure will fix the higher-ord
odd coefficientsa2k11 uniquely. Since these higher-orde
DK transformations will not be carried out in this work w
only briefly give the results for the following two coeffi
cients:

a75
3

211~282181& ! a1
7'4.00565•1025 a1

7 ,

~32!

a95
1

215~3•21228689& ! a1
9'23.10191•1026 a1

9 .

In general, if the power series expansion ofU is truncated
after the term of orderWk, application of the optimal DK
parametrizationUopt guarantees that the leading term
UU†21 is of orderWk14 instead of orderWk12 as for all
other unitary parametrizations.

The superior performance of the optimal parametrizat
Uopt is also documented by Tables I and II. In Table I, t
coefficientsak of four different parametrizations ofU are
compared. Both the exponential and the optimal unitary
rametrizationUopt are rapidly converging. For truncated e
pansions ofU the optimal parametrization behaves sign
cantly better than all other choices for the coefficientsak , as
is clearly demonstrated by the deviations ofU from unitarity
presented in Table II. Especially for DKH5, i.e., for a tru
cation ofU after the term of fourth-order inW, the operator
norm uUU†21u for Uopt will be dramatically smaller than fo
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
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all other parametrizations. It should not be forgotten that
truncation of any power series applied in the DK transform
tion does necessarily require that the operator norm ofW is
smaller than 1, since otherwise the higher-order terms inW
would dominate the expansion. This leads to an even be
performance of the optimal unitary parametrizationUopt as
compared to all other choices for the coefficients than i
evident by the numerical results in Table II. As a cons
quence, the eigenvalues of the transformed Hamilton
HDKHn5UHDU† will be significantly closer to the exact ei
genvalues of the Dirac HamiltonianHD if the optimal pa-
rametrizationUopt, instead of any other parametrization,
truncated after a finite number of terms. Obviously, in t
limit of considering infinitely many terms of the power seri
for U these differences will, depending on the chosen para
etrization, altogether more or less rapidly tend to zero.

III. DERIVATION OF THE DK HAMILTONIANS

In this section the sequence of unitary transformatio
defined in Eq.~14! is set up and the block-diagonal Hami
tonianHbd is constructed step by step. In order to investig
a potential dependence of the DK HamiltoniansHDKHn on
the coefficientsai ,k , we do not restrict the derivation to th
optimal parametrization of the transformationsUi derived in
the last section, but apply the most general parametriza
of Ui with the coefficientsai ,k satisfying the unitarity condi-
tions Eqs.~19!–~24! only. The first subscript of the coeffi

TABLE I. Coefficients ak of the power series expansion of the unita
transformationU for four different parametrizations. The first two coeffi
cients have been fixed toa05a151. All coefficients are given with an
accuracy of three digits.

U5A11W21W U5
21W

22W
U5exp(W) Uopt

a2 5.000E21 5.000E21 5.000E21 5.000E21
a3 0 2.500E21 1.667E21 1.464E21
a4 21.250E21 1.250E21 4.167E22 2.145E22
a5 0 6.250E22 8.334E23 26.505E24
a6 6.250E22 3.125E22 1.389E23 26.505E24
a7 0 1.563E22 1.984E24 4.006E25
a8 23.906E22 7.813E23 2.480E25 4.006E25
a9 0 3.906E23 2.756E26 23.102E26
a10 2.734E22 1.953E23 2.756E27 23.102E26

Rc 1 2 `

TABLE II. Lowest-order terms ofUU†21, for given truncation ofU after
O(Wk) for four different types of parametrizations. The first two coefficien
have been fixed toa05a151. All values are given with an accuracy of thre
digits.

k U5A11W21W U5
21W

22W
U5exp(W) Uopt

4 21.250E21 W6 6.250E22 W6 1.389E22 W6 4.600E24 W8

6 7.813E22 W8 1.563E22 W8 3.472E24 W8 22.832E25 W10

8 25.469E22 W10 3.906E23 W10 4.960E26 W10 2.193E26 W12

10 4.102E22 W12 9.766E24 W12 4.593E28 W12 21.908E27 W14
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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cients ai ,k characterizes the corresponding unitary mat
Ui . For later convenience the odd and antihermitean exp
sion parameter is denoted byWi8 instead ofWi . Although we
have already derived the DK expressions up to fourth or
~DKH4!,2 we recall the results here since the DKH5 term
depend on all preceding steps. The transformation of
fpFW HamiltonianH1 with U1 yields

H25U1 H1 U1
†5Fa1,011 (

k51

`

a1,kW18
kG ~E01E11O1!

