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Introduction

Recently much attention has been paid to the stereology of extremes. Generally

we have here in mind a prediction of extremes of certain characteristics of higher

dimensional objects by means of observations of their lower dimensional probes or

sections. More specifically, we consider three-dimensional particles in a given volume

of material where the observations are the sections of the particles created by a

random planar section of the material. A typical application is the metal fatigue

problem, see e.g. [17] or [5]. The classical approach is to view the particles as balls

of a random size so that the sections become random circles, the so calledWicksell’s

corpuscle problem, see [25] and [26]. The main goal is to predict the largest size of the

ball in the material. Substantial amount of literature is devoted to this problem ([8],

[19], [20], [21], [22], [23]).

*The work of the first author is a part of the research project MSM 0021620839 financed
by MŠMT and partly supported by the project No. 201/08/0486 of the Grant Agency of
the Czech Republic.
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In our previous work ([12], [13], [4]) we have dealt with oblate spheroids rather

than balls. We have concentrated on extremely flat particles whose size is sufficiently

large enough rather than just the largest particles. It turns out that when studying

the bivariate random vector which characterizes the spheroids, namely the pair “size

and shape factor” (X,S) (see Subsection 1.1), it is necessary to impose a stronger

assumption on the joint distribution of the characteristics, and we need to assume

a certain tail uniformity of our model. It is shown in [11] that this assumption is

fulfilled when using the standard Farlie-Gumbel-Morgenstern (FGM) bivariate family

of distributions provided the FGM parameter λ satisfies |λ| < 1.

In this paper we turn our attention to a more general class of distributions suitable

for our analysis. We extend the FGM distribution utilizing the recent results ([2],

[3], [1], [18]). The main reason for using these extensions is the well-known fact that

the covariance for the standard FGM family is limited by 1/3. Hence, an application

of the distribution in practice may be questionable.

In Section 1 we recall some basic facts from stereology and extreme value theory

and restate the “stability of MDA” theorem which involves the tail uniformity as-

sumption. In Section 2 we introduce the generalized FGM distributions related to

the stereological problem at hand.

1. Distribution of spheroids and MDA

Consider a population of oblate spheroids uniformly distributed and isotropically

oriented in a given volume of an opaque material. Here one cannot observe the

particles directly but it is possible to observe a sample of their profiles. Profiles of the

particles are produced by a random planar section of the volume of the material. The

profiles of spheroids are ellipses and the ellipses observed on the section constitute a

random sample of the population of profiles. The oblate spheroids and ellipses are

characterized by the following two features.

1.1. Characterization of spheroidal particles

Consider an oblate (lentil shaped) spheroid with (two equal) major semiaxes X

and a minor semiaxis V . The spheroid is then fully characterized by the pair

(X,S), where S =
X2

V 2
− 1.

In this definition X is called the size and S is called the shape factor of the spheroid.

Consider an ellipse with the major and minor semiaxes Y and W , respectively.

This ellipse is fully characterized by the pair

(Y, T ), where T =
Y 2

W 2
− 1.
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Analogously to the above Y is called the size and T is called the shape factor of the

ellipse.

Below all the characteristics are considered to be random variables independent of

the position and orientation of a particle. We shall assume that a joint probability

density function (p.d.f.) g(x, s) of (X,S) is available. The joint p.d.f. f(y, t) of (Y, T )

is to be calculated. It is given for example in [7] (where the eccentricity instead of

the shape factor is used). The joint p.d.f. is

(1.1) f(y, t) =
y
√

1 + t

2M

∫ Xf

y

∫ Sf

t

g(x, s) ds dx
√
s
√

1 + s
√
s− t

√

x2 − y2
,

where M is a population mean size of the particles (half of the mean caliper diam-

eter) and Xf , Sf are the upper endpoints of the marginal distributions of X and S

respectively, i.e.

(1.2) Xf = inf{x : P[X 6 x] = 1}, and Sf = inf{s : P[S 6 s] = 1}.

1.2. Maximum domain of attraction

We shall now restate briefly the results presented in [12] and [13] concerning the

stability of the maximum domain of attraction (MDA). We shall recall the basic

tenant about the extreme value theory utilized in this paper (these results are well

known for over 50 years and presumably are due to Gnedenko [10]). Consider a

random sample of n iid random variables X1, X2, . . . , Xn with the cumulative dis-

tribution function (c.d.f.) H and denote the sample maximum by Xn:n. It is well

known that the c.d.f. of Xn:n is H
n(·) and that an affine transformation of Xn:n

may converge to one of the three extreme value distributions: Gumbel, Fréchet and

Weibull.

