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ABSTRACT.   Let X, Y be Banach spaces over either the real field or

the complex field.   A continuous linear operator will be called a generalized

Fredholm operator if T\X) is closed in Y, and Ker T and Coker T are reflexive

Banach spaces. A theory similar to the classical Fredholm theory exists for the gen-

eralized Fredholm operators; and the similarity brings out the correspondence:

Reflexive Banach spaces <—► finite-dimensional spaces,

weakly compact operators <—► compact operators,

generalized Fredholm operators «—► Fredholm operators,

Tauberian operators with closed range «—► semi-Fredholm operators.

1. Preliminaries. Let k denote either the real field or the complex field.

Let B he the category whose objects are Banach spaces over k and whose mor-

phisms are continuous linear operators T: X —> Y.  As usual, B(X, Y) denotes

the set of all continuous linear operators from X to Y.  With the norm |7| =

sup^isjjirOt)!, B(X, Y) becomes a Banach space over k.

We let B(X, k) = X*, and B(T, k) = T*. Ix denotes the identity operator

onX

The sequence of continuous linear operators

X-S-+Y-Ï+Z

is said to be exact at Y if S(X) = Ker T.  The sequence of continuous linear

operators

T, T. T
x1-L+x2-±+x3-+->xn-^xn+x

is exact if it is exact at each X¡ (i = 2, 3,..., n).

An exact sequence of the type 0 —> X —► Y —> Z —>• 0 is called a short

exact sequence in B; by the open mapping theorem, there exists a closed linear

subspace Yx of Y such that X = Yx and Z = Y/Yx, where = denotes (and will

denote) a topological isomorphism.

Exact sequences and diagram lemmas are the main tools employed in this
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314 KUNG-WEI YANG

study of Banach spaces. By using these tools, we are also able to give some of

the known theorems concerning reflexive Banach spaces and weakly compact

operators new and more transparent proofs.

2. Exact sequences and diagram lemmas.

(2.1) Theorem.   Z/0—* X —*Y—■» Z —*-0 is a short exact sequence in

B, then 0 —» Z* —* Y* —► X* —► 0 is an exact sequence in B  [12].

Proof.   The exactness at Z*, Y* is clear. The exactness at X* is a con-

sequence of the Hahn-Banach Theorem.  Q.E.D.

(2.2) Theorem.   If T E B{X, Y) has a closed range, then

(i) Ker T* = (Coker T)*,

(if) Coker T* = (Ker T)*,

[8, Corollary 2, p. 111].

Proof.  If T E B(X, Y) has a closed range, then Coker T is well-defined

and

0-»Ker T-*X-^+ F-► Coker T —► 0

is an exact sequence in B.  By Theorem (2.1), the sequence

0 -*■ (Coker T)* -* Y* -^* X* -+ (Ker T)* -» 0

is exact. Hence by the open mapping theorem,

Ker T* s (Coker T)*,   Coker T* s (Ker T)*.      Q.ED.

For any X in B, there is a natural injection nx: X —> X** defined by

(mx(x))(x*) = x*(x) for  all x G X and x* G X*. As usual, we shall identify X

with nx(X) and omit the mention of nx when it is convenient to do so. Let

X= X**/X.  If TEB{X, Y) then f E B(X, Y) is defined uniquely by the com-

mutative diagram:

0—>X->X**->X—>0

y        y** T

o—> y—> y**—► F^-o

(2.3) Theorem.   —: B —> B is a covariant contracting functor, i.e.

(0/*=/*;
(ü) if SE B(X, Y) and TE B(Y, Z), then TS = TS;

(m) m < m.

Proof,   (i) and (if) are clear, (in) follows from the fact that |T**| = |T|

and fis induced by T**. Q.E.D.
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(2.4) Theorem.  For any a, b in the field k, and any S, T in B(X, Y),

aS + bT=aS + bT.

Proof.  Routine verification.