3Fa1,011 (
k51

`

~21!k a1,kW18
kG

5E01E11O 1
(2)1E21O 2

(2)1E3

1O 3
(2)1 (

k54

`

~E k
(2)1O k

(2)!, ~33!

with

O 1
(2)5O11a1,0a1,1@W18 ,E0#, ~34!

E25a1,0a1,1@W18 ,O1#1 1
2a1,1

2 @W18 ,@W18 ,E0##, ~35!

O 2
(2)5a1,0a1,1@W18 ,E1#, ~36!

E35 1
2 a1,1

2 @W18 ,@W18 ,E1##, ~37!

O 3
(2)5 1

2 a1,1
2 @W18 ,@W18 ,O1##2 1

2 a1,0a1,1
3 W18@W18 ,E0#W18

1a1,0a1,3@W18
3,E0#, ~38!

E 4
(2)5a1,1a1,3@W18

3,@W18 ,E0##2 1
8 a1,1

4 @W18
2,@W18

2,E0##

1a1,0a1,3@W18
3,O1#2 1

2 a1,0a1,1
3 W18@W18 ,O1#W18 ,

~39!

E 5
(2)52 1

8 a1,1
4 @W18

2,@W18
2,E1##

1a1,1a1,3@W18
3,@W18 ,E1##. ~40!

Since this presentation focuses on the fifth-order DK Ham
tonian, only those terms are explicitly given at this fir
stage, which are required to derive the final fifth-order ev
terms, and all higher-order terms are suppressed. Note
E0 , E1 , andO1 are independent ofW18 and thus completely
determined from the very beginning. The subscript attac
to each term of the Hamiltonian denotes its order in the
ternal potential, whereas the superscript in parentheses
cates that such a term belongs to the intermediate, part
transformed Hamiltonian relevant only for the followin
higher-order terms. Only those even terms, which will not
affected by the succeeding unitary transformationsUi ( i
52,3,. . . ) bear no superscript and may already be identifi
with the corresponding terms in the expansion ofHbd given
by Eq. ~14!. It is a consequence of the so-calle
(2n11)-rule, thatE2 and E3 are already completely dete
mined after the first unitary DK transformationU1 . Hence,
Hbd is already defined up to third order in the external p
tential although the second order termO 2

(2) is still present
and will be eliminated in the next transformation step.
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In general, the first 2n11 even terms ofHbd depend
only on then lowest matricesW18 ,W28 , . . . ,Wn8 , i.e., they are
independent in particular of all succeeding unitary transf
mations. This remarkable property of the even terms or
nates from the central idea of the DK method to choose
latest odd operatorWi8 always in such a way, that the lowe
of the remaining odd terms is eliminated. ThereforeW18 is
chosen in order to guaranteeO 1

(2)50, and thus the following
condition forW18 is obtained:

@W18 ,E0#52
a1,0

a1,1
O1 , ~41!

which is satisfied if and only if the kernel ofW18 is given by

W18~ i , j !5
a1,0

a1,1
b

O1~ i , j !

Ei1Ej
. ~42!

This choice ofW18 satisfies all constraints, namely that
is an odd and antihermitean operator of first order inV. Note
that W18 depends on the beforehand arbitrarily chosen co
ficientsa1,0 anda1,1, i.e., it is linear ina1,0/a1,1. We there-
fore introduce the modified operatorW1 defined by

W1~ i , j !5a1,0a1,1W18~ i , j !5b
O1~ i , j !

Ei1Ej
, ~43!

which is manifestly independent of the coefficientsa1,k .
With this choice ofW1 and by utilizing relation~41! the
above results may be simplified to a large extent,

E25 1
2 @W1 ,O1#, ~44!

O 2
(2)5@W1 ,E1#, ~45!

E35 1
2 @W1 ,@W1 ,E1##, ~46!

O 3
(2)5 1

2 @W1 ,@W1 ,O1##1 1
2 W1O1W11

a1,3

a1,1
3 @W1

3 ,E0#,

~47!

E 4
(2)5 1

8 @W1 ,@W1 ,@W1 ,O1###, ~48!

E 5
(2)52 1

8 @W1
2 ,@W1

2 ,E1##1
a1,3

a1,1
3 @W1

3 ,@W1 ,E1##. ~49!