Definition 1.1 (MDA). If there exist pairs of normalizing constants (an, bn)

such that

(1.3) Hn(anx+ bn) −→
n→∞











Λ(x) = exp(−e−x), x ∈ R, (Gumbel distr.), or

Φα(x) = exp(−x−α), x > 0, (Fréchet distr.), or

Ψα(x) = exp(−(−x)α), x 6 0, (Weibull distr.)

for some α > 0 then the distribution H is said to belong to the Maximum domain of

attraction of the Gumbel distribution (denoted as H ∈ MDA(Λ)), Fréchet or Weibull

extreme value distributions, respectively.

R em a r k 1.2. There is a unifying approach to the limiting behaviour of the sam-

ple maxima—the so called generalized extreme value distribution (see, e.g., Coles [6]).

We cite the three types mainly because for the proofs of the MDA stability in [12] or

[13] it is required to distinguish between these three cases. It is also more suitable

for the calculation of the normalizing constants.
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Below the joint distribution of the spheroid characteristics (X,S) will always be

assumed to be absolutely continuous with respect to the Lebesgue measure, hence a

joint density function g(x, s) is available. Denote by gx(s) and Gx(s) the conditional

density and distribution function respectively of the shape factor given the size. The

maximum domain of attraction of Gx(·) is given by one of the following conditions
(see Chapter 3 of [9]).

Lemma 1.3 (Sufficient condition for MDA). Let K(·) and k(·) be the distribution
function and the density function respectively of some univariate random variable S

with the upper endpoint Sf . Assume that there exists an auxiliary function b(·) or
a constant α such that one of the conditions

lim
sրSf

k(s+ ub(s))

k(s)
= e−u, u ∈ R,(1.4)

lim
s→∞

k(us)

k(s)
= u−(α+1), u > 0, Sf = +∞,(1.5)

lim
sց0

k(Sf − us)

k(Sf − s)
= uα−1, x > 0, Sf < +∞(1.6)

holds. Then

(1.4) ⇒ K ∈ MDA(Λ), (1.5) ⇒ K ∈ MDA(Φα), and (1.6) ⇒ K ∈ MDA(Ψα).

R em a r k 1.4 (Uniformity of the conditions). Below we shall require the condi-

tional density function gx(s) to be uniform for the limits (1.4), (1.5), (1.6) in the

conditioning value. This property may be called the tail equivalence/uniformity.

Here we have in mind that for the density function gx(s) the convergence in (1.4)–

(1.6) is uniform with respect to x and that the auxiliary function b(·) in (1.4) and
the constant α in (1.5), (1.6) could be chosen to be the same for all possible values

of x.

The following notation will consistently be used throughout the paper. The joint

distribution function (d.f.) of the spheroid characteristics (X,S) and the d.f. of the

profile characteristics (Y, T ) are denoted G(x, s) and F (y, t), respectively. The cor-

responding densities are denoted g(x, s) and f(y, t).

In applications we may require to study distributions of the shape factor both

marginally and conditionally on the size of a spheroid. These one-dimensional dis-

tributions are denoted as follows. The marginal distribution functions of S and T

are

GS(s) = P[S 6 s], FT (t) = P[T 6 t]
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the conditional distribution functions given the size are denoted

Gx(s) = P[S 6 s|X = x], Fy(t) = P[T 6 t|Y = y]

and the conditional distribution functions given the size exceeding a threshold x (y)

are expressed by

G>x(s) = P[S 6 s|X > x], F>y(t) = P[T 6 t|Y > y].

For the corresponding density functions we shall use the lower cases g and f , respec-

tively.

Proposition 1.5 (Stability of MDA). The tail uniformity of the density func-

tion gx(·) is sufficient for the stability of MDA in the following sense.

(i) Assume that the conditional density gx(s) obeys the condition (1.4) uniformly

in x for some function b(·). Then the inclusions {G,Gx, G>x} ⊂ MDA(Λ) and

{F, Fy, F>y} ⊂ MDA(Λ) are valid.