(2.5) Theorem.  IfO—+X—+ Y'—*■ Z —>0 is a short exact sequence in

B, then 0 —>• X —>Y-+Z—* 0 is exact.

Proof.  Applying Theorem (2.1) twice, we see that

0 —» x** —*■ Y** —*■ Z** —*■ 0

is exact.  Fitting these exact sequences together with the natural injections X —*

X**^ y —► Y**, Z —> Z**, we obtain the commutative diagram:

0—>X-► Y->Z-»-0
T v 4*

n_> y**_y y** —> 2** —► 0

■ir y v

0—>J-> Y-> Z->0

1     I    1
0 0 0

All the columns and all the rows in this commutative diagram are exact. The

exactness of the last row is verified by "diagram chasing". So 0 —*■ X —*■ Y —>•

Z —» 0 is indeed exact   [12]. Q.E.D.

Theorems (2.3), (2.4) and (2.5) together show that -: B —> B is a covariant

linear contracting exact functor. As a corollary, we have

(2.6) Corollary.   For any T E B(X, Y) with closed range,

(i) Ker f= (KêrTj,

(ii) Coker T= (Coker T).

(Note: T does have a closed range.)

Proof.  The sequence 0 —► Ker T —> X —* Y —* Coker T —*■ 0 is exact

in B.  By Theorem (2.5),

0-^(TCërTj->JP^» F -*• (Coker T) -* 0

is exact. By the open mapping theorem,

Kerf^(Ke7T)   and   Coker f s (Coker T).     Q.EJ3.

(2.7) Theorem.   If S E B(X, Y),TE B(Y, Z) and TS are range closed,

then the following sequence of Banach spaces is exact [14] :

0 -> Ker S —> Ker TS —► Ker T —*■ Coker S -^ Coker TS —*■ Coker T —*■ 0.
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Proof.  The stated sequence comes from the following commutative

diagram:

Ker T-► Coker S

\   /

Ker TS-► X ■

\     /
Ker 5

/   T,<>    *
-»• Z —>■ Coker TS

\ y
Coker T

and it is utterly routine to verify that the sequence is exact. Q.E.D.

(2.8)  Theorem.  If TE B(X, Y), then there exist topologicalisomorphisms

P, Q such that (f)* = p-\f*)Q.

Proof.  Consider the following two commutative diagrams with exact

rows:

if)*

(x**y ■+x*

(T**y

(Y**y

■+X* (x*y

T* (T*y

o
(lyt

_>. y* —-—* (y*)**

{T*)\

Since nxnx* = Ix, and nYnY* = IY*> we have the following commutative

diagram:

P
(X)*

if)*

(X*)

(n

{?)*    Q > (F*)

where P and Q are isomorphisms. Clearly, (T)* = P~X(T*)Q.   Q.E.D.

(2.9) Theorem (Snake lemma for Banach spaces). If TE B(X, Xx),

U E B(Y, Yx), V E B(Z, Zx) all have closed ranges, and if the following commu-

tative diagram in B
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(0

0

p>)X-^-Y -Q+ -*o

u

R
Xx^Yx^Zx(-*0)

has exact rows, then there is a (natural) continuous linear operator d such that

(0 —►) Ker T —► Ker U —► Ker V -^ Coker T -* Coker U —► Coker V (-> 0)

is exact.  (The data in parenthesis are supposed to occur in the conclusion if

their counterparts are present in the hypothesis.)   [1, Proposition (4.7), p. 26].

Proof.   The definition of the operator d is exactly the same as the usual

abelian category situation [7, p. 203] : We consider the commutative diagram:

(0 -+)   Ker T-> Ker U-»Ker V

(0—)     X~L—*   Y

» Zx (-+ 0)

Coker T —► Coker U —► Coker V (—> 0)

Choose any z E Ker V.  k(z) EZ.  Q is onto. So there is some y EY such that

Q(y) = Kz)-  U(y) has the property: SU(y) = VQ(y) = Vk(z) = 0. Hence

there exists an x E Xx such that R(x) = U(y). d(z) is defined to be ix(x). It is

easy to check that the definition is unambiguous and that the operator d is linear.

