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Background

Genome-wide association studies (GWAS): millions of common (minor
allele frequency > 0.05) SNPs genotyped.

Gene-level/pathway-level analysis can provide power to detect these
types of effects by combining information over the SNPs.

Goal: Develop powerful, computationally efficient, statistical
methodology for SNP-sets that have the power to detect joint SNP
effects.
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Model

n subjects, q covariates, p genetic variants.

Yi is phenotype for ith individual

Xi · contains q covariates for ith individual

Gi · contains SNP information (minor allele counts) in a
gene/pathway/SNP-set for ith individual

α and β contain regression coefficients.

µi = E (Yi |Gi ·,Xi ·)

Model

h(µi ) = Xi ·α + Gi ·β

h(·) is the link function.
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Marginal SNP test statistics

The marginal score test statistic for the jth variant is:

Zj = GT
·j (Y − µ̂0)

where µ̂0 is the MLE of E (Y|H0). Assume Zj is normalized.

Letting UUT = Ĉov(Z) = Σ̂, define the transformed (decorrelated)
test statistics:

Z∗ = U−1Z
L−−−→

n→∞
MVN(0, Ip)
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Current popular methods

Method SKAT MinP

Test statistic
∑p

j=1 Z
2
j maxj{|Zj |}

Pros

High power when signal
sparsity is low. Accurate
p-values can be obtained
quickly.

High power when signal
sparsity is high.

Cons
Can have very low power
when sparsity is high.

Slightly lower power when
sparsity is low. Difficult to
obtain accurate analytic p-
values.
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The higher criticism

Let

S(t) =

p∑
j=1

1{|Zj |≥t}

Assumes Σ = Ip

Under H0, S(t) ∼ Binomial(p, 2Φ̄(t)) where Φ̄(t) = 1− Φ(t) is the
survival function of the normal distribution.

The Higher Criticism test statistic is:

HC = sup
t>0

{
S(t)− 2pΦ̄(t)√

2pΦ̄(t)(1− 2Φ̄(t))

}
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The higher criticism
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Adjusting for correlation

Recalling that Z∗ = U−1Z, let

S∗(t) =

p∑
j=1

1{|Z∗
j |≥t}

Note that under H0, S∗(t) ∼ Binomial(p, 2Φ̄(t)) regardless for
general correlated Σ.

The innovated Higher Criticism test statistic is:

iHC = sup
t>0

{
S∗(t)− 2pΦ̄(t)√
2pΦ̄(t)(1− 2Φ̄(t))

}
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Adjusting for correlation

Cancer Genetic Markers of Susceptibility (CGEM) Breast Cancer GWAS: FGFR2 gene
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Decorrelating causes iHC to lose power.
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Comparison

Method MinP SKAT iHC

Robust to signal sparsity X X
Robust to correlation/LD structure X X

Computationally efficient X X
Does not require decorrelating test statistics X X
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Comparison

Method MinP SKAT iHC GHC

Robust to signal sparsity X X X
Robust to correlation/LD structure X X X

Computationally efficient X X X
Doesn’t require decorrelating test statistics X X X X

*We will also consider the omnibus test, OMNI, in our power simulations.
It is based on the minimum p-value of the SKAT, MinP, and GHC.
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Our contribution: the generalized higher critcism (GHC)

Recall

S(t) =

p∑
j=1

1{|Zj |≥t}

Now we allow Σ to have arbitrary correlation structure.

S(t) is no longer binomial. Instead we approximate with
Beta-binomial, matching on first two moments.

The Generalized Higher Criticism test statistic is:

GHC = sup
t>0

S(t)− 2pΦ̄(t)√
V̂ar(S(t))
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The variance estimator V̂ar(S(t))

Theorem 1

Let rn = 2
p(1−p)

∑
1≤k<l≤p(Σkl)

n and let Hi (t) be the Hermite

polynomials: H0(t) = 1, H1(t) = t, H2(t) = t2 − 1 and so on. Then

Cov

(
S(tk),S(tj)

)
= p[2Φ̄(max{tj , tk})− 4Φ̄(tj)Φ̄(tk)]

+4p(p − 1)φ(tj)φ(tk)
∞∑
i=1

H2i−1(tj)H2i−1(tk)r2i

(2i)!

Proof follows from Schwartzman and Lin (2009) where they showed:

P(Zk > ti ,Zl > tj) = Φ̄(ti )Φ̄(tj) + φ(ti )φ(tj)
∞∑
n=1

Σn
kl

n!
Hn−1(ti )Hn−1(tj)
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Analytic p-values for the GHC

Letting h be the observed GHC statistic:

p-value = pr

sup
t>0

S(t)− 2pΦ̄(t)√
V̂ar(S(t))

 ≥ h


There exists 0 < t1 < · · · < tp, such that

p-value = 1− pr

(
p⋂

k=1

{S(tk) ≤ p − k}

)
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Power simulations
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ρ1: correlation within causal variants.

ρ2: correlation between causal and noncausal variants.

ρ3: correlation within non-causal variants.
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Data analysis

The National Cancer Institute’s Cancer Genetic Markers of Susceptibility
(CGEM) breast cancer GWAS. Sample has 1145 cases, 1142 controls with
european ancestry.
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Next (and final) step

Thresholding tests (GHC and MinP) and summing tests (SKAT) are
good complements

Combining these classes of tests in a more principled way (than
OMNI) is to use the following test statistic:

sup
γ,t


p∑

j=1

|Zj |γ I{|Zj |>t}


γ = 2, t = 0 → SKAT

γ = 0 → GHC

We label this test as OPT.
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Simulations p = 20, exchangeable correlation ρ

For OPT, the supremum is selected from t ∈ (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4) and
γ ∈ (0, 0.5, 1, 1.5, 2).

Non-zero β decrease with ρ.
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