(ii) Assume that the conditional density gx(s) obeys the condition (1.5) uniformly

in x for some α > 0. Then the inclusions {G,Gx, G>x} ⊂ MDA(Φα) and

{F, Fy, F>y} ⊂ MDA(Φα) are valid.

(iii) Assume that the conditional density gx(s) obeys the condition (1.6) uniformly

in x for some α > 0. Then the inclusions {G,Gx, G>x} ⊂ MDA(Ψα) and

{F, Fy, F>y} ⊂ MDA(Ψα+1/2) are valid.

P r o o f. Proofs are given in [12] and [14]. �

2. Farlie-Gumbel-Morgenstern distribution and its generalization

We shall now analyze the tail equivalence (uniformity) condition presented in 1.5.

In particular we shall prove that the generalized Farlie-Gumbel-Morgenstern (FGM)

bivariate distribution satisfies (under some mild conditions) this assumption.

The standard FGM distribution introduced in [15] is a classical example of a copula

with prescribed quadratic sections. See e.g. [16] for an introduction to copulas. Recall

that a copula is a bivariate function C : [0, 1]2 → [0, 1] which associates a bivariate

distribution function with its marginals. If the marginal distribution functions are

continuous (as they are in our case) the well-known Sklar’s theorem provides us with

the uniqueness of the copula. A copula C(x, y) = xy represents a product of two

independent variables.
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Definition 2.1 (A general FGM family). A copula given by

(2.1) C(x, y) = xy{1 + λA(x)B(y)},

where A(·) and B(·) are differentiable functions defined on [0, 1] such that lim
x→1

A(x) =

0, lim
x→1

B(x) = 0 and C(·, ·) is a bivariate d.f. with uniform marginals is called a
general FGM copula. The real parameter λ is a “dependence parameter”, if λ = 0

then C is clearly the independence copula. If a copula C is applied to a pair of

absolutely continuous distribution functions HX(·), HY (·) with densities hX(·) and
hY (·), respectively, the joint probability density given by C becomes

h(x, y) = hX(x)hY (y)
{

1 + λ
[

A(HX(x)) +HX(x)A′(HX(x))
]

(2.2)

×
[

B(HY (y)) +HY (y)B′(HY (y))
]}

.

R em a r k 2.2. The main advantage of the general FGM copula for our pur-

poses is the factorization of the two variables. In other words, for any bivariate

function γ(x, y), γ(x, y) = γ1(x)γ2(y) is valid.

There are several choices of the functions A and B. In [1] the form

(2.3) A(x) = (1 − xq)p = B(x)

is proposed. While the standard FGM distribution with a copula C(x, y) = xy
(

1 +

λ(1−x)(1−y)
)

allows a limited correlation between the components, which does not

exceed 1/3, the correlation for the proposed distribution (2.3)may be greater than 1/2

which is useful for applications. Moreover, in [1] one could find an extension of the

general FGM class for which the correlation between components exceeds 0.6.

Definition 2.3 (An extended FGM family of class I). The extended Huang-Kotz

FGM distribution is a bivariate distribution given by the copula

(2.4) C(x, y) = xpyp
{

1 + λ(1 − xq)n(1 − yq)n
}

, p, q > 1, n > 1,

with the marginals xp and yp. The possible range for λ which determines the corre-

lation between the components is

−min

{

1,
p2

q2

[ p+ qn

q(n− 1)

]2(n−1)
}

6 λ 6
p

q

[ p+ qn

q(n− 1)

]n−1

.

Differentiating one easily obtain that the density of the extended Huang-Kotz

FGM distribution with the marginals xp, yp is:

h(x, y) = xp−1yp−1
{

p2 + λ(1 − xq)n−1[p− (p+ qn)xq ]

× (1 − yq)n−1[p− (p+ qn)xq]
}

.

Another extension of the FGM family of distributions is given in [18].
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Definition 2.4 (An extended FGM family of class II). Consider a bivariate

extended FGM family given by the copula

(2.5) C(x, y) = xy
{

1 + λxa−1(1 − x)cyb−1(1 − y)d
}

, a, b, c, d > 1.

The possible range for λ for this copula (which is quite complex) is given in Exam-

ple 4.1 in [18].