We find that all terms contributing to the fourth-order D
HamiltonianHDKH4 are independent of the coefficientsa1,k ,
i.e., they are invariant under an arbitrary change of the
rametrization ofU1 . Terms contributing to the fifth- and
higher-order DK corrections, however, depend on the par
etrization ofU1 . The next unitary transformationU2 is ap-
plied in order to eliminate the odd term of second order,

H35U2 H2 U2
†5Fa2,011 (

k51

`

a2,kW28
kG

3H2 Fa2,011 (
k51

`

~21!k a2,kW28
kG

5 (
k50

5

Ek1 (
k56

`

E k
(3)1 (

k52

`

O k
(3) ~50!

with
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O 2
(3)5O 2

(2)1a2,0a2,1@W28 ,E0#, ~51!

E45E 4
(2)1a2,0a2,1@W28 ,O 2

(2)#1 1
2 a2,1

2 @W28 ,@W28 ,E0##,
~52!

E55E 5
(2)1a2,0a2,1@W28 ,O 3

(2)#1 1
2 a2,1

2 @W28 ,@W28 ,E1##.
~53!

Again, W2 is conveniently chosen to eliminate the secon
order odd termO 2

(3) , i.e., it has to satisfy the condition,

@W28 ,E0#52
a2,0

a2,1
O 2

(2)52
a2,0

a2,1
@W1 ,E1#. ~54!

After introduction of the modified operator W2

5a2,0a2,1W28 , this is guaranteed if and only if the kernel o
W2 is given by

W2~ i , j ,k!5b
W1~ i , j !E1~ j ,k!2E1~ i , j !W1~ j ,k!

Ei1Ek
. ~55!

Since even and odd operators obey the same multiplica
rules as natural numbers, i.e., even times odd is odd, etc.
is obviously an odd and antihermitean operator of sec
order in the external potential, which is independent of
chosen parametrizations of the unitary transformations.W2 is
thus a second-order integral operator in momentum sp
whose action on a 4-spinorf is defined by

W2 f~pi !5E d3pjd
3pk

~2p\!6 W2~pi ,pj ,pk! f~pk!5 f ~pi !.

~56!

With this choice ofW2 the final results for the fourth- an
fifth-order even terms are given by

E45 1
8 @W1 ,@W1 ,@W1 ,O1###1 1

2 @W2 ,@W1 ,E1##, ~57!
e
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E55 1
2 @W2 ,@W2 ,E1##1 1

2 @W2 ,@W1 ,@W1 ,O1###

1 1
2 @W2 ,W1O1W1#12 1

8 @W1
2 ,@W1

2 ,E1##

1
a1,3

a1,1
3 @@W2 ,W1

3#,E0#, ~58!

where we have extensively taken advantage of Eq.~54! in
order to simplify the expressions. It should be mentioned t
earlier Nakajima and Hirao have already tried to derive
formulas for both the kernel ofW2 , Eq. ~55!, and the fourth-
and fifth-order Hamiltonians, Eqs.~57! and ~58!, employing
the exponential parametrization of the unitary matrices31

However, they have not yet given any numerical results
the fourth- and fifth-order DK correction. Furthermore, the
expressions contain some misprints and are based on th
ponential instead of the most general parametrization of
unitary matrices.

While the termE4 is still independent of the chosen pa
rametrizations of the two unitary transformations,2 the sub-
sequent even termE5 depends on the coefficientsa1,1 and
a1,3 of the parametrization of the first DK transformatio
U1 . We will therefore fix the coefficienta1,3 according to
Eq. ~28! of the discussion in Sec. II. This procedure guara
tees that the eigenvalues ofHDKH5 will deviate as little as
possible from the exact eigenvalues ofHD , as we have de-
scribed in detail in the last section.

The electronic, i.e., upper-left (232)-blocks of the ker-
nels of the lowest order terms may be explicitly given as

E01~ i !5Ei2mc2, ~59!

~60!
E21~ i , j ,k!5 1
2$2Ai s•Pi Ṽi j s•PjAj AjVjkAk1Ai s•Pi Ṽi j Aj AjVjk s•Pk Ak1AiṼi j Aj Pj

2 AjVjkAk

2AiṼi j Aj Aj s•PjVjk s•Pk Ak2 Ai s•Pi Vi j s•PjAj Aj ṼjkAk

1Ai s•Pi Vi j Aj Aj Ṽjk s•Pk Ak1AiVi j Aj Pj
2 AjṼjkAk2AiVi j Aj Aj s•Pj Ṽ jk s•Pk Ak%, ~61!
ore
in

the

ns-
n-
lar-

on

il-
E31~ i , j ,k,l !5 1
2$Ai s•Pi Ṽi j s•Pj Aj Aj ṼjkAk E1~k,l !