Applying [5, Lemma 1, p. 487] to the operators with closed range Q and R, and

observing that k, U and ix ate bounded, we can find constants Cx, C2, C3, C4,

Cs such that:

1. For any z E Ker V,  \k(z)\ < Cx\z\.

2. For k(z) E Z, there exists y EY such that Q(y) = k(z) and \y\ <

C2\k(z)\.

3. Former,  \U(y)\ < C3\y\.

4. For U(y) defined above, there exists some xEXx such that R(x) =

U(y) and \x\ < C4|c7(^)l.
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318 KUNG-WEI YANG

5.  ForxG^,  \ixix)\<C5M.

Hence, there exists a constant C such that for any z E Ker(F),  \d{z)\ < C\z\.

Thus d is continuous. The exactness of the sequence

(0 -*) Ker T -*• Ker U -*■ Ker V -* Coker 7 -»• Coker Í/ -»• Coker F(—► 0)

is verified by the usual method [7, p. 203].  Q.E.D.

3. Reflexive Banach spaces. A Banach space X is reflexive if the natural

injection nx: X —> X** is an isomorphism (onto). Hence

(3.1) X is reflexive o X = 0*>TX= Ix = 0.

(3.2) Theorem.  IfX is a closed subspace of the Banach space Y and if

Z = YfX, then Y is reflexive if and only if X and Z are reflexive [5, Exercises

19, 20, p. 72].

Proof.  0-+X—>Y—► Z —> 0 is exact. Now by Theorem (2.5), 0 —*

X—*■ Y —*■%—*■ Ois exact, whence Y= 0<>X= 0 and Z = 0.  Q.E.D.

(3.3) Theorem.   Let X be a Banach space.   Then X is reflexive if and

only ifX* is reflexive [5, Corollary 24, p. 67].

Proof. X is reflexive o Tx = 0 •»• (by Theorem (2.8)) Tx, = 0 <*• X* is

reflexive.  Q.ED.

4. Weakly compact operators. Let T: X —► Y be a continuous linear

operator, and let D he the closed unit sphere in X.  Tis weakly compact if the

weak closure of T(D) is compact in the weak topology of Y.

(4.1) Theorem.   77re continuous linear operator T: X —► Y is weakly

compact if and only iff=0.

Proof.  See [5, Theorem 2, p. 482].

Clearly, we have

(4.2) Corollary.   If either XorY is reflexive, then every T E B(X, Y)

is weakly compact [5, Corollary 3, p. 483].

Since the set of weakly compact operators is the kernel of the bar map

(4.1) which has the properties of (2.3) and (2.4), it is a norm-closed linear sub-

space which is a "two-sided ideal" in the sense of [9, p. 17].

(4.3) Theorem (Gantmacher). An operator T E B(X, Y) is weakly

compact if and only if T* is weakly compact.

Proof.  Use Theorems (2.8) and (4.1). Q.E.D.

(4.4) Theorem ([5, Theorem 7, p. 425], [3, Theorem 1, p. 69]). A
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Banach space X is reflexive if and only if its closed unit sphere D is compact in

the weak topology.

Proof. X is reflexive o Ix = 0 •»• Ix is weakly compact o IX(D) = D is

weakly compact.  Q.E.D.

(Note, however, that the neatness of the proof is illusory. This was pointed

out by the referee.)

This theorem corresponds to the theorem of F. Riesz which states that a

Banach space X is finite dimensional if and only if its closed unit sphere is com-

pact in the norm topology.

(4.5) Theorem.   Let T E B(X, Y) be an operator with a closed range.

Then, T is weakly compact <*■ T(X) is reflexive.

Proof.  (<=) Clear.

(=>) Without loss of generality, we may assume T is onto. Then fis onto

(Theorem (2.5)). But f = 0. Hence F= 0. Q.ED.

(The proof of this theorem was greatly simplified by a suggestion of the

referee.)