The construction of a bivariate distribution from the generalized FGM family is

briefly as follows: Given two “marginal” density functions hX(x) and hY (y) (these

need not be the real marginals as follows from the Huang-Kotz extension [1]) and

the corresponding distribution functions HX(x), HY (y), the bivariate density func-

tion h(x, y) is given by

h(x, y) = hX(x)hY (y)ξX(HX(x))ξY (HY (y))(2.6)

×
[

1 + λψX(HX(x))ψY (HY (y))
]

,

where ξ(·) : [0, 1] → R and ψ(·) : [0, 1] → R are appropriate functions of HX(x) and

HY (y) respectively, and λ is within its possible range. Moreover, to ensure that

h(x, y) in (2.6) is a bonafide bivariate density the conditions

lim
x→1

ξX(x) = lim
x→1

ξY (x) = 1,

lim
x→1

ψX(x) = lim
x→1

ψY (x) = 0

should be valid.

We are now ready to prove the tail equivalence/uniformity property for the family

of distributions given in (2.6).

Theorem 2.5. Consider a bivariate density function

g(x, s) = gX(x)gS(s)ξX(GX(x))ξS(GS(s))

×
[

1 + λψX(GX(x))ψS(GS(s))
]

such that

(i) |λ| < K and |ψX(·)| < K for some finite constant K, and

(ii) 1 + λψX(x)ψY (y) > ε > 0 for all (x, y) ∈ [0, 1]2, where ε is a suitable positive

constant.

Then for the conditional density gx(s) given in Proposition 1.5 the tail uniformity

in x is valid.
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R em a r k 2.6. Condition (i) of the above theorem is usually satisfied. The

crucial condition is the strict inequality in (ii) which for the standard FGM fam-

ily means that |λ| 6= 1. Note that for any distribution in this class the condition

1 + λψX(x)ψY (y) > 0 must hold a.e. (to ensure the positivity of h(x, y)).

P r o o f. In the conditions (1.4)–(1.6) of Lemma 1.3 consider a transformed

variable in the numerator. Denote the transform by ϕ(·). For example, (1.5) may
be written as

lim
s→∞

gx(ϕ(s))

gx(s)
= u−(α+1)

for some α > 0, and u > 0 which is specified by ϕ(s) = us. We shall concentrate on

the case of the Fréchet limit distribution; the other cases are completely analogous.

Suppose that the above equality holds for some x0 and that the density g(x, s)

can be written in the form (2.6). It then follows that

(2.7) R(x, x0, s) =
gx(ϕ(s))

gx(s)

gx0
(s)

gx0
(ϕ(s))

− 1 −→
s→∞

0.

Indeed,

|R(x, x0, s)| =

∣

∣

∣

∣

[1 + λψG
X(x)ψG

Y (ϕ(s))]

[1 + λψG
X(x)ψG

Y (s)]

[1 + λψG
X(x0)ψ

G
Y (s)]

[1 + λψG
X(x0)ψG

Y (ϕ(s))]
− 1

∣

∣

∣

∣

(2.8)

=

∣

∣

∣

∣

λ[ψG
X(x) − ψG

X(x0)][ψ
G
Y (ϕ(s)) − ψG

Y (s)]

[1 + λψG
X(x0)ψG

Y (ϕ(s))][1 + λψG
X(x)ψG

Y (s)]

∣

∣

∣

∣

<
2K2

ε2
|ψG

Y (ϕ(s)) − ψG
Y (s)|,

where ψG
X(·) is an abbreviated notation for ψX(GX(·)). The last term in (2.8) does

not depend on x, and since both GX(ϕ(s)) and GX(s) tend to 1 as s goes to infinity,

the convergence

|ψG
Y (ϕ(s)) − ψG

Y (s)| −→
s→∞

0

is valid. This completes the proof. �
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3. Statistical and stereological applications of extremes

Our aim is to estimate the distribution function (d.f.) of the flattest spheroid in

the volume based on the random profiles observed. We know the transformation of

the joint probability density function (p.d.f.) of the spheroid characteristics to the

joint p.d.f. of the profile characteristics. We also know that under mild assumptions

the general FGM bivariate distribution is sufficient for preservation of the maximum

domain of attraction as was shown in Proposition 1.5 and Theorem 2.5. Hence, under

this model it is possible to use the profile shape factor observations to test MDA and

to estimate the parameter α for the Fréchet and Weibull cases (see e.g. Chapter 3

in [6]). The limiting behavior for the spheroid shape factor may be determined in

accordance with Proposition 1.5. We can therefore approximate the distribution of

extreme shape factor by one of the limiting distributions, provided the normalizing

constants are known. We shall now briefly discuss this concept.