1¯ , ~62!

where the abbreviation

Ṽi j 5
Vi j

Ei1Ej
5

V~pi ,pj !

Api
2c21m2c41Apj

2c21m2c4
~63!

has been introduced. Furthermore, Dirac’s relation

s•Pi Vi j s•Pj5Pi•Vi j Pj1 i s•~Pi3Vi j Pj ! ~64!

for Pauli spin matrices has been used, which, in the cas
vanishing potential, simplifies to

s•Pj s•Pj5Pj
2 . ~65!
of

The expressions for higher-order kernels are hardly m
complicated, but very lengthy, and will not be given here
full detail. They can easily be constructed by evaluating
expressions of the operatorsE3 , E4 , and E5 given by Eqs.
~46!, ~57!, and~58! with the help of Eqs.~10!, ~11!, ~43!, and
~55!.

IV. RESULTS

The numerical performance of the generalized DK tra
formation up to fifth order is investigated for both hydroge
like ions and many-electron atomic systems. The sca
relativistic HamiltoniansHDKH1 up to HDKH5 have been
implemented into an atomic Hartree–Fock program based
the work by Roothaan and Bagus.32 The DK transformation
was only applied to the one-electron terms of the Ham
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE III. Ground state energies for one-electron hydrogenlike systems with varying nuclear chargeZ in Hartree atomic units. All calculations wer
performed with a relativistic universal Gaussian basis set~Ref. 33! with originally 32 s-functions, augmented up to 50s-functions for systems with high
nuclear charge. The speed of lightc5137.035 989 5 was used for all calculations~Ref. 34!.

Z 20 40 60 80 100 120

n.r. 2199.999 984 2799.999 988 21 799.999 97 23 199.999 91 24 999.999 8 27 199.999 5
DKH1 2201.341 494 2823.894 221 21 934.202 84 23 686.448 68 26 472.402 6 212 132.679 9
DKH2 2201.072 538 2817.615 772 21 893.897 64 23 523.324 84 25 906.191 8 29 594.096 0
DKH3 2201.076 660 2817.820 110 21 895.844 04 23 533.119 56 25 942.369 4 29 712.931 1
DKH4 2201.076 508 2817.804 850 21 895.627 02 23 531.708 56 25 936.473 9 29 698.523 5
DKH5 2201.076 523 2817.808 095 21 895.702 82 23 532.461 47 25 941.528 5 29 730.968 4
DEQa 2201.076 523 2817.807 498 21 895.682 36 23 532.192 15 25 939.195 4 29 710.783 5

aAnalytical value according to the Dirac equation, see Eq.~66!.
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tonian and the nonrelativistic two-electron Coulomb rep
sion terms remained unchanged. For all calculations we h
employed the uncontracted relativistic universal Gauss
basis set provided by Malliet al.,33 comprising 32 even-
tempered exponents. The value for the speed of li
c5137.035 989 5 was taken from Ref. 34.

A. One-electron systems

The numerical accuracy and basic features of the var
DK approximations are investigated. Therefore, the grou
state, i.e., 1s energies of hydrogenlike ions for the who
periodic table are determined for the nonrelativistic~n.r.!
case as well as for the various Douglas–Kroll (DKHn)
Hamiltonians. Since these systems feature only one si
electron in ans-orbital, no inaccuracy is introduced by th
neglect of the spin-dependent terms and of the DK trans
mation of the two-electron terms. A point-nucleus model w
applied in order to compare the results to the analytica
known exact eigenvalues resulting from the Dirac equat
~DEQ!, which are given by

E1s1/2
5mc2~A12~Za!221!, ~66!

wherea is the fine structure constant. The smallest expon
of the universal Gaussian basis set is given by 0.021 494
order to achieve sufficiently high accuracy to resolve
higher-order DK corrections properly even for systems w
very large nuclear chargeZ, we have augmented this bas
with 18 additional large exponents. The ratio between t
subsequent additional exponents we have added is 2.054
according to the even-tempered ratio derived from the or
nal exponents of Malliet al.33 The resulting basis set con
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tained 50s-functions and exponents up to 1014. The numeri-
cal results for six exemplary systems with increasing nucl
charge are shown in Table III.

