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Abstract

We give the description of nonlinear nonautonomous ordinary differential equations of
order n with a so-called reducible linear part. The group classification of generalized
Emden-Fowler equations of the mentioned class is done. We have found such laws of
the variation of f(x) that the equation admits one, two, or tree one-parameter Lie
groups.

1. Introduction: the method of autonomization [1, 2]

Nonlinear nonautonomous equations with a reducible linear part form a wide class of
ordinary differential equations (ODE) that have both theoretical and applied significance.
We can write

(NLNA)y ≡
n∑

k=0

(
n

k

)
aky

(n−k) = Φ(x, y, y′, . . . , y(m)), ak ∈ Cn−k(I), (1.1)

I = {x|, a ≤ x ≤ b}, where the corresponding linear equation

Lny ≡
n∑

k=0

(
n

k

)
aky

(n−k) = 0,

can be reduced by the Kummer-Liouville ( KL) transformation

y = v(x)z, dt = u(x)dx, v, u ∈ Cn(I), uv �= 0, ∀x ∈ I, (1.2)

to the equation with constant coefficients

Mnz ≡
n∑

k=0

(
n

k

)
bkz

(n−k)(t) = 0, bk = const.

Theorem 1.1. For the reduction of (1.1) to the nonlinear autonomous form

(NLA)z ≡
n∑

k=0

(
n

k

)
bkz

(n−k)(t) = aF (z, z′(t), . . . , z(m)), a = const,

by the KL transformation (1.2), it is necessary and sufficient that Lny = 0 is reducible
and the nonlinear part Φ can be represented in the form:

Φ(x, y, y′, . . . , y(m)) = aunvF

[
y

v
,
1
v

(
1
u
D − v′

vu

)
y, . . . ,

1
v

(
1
u
D − v′

vu

)m

y

]
,
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where D = d/dx,
(
1
u
D − v′

vu

)k

y is the k-th iteration of differential expression(
1
u
D − v′

vu

)
y, and u(x) and v(x) satisfy the equations

1
2
u′′

u
− 3
4

(
u′

u

)2

+
3

n+ 1
B2u

2 =
3

n+ 1
A2,

v(x) = |u(x)|(1−n)/2 exp
(
−

∫
a1dx

)
exp

(
b1

∫
udx

) (1.3)

respectively; A2 = a2−a2
1−a′1, B2 = b2−b21, i.e., (1.1) is invariant under a one-parameter

group with the generator

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
, ξ(x, y) =

1
u(x)

, η(x, y) =
v′

uv
y. (1.4)

In this case, (1.1) assumes partial solutions of the kind

y = ρv(x), bn = aF (ρ, 0, . . . , 0). (1.5)

Theorem 1.2. 1) If the linear part Lny of the equation

Nn(y) ≡ Lny +
l∑

s=1

fs(x)yms = F (x), 1 ≤ m1 < m2 < . . . < ml, (1.6)

can be reduced by the KL transformation and, in addition, the following conditions

psu
n = fs(x)vms−1, ps = const,

are fulfilled, then equation (1.6) can be transformed to the equation

Mn(z) +
l∑

s=1

psz
ms = v−1(x(t))u−n(x(t))F (x(t));

2) the equation

Lny +
l∑

s=1

fs(x)yms = 0,

corresponding (1.6) assumes the solutions of the form (1.5), where v(x) not only satisfies
to relation (1.3) but it is also a solution of the linear equation

(Ln − bnu
n)v = 0,

and ρ satisfies to the algebraic equation

bnρ+
l∑

s=1

psρ
ms = 0.
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2. The Emden-Fowler equation and the method of autonomization [3]

Let us consider the Emden-Fowler equation

y′′ +
a

x
y′ + bxm−1yn = 0, n �= 0, n �= 1, m, a, b are parameters , (2.1)

which is used in mathematical physics, theoretical physics, and chemical physics. Equa-
tion (2.1) has interesting mathematical and physical properties, and it has been investi-
gated from various points of view. In this paper, we are interested in it from the point of
view of autonomization.