5. Generalized Fredholm operators. We say that an operator TEB(X, Y)

is generalized Fredholm if T(X) is closed in Y, and Ker T and Coker T are

reflexive.

(5.1) Theorem.   If TE B(X, Y) is range closed, then T is generalized

Fredholm o T is an isomorphism (invertible).

Proof.   T is generalized Fredholm,

o Ker r= 0 and Coker T = 0.

o (Corollary (2.6)) Ker f = 0, Coker f = 0.

o f is an isomorphism.  Q.EJ0.

(5.2) Theorem.  Let S E B(X, Y),TE B(Y, Z) and TS be range closed.

Then the sequence of Banach spaces

0 —*■ KeTT—► Ker TS   —> KeTT—»- Coker S —*■ Coker 73 —► Coker T —*■ 0

is exact.

Proof.   By Theorem (2.7),

0 —► Ker S —► Ker TS —> Ker T —*■ Coker S —> Coker TS -*- Coker T —*• 0

is exact. By Theorem (2.5),

0 —> Ker 5—* Ker TS —* KeTT—*• Coker S -* Coker TS —> Coker T —»■ 0

is exact. Q.ED.
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The following theorems ((5.3)—(5.5)) are immediate consequences of

Theorem (5.2).

(5.3) Theorem.   IfSEB(X, Y) and TEB(Y, Z) are generalized Fredholm

and TS has a closed range, then TS is generalized Fredholm.

(5.4) Theorem.  Suppose S EB(X, Y) and TEB(Y, Z) are range closed,

and suppose TS E B(X, Z) is generalized Fredholm.  Then,

(i) S is generalized Fredholm o T is generalized Fredholm;

(ii) if Ker T is reflexive, then both S and Tare generalized Fredholm;

(iii) if Coker S is reflexive, then both S and T are generalized Fredholm.

(5.5) Theorem.  Let T E B(X, Y) have a closed range. If there exist S,

S' EB(Y, X) with closed ranges such that ST and TS' are generalized Fredholm,

then T is generalized Fredholm.

(5.6) Theorem.   Let T E B(X, Y) be range closed.  Then, T is generalized

Fredholm o T* is generalized Fredholm.

Proof.   T is generalized Fredholm

o (Theorem (5.1)) T is an isomorphism.

o (T)* is an isomorphism.

o (Theorem (2.8)) (T*) is an isomorphism.

o T* is generalized Fredholm. Q.ED.

(5.7) Theorem. Let T E B(X, Y) be a generalized Fredholm operator

and K E B(X, Y) be a weakly compact operator such that T + K has a closed

range.   Then T + K is a generalized Fredholm operator.

Proof.   By assumption, T + K has a closed range. T + K=T + K = T

is an isomorphism. Hence by Theorem (5.1), T + K is generalized Fredhohn.

Q.ED.

(5.8)  Theorem. If TE B(X, XX),UE B(Y, Yx), V E B(Z, Zx) all have

closed ranges and if the following commutative diagram in B has exact rows

0—> X-► Y -► Z —>0

u

0 —*XX-► Yx-> Zx

then the following sequence

0—>Ker T—»Ker Í/—»Ker V-* Coker T —► Coker U-* Coker V-

is exact.
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Proof.   Use Theorems (2.9) and (2.5). Q.E.D.

An immediate consequence is:

(5.9) Theorem.  Assumption as in Theorem (5.S). If any two of the

operators T, U, V are generalized Fredholm, then the third one is also generalized

Fredholm.

(5.10) Theorem.    Let X be a Banach space with the property that

every closed reflexive subspace admits a closed complementary subspace.  Let Y

be a Banach space with the property that every closed subspace with reflexive

quotient space admits a closed complementary subspace.   Then, T E B(X, Y) is a

generalized Fredholm operator <>Tis invertible modulo the weakly compact

operators, and range closed.