The exact nonrelativistic result was recovered for all c
culations to very high accuracy. The very small deviation
at most 1026% proves that the basis set chosen is able
describe the wave function close to the nucleus very well
least for the nonrelativistic description based on the Sch¨-
dinger equation. DKH2 represents a significant improvem
over the nonrelativistic result for all values of the nucle
chargeZ, whereas the first-order DK correction dramatica
overestimates the binding energy, as it is well known fo
long time.35 Due to this huge over-binding the first-order D
approximation does not have any practical value. For
creasing values ofZ, however, also DKH2 does no longe
describe the relativistic effects on thetotal energy appropri-
ately, as, e.g., already forZ5100 the absolute error is abou
33 hartrees, increasing rapidly up to about 137 hartrees
Z5120. For those highly relativistic systems higher-ord
approximations are important and, indeed, the results
tained with DKH3, DKH4, and DKH5 are in much bette
agreement with the exact Dirac eigenvalues. One necess
has to go beyond the established second-order DK me
for highly accurate total energies of systems including he
nuclei. Fortunately, the third- and fourth-order correctio
DKH3 and DKH4 do already remove the major part of t
deficiencies of the second-order approximation.

There is one further subtlety connected with higher-or
DK transformations one should be aware of. The energ
obtained with odd DK corrections, i.e., DKH1, DKH3, an
DKH5 are always below the exact Dirac eigenvalues, wh
is demonstrated by Table III. This indicates clearly th
for
TABLE IV. Ground state energies for hydrogenlike systems with high nuclear chargeZ for three different basis sets in Hartree atomic units. See text
further details. The speed of lightc5137.035 989 5 was used for all calculations~Ref. 34!.

Z

32 exponents 41 exponents 50 exponents

100 110 120 100 110 120 100 110 120

DKH1 26461.94 28554.97 211638.82 26472.07 28609.99 212041.41 26472.40 28613.85 212132.68
DKH2 25905.26 27513.94 29569.10 25906.18 27518.39 29593.20 25906.19 27518.46 29594.10
DKH3 25940.92 27578.06 29682.54 25942.36 27584.09 29712.07 25942.37 27584.16 29712.93
DKH4 25935.12 27567.66 29665.80 25936.46 27573.69 29697.12 25936.47 27573.82 29698.52
DKH5 25939.63 27578.09 29689.30 25941.50 27586.09 29728.78 25941.53 27586.31 29730.97
DEQa 25939.20 27579.69 29710.78 25939.20 27579.69 29710.78 25939.20 27579.69 29710.78

aAnalytical value according to the Dirac equation, see Eq.~66!.
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. Ground state energies for the silver atom and cation in Hartree atomic units. For all calculations a 32s29p20d universal Gaussian basis set~Ref.
33! was used~see text for details!. All energy differencesDE5EDKHn2EDFC refer to the 4-component DFC values. The ionization energy was calculate
IE5E(Ag1)2E(Ag0). The speed of lightc5137.035 989 5 was used for all calculations~Ref. 34!.

Ag0 Ag1

E DE «HOMO
a E DE IE

n.r. 25197.6980 1117.04 20.2120 25197.4809 1117.03 0.2171
DKH1 25340.6559 225.915 20.2394 25340.4206 225.913 0.2353
DKH2 25311.8945 12.8459 20.2368 25311.6617 12.8456 0.2328
DKH3 25312.9985 11.7419 20.2369 25312.7656 11.7417 0.2329
DKH4 25312.9019 11.8385 20.2369 25312.6689 11.8384 0.2329
DKH5 25312.9263 11.8141 20.2369 25312.6934 11.8139 0.2329
DFCb 25314.7404 60.0000 20.2372 25314.5073 60.0000 0.2331

aOrbital energy of the highest occupied orbital, i.e., the 5s-orbital for Ag0.
b4-component DFC results obtained withMOLFDIR ~Ref. 36!.
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HDKH3 andHDKH5 are only variationally stable but not varia
tional approximations to the exact electronic Hamiltonia
However, an extension of the DK method to the next ev
order in the external potential does always cure this d
ciency of the odd DK approximations. The binding energ
calculated withh1 derived from DKH4 are always found t
be above the corresponding Dirac values, supporting the
jecture that DKH4 is a variational method. The overestim
tion of the 1s binding energy is a very important feature
DKH3 that has not yet been observed in the only ear
study about the third-order DK method.31 It is only revealed
by application of very large basis sets, since very high ex
nents are necessary to model the region very close to
nucleus in such highly charged one-electron ions.