Proposition 2.1. 1) Equation (2.1) can be reduced to the autonomous form

z̈ − (1− a)(n− 1) + 2(1 +m)
n− 1

ż +
[(1− a)(n− 1) + 1 +m](1 +m)

(n− 1)2
z + bzn = 0

by the transformation y = x(1+m)/(1−n)z, dt = x−1dx and has the invariant solutions

y = ρx(1+m)/(1−n),
[(1− a)(n− 1) + 1 +m](1 +m)

(n− 1)2
ρ+ bρn = 0.

2) (2.1) admits the one-parameter group x1 = eεx, y1 = e−2ε(1+m)/(n−1)y, ε is a
parameter, with the generator

X = x
∂

∂x
+
1 +m

1− n
y
∂

∂y
.

3. The generalized Emden-Fowler equation

We consider the group analysis and exact solutions of the equation

y′′ + a1(x)y′ + a0(x)y + f(x)yn = 0, n �= 0, n �= 1. (3.1)

Equation (3.1) can be reduced to the autonomous form

z̈ ± b1ż + b0z + czn = 0 (3.2)

by the KL transformation (1.3) under specific laws of variation of f(x).
We have found such laws of variation of f(x) that equation (3.1) admits one, two, or

three-parameter Lie groups. It can’t admit a larger number of pointwise symmetries.
We call the equation

y′′ + g(x)yn = 0, (3.3)

a canonical generalized Emden-Fowler equation.
Equation (3.1) can always be reduced to the form (3.3) by a KL transformation.

Lemma 3.1. In order that (3.1) can be reduced to (3.2) by the KL transformation (1.3),
it is necessary and sufficient that the following equivalent conditions be satisfied:

1◦. The kernel u(x) of transformation (1.3) satisfies the Kummer-Schwartz equation

1
2
u′′

u
− 3
4

(
u′

u

)2

− 1
4
δu2 = A0(x),
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where δ = b21 − 4b0 is the discriminant of the characteristic equation r2 ± b1r+ b0 = 0, and

A0(x) = a0 − 1
4
a2

1 −
1
2
a′1 is the semiinvariant of the adjoint linear equation

y′′ + a1(x)y′ + a0(x)y = 0. (3.4)

The factor v(x) of transformation (1.2) has the form

v(x) = |u(x)|−1/2 exp
(
−1
2

∫
a1dx

)
exp

(
±1
2
b1

∫
udx

)
. (3.5)

Here, the function f(x) can be represented in the form

f(x) = cu2(x)v1−n(x), c = const.

2◦. Equation (3.1) admits a one-parameter group Lie group with generator (1.4).

Theorem 3.1. All laws of variation f(x) in (3.1), admitting a one-parameter Lie group
with generator (1.4), have one of the following forms:

f1 = F 2(α1y1 + β1y2)
−n+3

2
± b1(1−n)

2
√

δ1 (α2y1 + β2y2)
−n+3

2
∓ b1(1−n)

2
√

δ1 , δ1 = (α1β2 − α2β1)20;

f2 = F 2(Ay2
2 +By2y1 + Cy2

1)
−n+3

2 exp
(
±1− n

2
b1√−δ2

arctan
2Ay2 +By1√−δ2y1

)
,

δ2 = B2 − 4AC < 0;

f3 = F 2(αy1 + βy2)−(n+3) exp
(
∓1− n

2α
b1y1

αy1 + βy2

)
, δ3 = 0;

f4 = F 2(αy1 + βy2)−
n+3

2
± b1(1−n)

2α y
−n+3

2
∓ b1(1−n)

2α
i , δ4 = α2 > 0;

f5 = F 2y
−(n+3)
i exp

(
±1− n

2
b1

y2

y1

)
, δ5 = 0, i = 1, 2,

where F = exp
(
−

∫
a1dx

)
, and y1, y2 = y1

∫
Fy−2

1 dx generate the fundamental system

of solutions (FSS) of the linear equation (3.4).
Here, (3.1) assumes the exact solution

y = ρv(x), b0ρ+ cρn = 0,

where v(x) satisfies relation (3.5).