Definition 3.1 (Normalizing constants). Let (an, bn) be a sequence of real

constants such that for the sample extreme Mn:n of the random sample of iid’s

M1, . . . ,Mn the convergence

Mn:n − bn
an

−→
n→∞

L

holds, where L is a random variable whose distribution function belongs to the set

of Gumbel, Fréchet, and Weibull distributions. The constants an and bn are called

normalizing constants for the distribution of M1.

Usually, normalizing constants (n.c.) are not unique. Indeed, consider another

sequence (a′n, b
′
n) such that a′n/an → 1 and (bn − b′n)/an → 0 as n → ∞. It is easy

to verify that a′n and b
′
n are also n.c. Thus one could consider a class of equivalent

normalizing constants. Below we shall refer to the normalizing constants having

the previous observation in mind. To determine the n.c. we are usually required to

analyse the tail behavior of the d.f. at hand. In this connection the following lemma

is often useful.

Lemma 3.2 (Normalizing constants I). Suppose that a distribution function K

has an upper endpoint Mf . Then the following statements are valid.

(i) If Mf = ∞ the d.f. K belongs to the Gumbel domain of attraction and if there
exist constants α > 0, β, γ > 0, δ > 0 such that

lim
v→∞

1 −K(v)

αvβe−γvδ
= 1,
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then the normalizing constants can be chosen as

an =
( logn

γ

)1/δ−1 1

γδ
,

bn =
( logn

γ

)1/δ

+
(β/δ)(log logn− log γ) + logα

(logn/γ)1−1/δγδ
.

(ii) If the distribution function K belongs to the Fréchet domain of attraction and

if there exist constants α > 0, β, γ > 0 such that

lim
v→∞

1 −K(v)

αv−γ
= 1,

then the normalizing constants can be chosen as

an = (nα)1/γ , bn = 0.

(iii) If the distribution function K belongs to the Weibull domain of attraction and

if there exist constants α > 0, β > 0 and γ > 0 such that

lim
v→Mf

1 −K(v)

γ(v/Mf )β(Mf − v)α
= 1,

then the normalizing constants can be chosen as

an = (nγ)−1/α, bn = Mf .

S k e t c h o f t h e p r o o f. The proof is based on the possible choices of the

normalizing constants. (See, e.g. the description in [9].) First, we need to find the

(1 − n−1)th quantile of the distribution. Denoting the quantile by q the possible

choices of normalizing constants are:

(i) for the Gumbel limit distribution bn = q and an = b(q), where b(·) is the
auxiliary function described in Lemma 1.3.

(ii) for the Fréchet limit distribution bn ≡ 0 and an = q.

(iii) for the Weibull limit distribution bn ≡Mf and an = Mf − q.

We shall briefly analyse the Gumbel distribution.
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The (1 − n−1)th quantile q is determined from

αqβe−γqδ

=
1

n
,

qδ =
1

γ
(log n+ β log q + logα),

q =
( logn

γ

)1/δ
{

1 +
β log(log n/γ)1/δ + log(1 + β log q + logα)1/δ + logα

logn

}1/δ

,

⇓

bn
.
=

( logn

γ

)1/δ
{

1 +
1

δ logn

(β

δ
(log logn− log γ) + logα

)

}

.(3.1)

The auxiliary function b(·) can be chosen as

b(q) =

∫ Mf

q (1 −K(v)) dv

1 −K(q)
.

(See [9], Chapter 3.3.) Hence, it is not difficult to verify that in the Gumbel case

under consideration we have

(3.2) b(q)
.
=

(α/γδ)qβ−δ+1e−γqδ

αqβe−γqδ =
1

γδ
q1−δ.

Finally, applying b(·) of (3.2) to bn in (3.1), one obtains an. Recall the observation

above Lemma 3.2. The parts omitted in the above approximations are negligible in

the sense of this remark. �

The following two cases are of interest. The former is to investigate the shape factor

regardless of the size of the spheroid. Consequently, we need to study 1 −GS(s) as

s→ Sf . The latter goal is to relate the shape factor to the size. Here we are interested

in the shape factor of those spheroids whose size exceeds the given threshold. Thus,

1 −G>x(s) as s→ Sf should be analysed.