Proof. (=>). Let T be a generalized Fredholm operator. By definition,

Ker T is reflexive and T(X) is closed in Y and Y/T(X) is reflexive. By the

assumptions on X and Y, there exist closed subspaces U, V of ATand Y respectively,

such that Zs Ker T® U, and Y= T(X) ® V. Clearly, T\U: U~* T(X) is con-

tinuous and bijective. By the open mapping theorem, continuous inverse (T\U)~l

exists. Identifying y and T(X) ® V, we may represent any y E Y as y =yx +y2,

where yx E T(X) and y2 E V.  Define S: Y —*• X by S(y) - S(yx + y2) =

(T\U)~lyx. Clearly, S E B(Y, X). It is easy to see that Ix - ST = K is the

projection of X onto Ker T along U and IY - TS = L is the projection of Y onto

V along T(X). Since Ker T and V ate both reflexive, K and L are both weakly

compact (Theorem (4.5)). This shows that T is invertible modulo the weakly

compact operators.

(«=). Let T be invertible modulo the weakly compact operators.  Then

there exist S, S' E B(Y, X) such that ST = Ix + K and TS' = IY + L, where K

and L are both weakly compact. Now,

Sf=ST = Ix+K = Fx,      T S ' = TS7 = IY + L = TY.

This means T is invertible.  By Theorem (5.1), T is generalized Fredholm.  Q.E.D.

Let B(X) = B(X, X) and WK(X) C B(X) be the closed two-sided ideal of

weakly compact operators in B(X).

(5.11) Theorem.   B(X)[WK(X) is isomorphic to a topological k-subalgebra

ofB(X).

Proof.   By Theorems (2.3), (2.4) and (4.1), T + WK(X) h-* f is a

topological monomorphism. Q.E.D.

In view of the above results, it is probably appropriate to call the algebra

B(X)/WK(X), the generalized Calkin algebra.  (Compare [15, p. 127].)
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6. Tauberian and co-Tauberian operators.  Let T G B(X, Y). T is called a

Tauberian operator if T**~x{nY{Y)) E nx{X) [6]. Equivalently: T is Tauberian

if and if Ker f = 0.

(6.1) Theorem  [6] .IfTE B(X, Y) has a closed range, then T is Tauber-

ian if and only if Ker T is reflexive.

Proof.  Since T has a closed range, we may apply Corollary (2.6) and

obtain: Ker(f) = Ker T. Clearly, T is Tauberian o Ker(f) = 0 o Ker T= 0 o

Ker T is reflexive. Q.E.D.

In view of Theorem (6.1), we see that the classical notion corresponding to

a Tauberian operator with a closed range is that of a semi-Fredholm operator

[11, p. 125].

(6.2) Theorem.   IfTE B(X, Y) is Tauberian and K E B(X, Y) is weakly

compact, then T + K is Tauberian.

Proof.  Ker(fTK) = Ker(f + K) = Ker(f) = 0. Hence, T + K is

Tauberian. Q.E.D.

(6.3) Theorem.  IfSEB(X, Y) and TEB(Y, Z) are Tauberian, then TS

is Tauberian [6].

Proof.   It is easy to see that 0 —> Ker S —* Ker TS —-» Ker fis exact.

So, S and T are Tauberian =*■ Ker S = 0 and Ker f = 0 => Ker TS = Ker TS = 0

•» TS is Tauberian. Q.E.D.

Let T E B(X, Y). T is called a co-Tauberian operator if T has a closed range

and Coker(f) = 0. (Note that if T has a closed range, then f also has a closed

range.)

(6.4) Theorem.  If T E B(X, Y) has a closed range then T is co-Tauberian

if and only if Coker T is reflexive.

Proof.  T is by assumption range closed. So, T is co-Tauberian ■»•

Coker(f) = 0 o (Corollary (2.6)) Coker T =0* Coker J is reflexive. Q.ED.

(6.5) Theorem.   IfTE B(X, Y) is co-Tauberian, K E B(X, Y) is weakly

compact, and T + K has a closed range, then T + K is co-Tauberian.