Theorem 3.2. If f(x) is a factor of the nonlinear term of the equation (3.1), admitting
symmetry (1.4), then f(x) satisfies to one of the following equations:

f ′′ − n+ 4
n+ 3

f ′2

f
+

n− 1
n+ 3

a1f
′ − (n+ 3

(
a0 − 2(n+ 1)

(n+ 3)2
a2

1 −
2

n+ 3
a′1

)
f+

+(n+ 3)b0 exp
(
2(1− n)
3 + n

∫
a1dx

)
f

n+7
n+3 = 0, b1 = 0, n �= −3;
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or the equation

f ′′ − n+ 4
n+ 3

f ′2

f
+

n− 1
n+ 3

a1f
′ − (n+ 3

(
a0 − 2(n+ 1)

(n+ 3)2
a2

1 −
2

n+ 3
a′1

)
f+

+
[(n+ 3)b0 ∓ 2(n+1)

n+3 b21]f
n+7
n+3 exp[2(1−n)

3+n

∫
a1dx](

k ± 1−n
n+3b1

∫
f

2
n+3 exp

(
1−n
n+3

∫
a1dx

)
dx

)2 = 0, b1 �= 0, n �= −3;

or the equation

2(f ′ + 2a1f)f ′′′ − 3f ′′2 − 12(a′1f + a1f
′)f ′′ +

(
1− δ

4b21

)
f ′4

f2
+ 8

(
1− δ

4b21

)
a1

f ′3

f
+

+
[(
1− 4

δ

b21

)
a2

1 + 14a′1 − 4a0

]
f ′2 + 4

[
a′′1 − 4a0a1 + 2a1a

′
1 +

(
1− 2

δ

b21

)
a3

1

]
ff ′+

+4
[
2a0a

′′
1 − 3a′12− 4a0a

2
1 +

(
1− δ

b21

)
a4

1 + 2a2
1a

′
1

]
f2 = 0, n = −3, b1 �= 0;

or f(x) = c exp(−2 ∫
a1dx), n = −3, b1 = 0, a1 �= 0; or f(x) = const, n = −3, b1 =

0, a1(x) = 0.

4. The case f(x) = const = p

Consideer the equation

y′′ + a1(x)y′ + a0(x)y + pyn = 0, n �= −3. (4.1)

If b1 = 0, we have

a0(x) =
2(n+ 1)
(n+ 3)2

a2
1 +

2
n+ 3

a′1 + k exp
(
2(1− n)
3 + n

∫
a1dx

)
, k = const,

or

a0(x) =
2(n+ 1)
(n+ 3)2

a2
1 +

2
n+ 3

a′1 + q
[(n+ 3)b0 ∓ 2(n+1)

n+3 b21] exp[
2(1−n)
3+n

∫
a1dx](

k ± 1−n
n+3b1

∫
exp

(
1−n
n+3

∫
a1dx

)
dx

)2 = 0,

b1 �= 0. n �= −3; q = const.

Theorem 4.1. In order that the equation

y′′ + a1y
′ + a0y + pyn = 0, a1, a0 = const (4.2)

have the set of elementary exact solutions depending from one arbitrary constant (besides
a1 = 0), it is sufficient that condition of its factorization,

(n+ 3)2a0 = 2(n+ 1)a2
1 (4.3)

hold.
In fact, in this case, equations (4.2), (4.3) admit the factorization:(

D +
n+ 1
n+ 3

a1 ∓ n+ 1
2

ky(n−1)/2
) (

D +
2

n+ 3
a1 ± ky(n−1)/2

)
y = 0,

k =
√−2p/(n+ 1).
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In this specific case (at n = 3) for some classes of anharmonic oscillators, the exact
solutions were obtained in [4] by the Kowalewsky-Painlevé asymptotic method.