Note that the only information available is the random sample of the profiles

while we are interested in the spheroids characteristics. However, one can estimate

normalizing constants for the shape factor (related and unrelated to the size) of the

profiles, and then use Proposition 1.5. To this end we need also to study the limiting

behaviour of 1 − FT (t), and possibly that of 1 − F>y(t). The normalizing constants

estimated for the profiles will then be adjusted to the n.c. that are appropriate for

the original particles.

We start with the general form of the density of the FGM class given in Defini-

tion 2.1. We are interested in the limiting behaviour of the shape factor S, and the
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marginal density of X is gX(x); hence we shall employ for the conditional p.d.f. gx(s)

the form:

(3.3) gx(s) = gS(s)
{

1 + λψG
X(x)[B(GS(s)) +GS(s)B′(GS(s))]

}

,

where B(u) → 0 as u → 1, recall the definitions following Lemma 1.3. Hence, for

an analysis of the tail behaviour of 1 −Gx(s) one can omit the term B(GS(s)) and

focus only on the term containing the derivative B′(·).

E x am p l e 3.3. Let B(u) = 1−u in the standard FGM family. Also let gS(s) =

exp{−s}, and Sf = ∞. Then B′(·) = −1 and

gx(s) = e−s
{

1 + λψG
X(x)[1 − (1 − e−s) − (1 − e−s)]

}

= e−s(1 − λψG
X(x)) + e−2s2λψG

X(x).

For large s the second summand is quite negligible compared to the first one and the

density for large s is approximately:

gx(s)
.
= e−s(1 − λψG

X(x)) = gS(s){1 + λψG
X(x)B′(GS(s))}.

E x am p l e 3.4. Consider the same marginal density gS(s) = exp{−s}, where
Sf = ∞ and the function B is (see [3])

B(u) =
up+1 − u

(p+ 1)2
− up+1 log u

p+ 1

for some p > 0. Evidently B(u) → 0 as u→ 1 and B′(u) = −up log u− (p+ 1)−2 →
−(p+ 1)−2 as u→ 1. After some calculations we obtain for large s

gx(s) = e−s(1 − λ(p+ 1)−2ψG
X(x)) +O(e−2s)

.
= e−s(1 − λ(p+ 1)−2ψG

X(x)).

E x am p l e 3.5. Consider once more the same marginal density gS(s) = exp{−s},
and Sf = ∞, but now let B(u) = (1 − u)p for some p > 1. In this case B′(u) =

−p(1 − u)p−1 and

gx(s) = e−s
{

1 + λψG
X(x)[(e−s)p − p(e−s)p−1(1 − e−s)]

}

= e−s − λpψG
X(x)e−ps + λpψG

X(x)e−2s + λψG
X(x)e−(p+1)s.

As above, the first summand dominates for large values of s. The second summand,

however, may be negligible when p is close to 1. In that case we again approximate:

gx(s)
.
= e−s − λpψG

X(x)e−ps = gS(s){1 + λψG
X(x)B′(GS(s))

}
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(compare with Example 3.3). The last example and the outline of the proof of

Lemma 3.2 indicate that a more precise version of Lemma 3.2 may be needed, since

the (1−n−1)th quantile calculated from the less accurate approximation of 1−Gx(s)

may be inadequate for moderate values of n (say 103–105).

Actually we are not particularly interested in the behavior of 1−Gx(s) for s close

to Sf , since we need to analyse the d.f. 1−GS(s) (which should not be too difficult,

because the marginal distributions in the FGM class are quite simple) as well as

1 −G>x(s). However, the calculations of the d.f. 1 − FT (t) and 1 − F>y(t) may be

quite challenging. Even so the form of gx(s) given above proves to be quite useful. We

shall start with the marginal d.f. of the profile shape factor FT (·). By the definition

FT (t) =

∫ Sf

t

∫ Xf

0

f(y, z) dy dz(3.4)

=

∫ Sf

t

∫ Xf

0

y
√

1 + z

2M

∫ Xf

y

∫ Sf

z

g(x, s) ds dx
√
s
√

1 + s
√
s− z

√

x2 − y2
dy dz

=

∫ Sf

t

[

√
1 + t

√
z − t+ (1 + z) arctan

√

z−t
1+t√

z
√

1 + z

]
∫ Xf

0

xg(x, z)

2M
dxdz

=

∫ Sf

t

[

√
1 + t

√
z − t+ (1 + z) arctan

√

z−t
1+t√

z
√

1 + z

]

×
∫ Xf

0

xgx(z)gX(x)

2M
dxdz.