The necessity for sufficiently large basis sets in orde
resolve DK corrections for highly charged systems prope
is documented in Table IV. Only large basis sets with m
than 40 exponents yield correct DK energies and reprod
the above mentioned features of the DK transformation. O
smallest basis with 32 exponents is not able to reveal
overbinding of the odd DK Hamiltonians. Furthermore,
energies obtained with this small basis set are significa
too small in absolute value, i.e., too positive, since one is
away from the basis set limit.

For systems with nuclear chargeZ greater than 104 we
find the DKH5 energy always to be below the result obtain
with DKH3. This could possibly indicate a divergence b
havior of the higher-order DKH corrections. However, it
most likely that even our largest basis with 50 exponent
not suitable to model the region close to the nucleus in
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
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presence of very strong electric fields as it is the case
these highly-charged heavy ions. We should note that
deficiency is only of minor importance for chemical pu
poses, where we usually deal with neutral or weakly-char
systems.

B. Many-electron atoms

Tables V and VI show the results of calculations on t
silver and gold atom for the nonrelativistic case as well as
the various DK approximations and the DFC Hamiltonia
We used a 32s29p20d15f uncontracted universal Gaussia
basis set for all calculations.33 For the neutral silver and gold
atoms the2S ground state configuration, i.e.,@Kr#4d105s1

for Ag0 and @Xe#5d106s1 for Au0 was investigated. The
closed-shell cations Ag1 and Au1 were obtained by remov
ing the highests-orbital electron.

All 4-component DFC calculations were performed wi
MOLFDIR.36 Since MOLFDIR employs a Gaussian nuclea
model, we have described the desired pointlike nucleus
increasing the exponent for the Gaussian nuclear charge
tribution to 1020. A comparison of our calculated DFC resul
for the neutral atoms with the numerical 4-component D
benchmark results for point nuclei provided by Visscher a
Dyall37 revealed only an insignificant error of the order
the error introduced by the limited size of the basis set. T
deficiency of the latter was found to be smaller than 0.0
a.u. (,1024%) for silver and 0.259 a.u. (,1023%) for
gold.

For both atoms the nonrelativistic total energyE is
TABLE VI. Ground state energies for the gold atom and cation in Hartree atomic units. For all calculations a 32s29p20d15f universal Gaussian basis set~Ref.
33! was used~see text for details!. The same symbols and conventions are employed as in Table V.

Au0 Au1

E DE «HOMO E DE IE

n.r. 217 865.394 4 11174.19 20.2208 217 865.177 0 21174.13 0.2174
DKH1 219 339.308 8 2299.723 20.3061 219 339.012 9 2299.710 0.2959
DKH2 218 993.722 1 145.8635 20.2894 218 993.441 6 245.8612 0.2805
DKH3 219 014.295 2 125.2904 20.2904 219 014.013 8 225.2890 0.2814
DKH4 219 011.347 3 128.2383 20.2903 219 011.066 0 228.2368 0.2813
DKH5 219 012.810 3 126.7753 20.2904 219 012.528 9 226.7739 0.2814
DFC 219 039.585 6 60.00000 20.2919 219 039.302 8 60.00000 0.2828
P license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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found to deviate sizeably from the exact, i.e., 4-compon
DFC values. An application of the DK approximation up
third order significantly improves on the total energy. A fu
ther extension of the DK transformation to fourth and fif
order yields only minor contributions. The order of magn
tude of these higher order corrections, i.e., the changes
tween DKH3 and DKHn (n54,5), are 0.1 a.u. for silver an
3 a.u. for gold. These changes are smaller than the effec
the DK transformation of the two-electron terms, which w
earlier found to be about 1.1 a.u. for silver and 6.5 a.u.
gold.38 It seems thus necessary to take care of both the
transformation of the two-electron terms and the sp
dependent terms that were neglected in this implementa
before extending the scalar-relativistic DK transformation
the one-electron terms to higher orders. Furthermore, du
the previously discussed over-binding of the third-order D
correction, DKH3 does always yield the best approximat
to the exact total energy. It is therefore recommendable
prefer DKH3 instead of the standard DKH2 variant for re
tivistic many-electron calculations of quantum chemistry.