Theorem 4.2. In order that the equation

y′′ + a1(x)y′ + pyn = 0, n �= −3,
admit the group with generator (1.4), it is necessary and sufficient that the function a1(x)
satisfy the equation

a′′1 +
4n

n+ 3
a1a

′
1 +

2(n2 − 1)
(n+ 3)2

a3
1 = 0, (4.4)

where (4.4) is integrated in elementary functions or quadratures (elliptic integrals). Equa-
tion (4.4) can be linearized by the method of the exact linearization (see [5]). Namely, by
the substitution A = a2

1, dt = a1(x)dx, it can be reduced to the form

Ä+
4n

n+ 3
Ȧ+

4(n2 − 1)
(n+ 3)2

A = 0, (·) = d

dt
.

It possesses a one-parameter set of solutions

a1(x) =
n+ 3

(n− 1)(x+ c)
, a1(x) =

n+ 3
(n+ 1)(x+ c)

(4.5)

and has a general solution of the following parameter kind:

a1 = sn−1(c1 + s4)1/2, x = −(n+ 3)
∫

s−n(c1 + s4)−1/2ds+ c2. (4.6)

Then it follows from the Chebyshev theorem (see [6])

Corollary 4.1. Equation (4.4), (4.6) (besides c1 = 0, i.e., (4.5)) has elementary solutions
for n = ±1− 4l, l ∈ Z.

Corollary 4.2. The equation

y′′ + a0(x)y + pyn = 0, n �= −3,

admits pointwise Lie symmetries only for a0(x) = const, (b1 = 0) or a0(x) =
ν

(λ+ µx)2
,

(b1 �= 0).

Corollary 4.3. The Painlevé equation

y′′ ± xy = y3

can’t be reduced to the autonomous kind by a KL transformation KL (it doesn’t admit
pointwise Lie symmetries).

Theorem 4.3. The Ermakov equation (Ermakov V.P., 1880; Pinney, 1951, see, for
example, [1, 5])

y′′ + a0(x)y + py−3 = 0
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admits a three-dimensional Lie algebra with the generators

X1 = y2
1(x)

∂

∂x
+ y1(x)y′1(x)y

∂

∂y
, X3 = y2

2(x)
∂

∂x
+ y2(x)y′2(x)y

∂

∂y
,

X2 = y1y2
∂

∂x
+
1
2
(y1y

′
2 + y2y

′
1)y

∂

∂y
,

which has the commutators

[X1, X2] = X1, [X2, X3] = X3, [X3, X1] = −2X2,

and is isomorphic to the algebra sl(2, R) (type G3 VIII according to the classification of
Lie-Bianchi).

5. The special case n = 2

Theorem 5.1. (see [7]). The equation

y′′ + a1(x)y′ + a0(x)y + f(x)y2 = 0 (5.1)

has only point symmetries of the kind

X = ξ(x)
∂

∂x
+ [η1(x)y + η2(x)]

∂

∂y
, (5.2)

where

η′′2 + a1η
′
2 + a0η2 = 0,

ξ′′′ − (2a′1 + a2
1 − 4a0)ξ′ −

(
a′1 +

1
2
a2

1 − 2a0

)′′
ξ = 4kη2ξ

−5/2 exp
[
1
2

∫ (
a1 ∓ b1

ξ

)
dx

]
,

η1(x) =
1
2
(ξ′ − a1ξ ± b1), f(x) = kξ−5/2 exp

[
1
2

∫ (
a1 ∓ b1

ξ

)
dx

]
, k = const.

Lemma 5.1. The equation

ξ′′′ − (2a′1 + a2
1 − 4a0)ξ′ −

(
a′1 +

1
2
a2

1 − 2a0

)′′
ξ = 4kη2ξ

−5/2 exp
(
1
2

∫
a1dx

)
, b1 = 0,

can be reduced to the form

ζ ′′′(s) = 4kζ−5/2 (5.3)

by the transformation ξ = u−1ζ, ds = udx, where

1
2
u′′

u
− 3
4

(
u′

u

)2

= A0(x).