Thus for the general FGM family the corresponding survival function 1− FT (t) can

be written as

1 − FT (t) =

∫ XF

0

xgX(x) dx

2M

∫ SF

t

gS(s)ξ(s, t) ds(3.5)

+ λ

∫ XF

0

xgX(x)ψG
X(x) dx

2M

∫ SF

t

gS(s)ψG
S (s)ξ(s, t) ds,

where

(3.6) ξ(s, t) =

[

√

(1 + t)(s− t)

s(1 + s)
+

√

1 + s

s
arctan

√

s− t

1 + t

]

.

We are now able to analyze the behaviour of 1 − FT (t) for different choices of gS(·)
and ψS(·). The integrals with respect to x do not change the tail behaviour as t→ SF

for any choice of gX(·) and ψX(·).
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E x am p l e 3.6. We use the same setting as in Example 3.4 but now choose the

marginal density to be gS(s) = µe−µs, where µ > 0 is the parameter. In this case it

follows that for large values of t the survival function is approximately:

1 − FT (t) =

∫ ∞

t

µe−µsξ(s, t) ds

∫ XF

0

xgX(x)

2M
(1 − λ(p+ 1)−2ψG

X(x)) dx

= KX

∫ ∞

t

µe−µsξ(s, t) ds,

where ξ(s, t) is given in (3.6) and

KX =

∫ XF

0

xgX(x)

2M
(1 − λ(p+ 1)−2ψG

X(x)) dx.

One can easily verify that

lim
t→∞

∫ ∞

t
µe−µsξ(s, t) ds√

π(µt)−1/2e−µt
= 1,

and evidently

1 −GS(s) = e−µs.

According to Lemma 3.2 the two normalizing constants for the spheroid shape factor

can be chosen as:

an =
1

µ
and bn =

logn

µ

while the corresponding normalizing constants for the profile shape factor are

ap
n =

1

µ
, bpn =

1

µ

[

logn− 1

2
log logn+ log(

√
πKX)

]

.

It follows that in this particular case it is sufficient to estimate the normalizing

constant ap
n for the profiles or equivalently an for the shape factor (since all the

other terms are constant). There are several methods of estimating the n.c.; in

particular, the maximum likelihood estimator is given, e.g., in [24].

We now proceed to the shape factor conditioned on the size. All those particles

(profiles) whose size is not sufficiently large will be omitted. We are required to

evaluate

1 −G>x(s) =
1

1 −GX(x)

∫ XF

x

∫ SF

s

g(u, v) dv du(3.7)

= 1 −GS(s) +
λ

∫ XF

x gX(u)ψG
X(u) du

1 −GX(x)

∫ SF

s

gS(v)ψG
S (v) dv.
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Here we have used again the general FGM family structure. Similarly,

1 − F>y(t) =

∫ XF

y

√

x2 − y2gX(x) dx

1 − FY (y)

∫ SF

s

gS(s)ξ(s, t) ds(3.8)

+ λ

∫ XF

y

√

x2 − y2gX(x)ψX(x) dx

1 − FY (y)

∫ SF

s

gS(s)ψS(s)ξ(s, t) ds,

where ξ(s, t) is defined in (3.6). Although the conditional survival functions seem to

be more complicated than the unconditional ones we have also here disjoint “x” and

“s” parts, namely, we can use the same ideas and procedures as above.

E x am p l e 3.7. Let us proceed with Example 3.6 but now we shall calculate the

conditional distribution functions. From (3.7) and (3.8) we obtain for large s

1 −G>x(s)
.
= e−µs +

λ
∫ XF

x
gX(u)ψG

X(u) du

1 −GX(x)

∫ ∞

s

µe−µv(−(p+ 1)−2) dv

.
= e−µs

[

1 − λ
∫ XF

x gX(u)ψG
X(u) du

(p+ 1)2(1 −GX(x))

]

,

and 1 − F>y(t) becomes:

1 − F>y(t)

.
=

∫ XF

y

√

x2 − y2gX(x)(1 − λ(p+ 1)−2ψG
X(x)) dx

1 − FY (y)

∫ SF

s

gS(v)ξ(v, t) dv

= KX(y)

∫ ∞

s

µe−µv

[

√

(1 + t)(v − t)

v(1 + v)
+

√

1 + v

v
arctan

√

v − t

1 + t

]

dv

.
=

∫ XF

y

√

x2 − y2gX(x)(1 − λ(p+ 1)−2ψG
X(x)) dx

1 − FY (y)

√
π(µt)−1/2e−µt.