The same conclusion may be drawn by an investiga
of the dependence of relative energies like the ionizat
energy IE5E(X1)2E(X0) (X5Ag, Au! and the energy of
the highest occupied orbital«HOMO on the order of the DK
transformation. Both IE and«HOMO change significantly up
to DKH3, but are almost unchanged by transition to DKH
and DKH5. Again, the deviation of the DKH ionization en
ergy from the DFC value is due to the neglect of the sp
dependent terms and the DK transformation of the tw
electron terms.

It should be mentioned that our calculated results h
necessarily been compared to the 4-component DFC va
and not to experimental values. Both our Hartree–Fock
and the relativistically analogous Dirac–Fock SCF calcu
tions do not include any electron–electron correlation effe
except exchange. By contrast, the deviation of our res
from the experimental values is mainly due to the neglec
correlation effects. However, our Hartree–Fock-type calcu
tions represent a test of the methodology rather than a c
parison with experiment.

The estimate of the ionization energy via Koopma
theorem IE52«HOMO approaches the experimental valu
with slightly higher accuracy than ourDSCF calculations.
This is due to the well-known effect of the neglect of t
orbital relaxation, which partially compensates the error
troduced by the neglect of correlation effects.

The results of Tables V and VI indicate clearly, that
scalar-relativistic implementation of the one-electron D
transformation up to any order is insufficient for highly a
curate calculations of the relativistic effects on the total
ergy. However, for most chemical applications relative en
gies and properties, for which already DKH3 yields ve
satisfactory results, are by far more important.

V. CONCLUSION

We have derived the most general parametrization of
unitary matricesUi applied in the DK transformation se
quence. It is given as a power series expansion in an odd
anti-Hermitian operatorWi of i th order in the external po
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
t

e-

of
s
r
K
-
n

f
to

n
to
-

n
n

-
-

e
es,
K
-
ts
ts
f
-
-

’

-

-
r-

e

nd

tential. The only constraints are the unitarity conditions
the even coefficients of this power series. In particular,
traditional square root parametrization introduced by Do
glas and Kroll,Ui5A11Wi

21Wi , is only one special case
of infinitely many equivalent possibilities.

In practical applications one always has to truncate
power series expansion forUi after some finite number o
terms, depending on the order of the DK approximati
sought for. However, due toWi being ani th-order operator
in the external potential, it is mandatory to expand the inn
most unitary transformations to higher order inWi than the
outer transformations. For example, the consistent deriva
of HDKH5 requiresU1 to be expanded up to terms of ord
W1

4, but U2 only up to terms ofW2
2.

These truncations of the power series expansions ofUi

lead to deviations from unitarity, which depend on the ch
sen parametrization. In order to minimize these errors,
derived the coefficients of the optimal parametrizationUopt,
which is still closest to unitarity if it is truncated after an
arbitrary order inWi . In general, if the power series expa
sion of Ui is truncated after the term of orderWi

k , applica-
tion of the optimal DK parametrizationUi

opt guarantees tha
the leading term ofUiUi

†21 is of order Wi
k14 instead of

orderWi
k12 as for all other unitary parametrizations.

Applying the most general parametrization forUi , we
found the DK Hamiltonians up to DKH4 to be independe
on the chosen parametrizations of the unitary transformat
Ui . The fifth- and all higher-order Hamiltonians, howeve
depend on the choice of the coefficients of the power se
parametrizations. This arbitrariness in the DK Hamiltonia
vanishes consistently by application ofUopt, leading to ei-
genvalues of the transformed DK Hamiltonians that are
close as possible to the ones of the original Dirac Ham
tonian.

The DK method features excellent convergence beha
since thenth-order kernel containsn21 factors ofṼ defined
by Eq. ~63!, i.e., it is damped by a factor smaller tha
(2mc2)2n11. An extension of this generalized Douglas
Kroll transformation to sixth and higher order in the extern
potential is straightforward, but will yield only tiny correc
tions as compared to DKH5. Furthermore, before extend
the DK procedure to higher than third order in the exter
potential, it is more important to previously consider t
spin-dependent terms and the DK transformation of the tw
electron terms of the many-particle Hamiltonian. It w
shown that the modification of the one-electron integr
yields the major contribution to physical observables, as
transformation of the two-electron integrals does most like
in general, not lead to significant changes on relative en
gies and properties.
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APPENDIX: COMPUTATIONAL DETAILS
AND IMPLEMENTATION

In order to provide all necessary information on t
computational methodology, the implementation of the D
transformation is briefly discussed. It is certainly one of t
greatest advantages of the DK transformation that its s
free variant can be implemented into every nonrelativis
basis-set program with comparatively little effort. Only th
calculation of the integrals at the very beginning has to
modified, but the subsequent SCF or correlation calculati
remain unchanged, and even the most sophisticated cor
tion methods are available within the DK approach~see Fig.
1 for a data flow diagram!.