Proof.  Coker(fTT) = Coker(f + K) = Coker( f) = 0. SoJ + ZCis

co-Tauberian. Q.ED.

(6.6) Theorem.   IfSE B(X, Y) and TE B(Y, Z) are co-Tauberian, and

TS has a closed range, then TS is co-Tauberian.

Proof.   The following is an exact sequence in B:
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Coket(S) -* Coket(TS) -* CoketÇF) -* 0.

Now, 5 and T ate co-Tauberian => Coket(S) = 0 and Coker(7) = 0 => Coket(TS)

= Coket(TS) = 0 •* TS is co-Tauberian. Q.ED.

(6.7) Theorem.   Let T E B(X, Y). Then, T is generalized Fredholm ■» T

is Tauberian and co-Tauberian.

Proof.   Use Theorems (6.1) and (6.4). Q.E.D.

(6.8) Theorem.   Same assumption as in Theorem (5.,8). If U is general-

ized Fredholm, then T is Tauberian and V is co-Tauberian.

Proof.   Use Theorems (5.8), (6.1) and (6.4). Q.E.D.

(6.9) Theorem.   If TE B(X, Y) is range closed, then

(i) T is Tauberian «• T* is co-Tauberian,

(ii) T is co-Tauberian •*> T* is Tauberian.

Proof.   (!) Since T also has a closed range, we may apply Theorem (2.2)

and obtain (Ker f)* as Coker(f)*. By Theorem (2.8), there exist topological

isomorphisms P, Q such that (f)* = P~1(f*)Q. Hence, (Ker f)* s

Coker(P_1(f*)o).

Now, T is Tauberian •»• Ker f = 0

o CókerCP-1Cr*)fi) = 0

«• Coker(f*) = 0

o T* is co-Tauberian.

The proof of (ii) is similar to that of (i). Q.ED.

7. Examples of generalized Fredholm operators. Generalized Fredholm

operators can be constructed from Fredholm operators by tensoring.

First, a few remarks on split exact sequences and topological tensor products.
S T

The short exact sequence inB,  0—>X —► Y —► Z —► 0,is a split exact

sequence if either there exists a U E B(Y, X) such that US = Ix, or there exists

aVE B(Z, Y) such that TV = IZ.  If the above short exact sequence is split,

then F = X © Z.  In fact, in that case Y = S(X) ® (Ker U), and T restricted to

Ker U —> Z is a topological isomorphism. It is, therefore, clear that if 0 —> X
O rp

—► Y —► Z —-> 0 is a split exact sequence, then for any Banach space H, the

sequence

0-+X®H-^ Y®H-"-+Z&H-+0

is exact. Here, X ® H denotes the topological tensor product completed with

respect to the greatest crossnorm of Schatten [10, p. 36].

Now, let TEB(X, Y)hea Fredholm operator. Then, [8, Theorem 6, p.
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109 and Theorem 1, p. 119]

0-*Ker7 —*X^-T(X)-+0   and   0 —► T(X) -* Y —*■ Coker T —► 0

are both split exact sequences. Let ZZ be a reflexive Banach space. We see that

T&I„
0->Ker7® H-+X®H-=->■ Y® H-*■ Coker T® H-*■ 0

is an exact sequence. Since Ker T® H and Coker T® H are reflexive, T ® IH

is a generalized Fredholm operator.

8. Problems and comments.

(8.1) Can an index theory be developed for the generalized Fredholm

operators?

(8.2) Further investigation into the correspondence stated in the abstract

may lead to fruitful results.

(8.3) Many of the theorems on the generalized Fredholm operators may be

extended to the following more general operators:

(i) operator T E B(X, Y) such that T(X) is closed in Y, and Ker T and

Coker T are finite dimensional (i.e. Ker T and Coker T are quasi-reflexive in the

sense of [2] );

_00 operator T E B(X, Y) such that T(X) is closed in Y and KêrT= 0 and

Coker T = 0; etc.