Lemma 5.2. Equation (5.3) assumes an exact linearization by the transformation Z =
ζ−1, dt = ζ−3/2ds, namely, Z ′′′(t) + 4k = 0.

Theorem 5.2. Equation (5.1) can be reduced to the autonomous form

z̈ ± b1ż + b0z + c+ kz2 = 0, c =
1
4k

(
b20 −

36
625

b41

)
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by the substitution y = v(x)z + w(x), dt = u(x)dx,

u(x) =
1
ξ
, v(x) = exp

(∫
η1

ξ
dx

)
, w = k exp

(∫
η1

ξ
dx

) ∫
η2

ξ
exp

(
−

∫
η1

ξ
dx

)
,

and has the exact solutions

y = ρv(x) + w(x), ρ =
1
2

(
b0
2

± 3b21
25

)
.

Theorem 5.3. If equation (5.1) admits a symmetry of the kind (5.2), then the function
f(x) satisfies to the system of equations

ϕ′′ + a1ϕ
′ + a0ϕ+

1
2
ϕ2 =

1
2

(
b20 −

36
625

b41

)
u4; (5.4)

ϕ =
1
5
f ′′

f
− 6
25

f ′2

f2
+

1
25

a1
f ′

f
−

(
a0 − 6

25
a2

1 −
2
5
a′1

)
+

(
b0 − 6

25
b21

)
u2; (5.5)

u =
f2/5 exp(−1/5 ∫

a1dx)
C1 ∓ 1

5b1
∫
f2/5 exp(−1/5 ∫

a1dx)dx
. (5.6)

Corollary 5.1. Let a1 = 0, a0 = 0, and b0 =
6
25

b21. Equation (5.4)–(5.6) takes the form

f iv − 32
5

f ′f ′′′

f
− 43
10

f ′′2

f
+
594
25

f ′2

f2
f ′′ − 1782

125
f ′4

f3
= 0. (5.7)

Equation (5.7) admits solutions of the kind f(x) = λxµ, where µ satisfies to the algebraic
equation

49µ4 + 490µ3 + 1525µ2 + 1500µ = 0, {µ = −5, −20/7, −15/7, 0}.
Theorem 5.4. Equation (5.4)–(5.6) in respect of f(x) (at b1 = 0) has the following
general solution represented in the parameter form:

f(x) exp
(
2

∫
a1dx

)
y5
1 = kψ5/2, y2y

−1
1 =

∫
ψ−3/2dt

or

f(x) = exp
(
2

∫
a1dx

)
y5
2 = kψ5/2, y2y

−1
1 = −

(∫
ψ−3/2dt

)−1

,

ψ = −2
3
kt3 + c1t

2 + c2t+ c3,

where F = exp
(
−

∫
a1dx

)
, and y1, y2 = y1

∫
Fy−2

1 dx generate the FSS of the linear

equation (3.4).

Thus, even under the restriction b1 = 0, the function f(x) can be expressed via elliptic
integrals. These expressions can be simplified in the case of pseudoelliptic integrals that
takes place for the discriminant ∆ = 0. Namely,

∆ = c21c
2
2 +

8
3
kc32 − 4c31c3 − 12k2c23 − 12kc1c2c3 = 0.
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Let, in particular, c1 = c2 = c3 = 0. Then f(x) has one of the following forms:

f(x) = λ exp
(
−2

∫
a1dx

)
y−5
1

(∫
exp

(
−

∫
a1dx

)
y−2
1 dx

)−15/7

,

f(x) = λ exp
(
−2

∫
a1dx

)
y−5
1

(∫
exp

(
−

∫
a1dx

)
y−2
1 dx

)−20/7

,

where y1(x) is a partial solution of equation (3.4).

Example. The equation y′′ + f(x)y2 = 0 can be reduced to the autonomous form for
f(x) = λx−15/7, f(x) = λx−20/7, and f(x) = λx−5.
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