The nonrelativistic electronic HamiltonianH for a mo-
lecular system made up ofN electrons andM nuclei is in
Born–Oppenheimer approximation given by

FIG. 1. Diagrammatic presentation of the implementation of the DK tra
formation of the one-electron terms intostandardquantum chemical pro-
grams. See text for detailed description.
Downloaded 03 Jul 2007 to 129.132.217.103. Redistribution subject to AI
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~A1!

and contains zero-, one-, and two-electron terms. Only
one-electron terms of the kinetic energyT and the electron-
nucleus interaction potentialV are affected by the DK trans
formation presented here. Especially the two-electron te
of the electron–electron repulsion potentialH2 remain un-
changed.

The natural formulation of the DK transformation, a
presented in this work, is given in momentum space, wh
emerges out of the standard coordinate space formulatio
a Fourier transformation. The basic feature of a moment
space formulation is the diagonal form of every function
the momentump, i.e., after introduction of a basis it has
diagonal matrix representation. However, the general
HamiltonianHDKHn contains only terms which are function
of the quadratic momentum operatorp2 @see Eqs.~59!–~64!#.
It is therefore sufficient for the evaluation of the DK Ham
tonian to replace the computationally very demanding ex
Fourier transformation into momentum space by a mu
simpler representation wherep2 is diagonal. This unitary
transformationV can easily be accomplished within eve
quantum chemical basis set program, where the matrix
resentation of the nonrelativistic kinetic energyT5p2/2m is
already available. The desired matrix representation ofV can
then be obtained by a diagonalization ofT, i.e.,

T85V T V†5~ t i ! i 51, . . . ,n , ~A2!

where T8 is a diagonal matrix with the eigenvaluest i

5pi
2/2m as entries, and where the finite basis employed

the actual calculation was assumed to consist ofn Slater or
Gaussian orbitals and will be denoted byx5$x i :R3→C,i
51, . . . ,n%. As soon as the unitary matrixV is known, it
may be applied to all one-electron operators in order to tra
form them to theirp2-representation. As a consequence, t
new matrix representation is diagonal for all functions ofp2,
and they may easily be evaluated. For example, the diag
entries of theR-factors defined by Eq.~7! are given by

Rpi
5Ri5

c

Epi
1mc2 5

c

A2mtic
21m2c41mc2

. ~A3!

The A-factors and the relativistic energy–momentum re
tion given by Eq.~6! are diagonal inp2-space as well.

After these preliminaries the desired DK Hamiltonian

HDKHn5 (
k50

n

Ek ~A4!

may be evaluated. For this purpose the nonrelativistic kin
energyT has to be simply replaced by the relativistic kine

-
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termE0 given by Eq.~59!. Its calculation is straightforward
since it is a diagonal and spin-free, and hence o
component expression. The evaluation of the first-order
correctionE1 given by Eq.~60! is slightly more complicated
since it requires knowledge of the operatorPVP. Its matrix
elements may, however, be reduced to the representatio
the external potential via the relation

^x i up•Vpux j&5\2^¹x i uVu¹x j&. ~A5!

These are the only new types of integrals which have to
provided for scalar implementations of the DK procedu
where all spin-dependent terms, e.g.,E11

sd , have simply been
neglected.

The essential step in the evaluation of all higher D
corrections is to insert the resolution of the identity,

15s•Pj

1

Pj
2 s•Pj , ~A6!

wherever terms of the structures•PV¯Vs•P occur, in or-
der to reduce all terms to only a few simple expressio
Note that this procedure is exact within the given basis
representation. Again, after subsequent restriction to sc
i.e., spin-free terms by application of Dirac’s relation f
Pauli spin matrices given in Eq.~64!, the kernels ofEk con-
tain only computationally feasible terms~see Ref. 2!.

Now the spin-free DK Hamiltonian may be calculated
the desired level of accuracy. Within our finite basis set
proximation the multiple integral expressions occurring
the evaluation of the momentum space operatorsEk are re-
duced to simple matrix multiplications. As soon asHDKHn

has been evaluated within the chosenp2-representation, it
can be transformed back to the original coordinate space
resentation by applying the inverse transformationV†. This
Hamiltonian is then available for every variational procedu
without any further modifications.
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