Compare with the corresponding expression in Example 3.6. Here ξ(v, t) is given

in (3.6) and compare

KX(y) =

∫ XF

y

√

x2 − y2gX(x)(1 − λ(p+ 1)−2ψG
X(x)) dx

1 − FY (y)

with KX given in Example 3.6. The normalizing constants for the shape factor

conditioned on the size exceeding a threshold are

an =
1

µ
, bn =

1

µ

[

logn+ log

(

1 − λ
∫ XF

x gX(u)ψG
X(u) du

(p+ 1)2(1 −GX(x))

)]
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for the spheroids, and

ap
n =

1

µ
, bpn =

1

µ

[

logn− 1

2
log logn+ log(

√
πKX(y))

]

,

KX(y) =

∫ XF

y

√

x2 − y2gX(x)(1 − λ(p+ 1)−2ψG
X(x)) dx

1 − FY (y)

for the profiles. Note that the transition from bpn to bn is here more difficult than in

the “unconditional” Example 3.6.

We have observed in Example 3.5 that in some situations the normalizing constants

ought to be calculated more precisely than simply using the approximation presented

in Lemma 3.2 which may not be satisfactory for moderate sample sizes n. We

now present a lemma which will provide a more accurate approximations involving

“correction” terms.

Lemma 3.8 (Normalizing constants II). Suppose that a distribution function K

has an upper endpoint Mf . Then:

(i) If Mf = ∞ the d.f. K belongs to the Gumbel domain of attraction and if there
exist constants α > 0, β, γ > 0, δ > 0 and α1 > 0, β1, γ1 > 0 such that γ1 > γ

and

lim
v→∞

1 −K(v)

αvβe−γvδ + α1vβ1e−γ1vδ
= 1,

the normalizing constants may be then chosen as

an =
( logn

γ

)1/δ−1 1

γδ
(1 + ∆(n)),

where

∆(n) =
γ − γ1

γ

(

1 +
α

α1
γ(β1−β)/δ(nα)−1+γ1/γ(log n)(γ1β−γβ1)/(γδ)

)−1

and

bn =
( logn

γ

)1/δ

+
β

δ

(log logn− log γ) + logα+ δ(n)
(

(logn)/γ
)1−1/δ

γδ

with

δ(n) = log
(

1 +
α

α1
[(log n)/γ](β1−β)/δ(nα)1−γ1/γ

)

.

(ii) If the distribution function K belongs to the Fréchet domain of attraction and

if there exist constants α > 0, γ > 0 and α1 > 0, γ1 > 0 such that γ1 > γ and

lim
v→∞

1 −K(v)

αv−γ + α1v−γ1

= 1,
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the normalizing constants may then be chosen as

an = (nα)1/γ
[

1 +
α

α1
(nα)1−γ1/γ

]1/γ

, bn = 0.

(iii) If the distribution function K belongs to the Weibull domain of attraction and

if there exist constants α > 0, β > 0, γ > 0 and α1 > 0, β1 > 0, γ1 > 0 such

that γ1 > γ and

lim
v→Mf

1 −K(v)

α(v/Mf )β(Mf − v)γ + α1(v/Mf )β1(Mf − v)γ1

= 1,

the normalizing constants may then be chosen as

an = (nα)−1/γ
[

1 +
α

α1
(nα)1−γ1/γ

]−1/γ

, bn = Mf .

R em a r k 3.9. Comparing the above expressions for an and bn, we note that the

“correction” terms to the values of an and bn given in Lemma 3.2 (in the three cases

of Gumbel, Fréchet and Weibull MDAs for an and in the case of the Gumbel MDA

for bn) all vanish as n → ∞. Nevertheless, this convergence may be extremely slow
and we should not omit these terms even for large sample sizes n.

Conclusion

We have shown that the results obtained in [12] and [13] can be extended by

employing a more general bivariate distribution than the standard FGM (which still

retains the separation property). This may result in a more accurate models for the

distribution of the spheroid characteristics; in particular, the correlation between the

size and shape factor of the spheroids is now not limited by 1/3. It may be necessary

to use more precise forms of the normalizing constants for the generalized class of

distributions.
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