(8.4) Other applications of exact sequences in elementary functional analysis

exist [13].

Appendix.  In this appendix, we shall prove many of the standard theorems

in the classical Fredholm theory by using the results in §2. Recall that an

operator T E B(X, Y) is called a Fredholm operator if dim(Ker T) and dim(Coker T)

are finite. (Here Coker T refers to the algebraic cokernel.) Notice that if T is

Fredholm, then T(X) is closed in Y [8, Theorem 1, p. 119]. The integer ind(T)

= dim(Ker 7) - dim(Coker 7) is called the index of 71

The following results ((A.1)-(A.5)) follow immediately from Theorem (2.7)

and the simple observation that if A —> B —* C is exact at B, and if dim A and

dim C are finite then dim B is finite.

(A.l)  Theorem.  IfSE B(X, Y) and TE B(Y, Z) are Fredholm, then TS

is Fredholm.

(A.2) Theorem.   Suppose S EB(X, Y) and TE B(Y, Z) are operators

such that TS is Fredholm.   Then

(i) S is Fredholm <> 7 is Fredholm;

(ii) if dim(Ker 7) is finite, then both S and T are Fredholm;

(iii) i/dim(Coker S) is finite, then both S and Tare Fredholm.
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(A.3)  Theorem.   Let T E B(X, Y). If there are S, S' E B(Y, X) such

that ST and TS' are Fredholm, then T is Fredholm.

(A.4) Corollary.  Let Tx, .... Tn EB(X, X), which commute.   Then,

Tx • • • Tnis Fredholm o T, is Fredholm for i = 1, . . . , «.

(A.5)  Corollary. IfTE B(X, X) is such that T" is Fredholm for some

n > 1, then T is Fredholm.

(A.6)  Theorem.  If S E B(X, Y) and TE B(Y, Z) are Fredholm, then

(TS is Fredholm and) ind(TS) = ind(S) + ind(T).

Proof.  This identity follows from Theorem (2.7) and the fact that if

0 —* A0—>AX —*■• • —*A„~^ 0 is an exact sequence of finite-dimensional

Banach spaces, then

¿ (-l)'dim(Ai) = 0.      Q.E.D.
/=o

(A.7)  Theorem.  IfTE B(X, Y) is Fredholm, then T* E B(Y*, X*) is

Fredholm and ind(T*) = -ind(T).

Proof.  This follows from Theorem (2.2). Q.ED.

(A.8) Theorem.   IfTE (X, Y) is Fredholm, then ind(T) = dimfKer T) -

dim(Ker T*).

Proof.   Theorem (2.2). Q.E.D.

(A.9)  Theorem.   Let TEB(X, Y). Then, T is Fredholm o T is invertible

modulo the compact operators.

Proof.  (=>) The proof of this implication is standard (see the corresponding

part in [8, Theorem 2, p. 120]).

(<=) This follows from (A.3), (A.5) and [4, (11, 3.3), p. 321]. Q.ED.

(A.10)   Theorem. IfTE B(X, Y) is Fredholm and K E B(X, Y)isa com-

pact operator, then T + K is Fredholm, and ind(T + K) = ind(T).

Proof [11, p. 114]. By Theorem (A.9), there exist S, S' E B(Y, X) such

that ST - Ix = Kx and TS' - IY = K2 are compact. Clearly,

S(T + K) = Ix -Kx + SK = Ix -K3,

(T + K)S = IY-K2 +KS = IY-K4,

and K3, KA ate compact operators, whence T + K is a Fredholm operator. From

the above equalities we have

ind(S) + ind(T + K) = ind(Ix - K3) = 0,
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indíS) + ind(7) = ind(Ix -Kx) = 0.

Henee ind(7 + K) = ind(7). Q.E.D.

(A.ll) Theorem.   Same assumption as in Theorem (5.8).

If any two of the operators 7, U, Vare Fredholm, then the third one is

also Fredholm.

Proof.   This follows immediately from Theorem (2.9). Q.ED.
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