The Generalized Higher Criticism for Testing SNP-sets in Genetic Association Studies

Ian Barnett, Rajarshi Mukherjee & Xihong Lin

Harvard University

ibarnett@hsph.harvard.edu

June 24, 2014

- Genome-wide association studies (GWAS): millions of common (minor allele frequency > 0.05) SNPs genotyped.
- Gene-level/pathway-level analysis can provide power to detect these types of effects by combining information over the SNPs.
- Goal: Develop powerful, computationally efficient, statistical methodology for SNP-sets that have the power to detect joint SNP effects.

Model

- *n* subjects, *q* covariates, *p* genetic variants.
- Y_i is phenotype for *i*th individual
- X_i. contains q covariates for *i*th individual
- **G**_{*i*}. contains SNP information (minor allele counts) in a gene/pathway/SNP-set for *i*th individual
- lpha and eta contain regression coefficients.
- $\mu_i = E(Y_i | \mathbf{G}_{i \cdot}, \mathbf{X}_{i \cdot})$

Model

$$h(\mu_i) = \mathbf{X}_{i\cdot} \boldsymbol{\alpha} + \mathbf{G}_{i\cdot} \boldsymbol{\beta}$$

• $h(\cdot)$ is the link function.

• The marginal score test statistic for the *j*th variant is:

$$Z_j = \mathbf{G}_{\cdot \mathbf{j}}^{\mathsf{T}} (\mathbf{Y} - \hat{\boldsymbol{\mu}}_0)$$

where $\hat{\mu}_0$ is the MLE of $E(\mathbf{Y}|H_0)$. Assume Z_j is normalized.

• Letting $UU^{T} = \widehat{Cov}(Z) = \hat{\Sigma}$, define the transformed (decorrelated) test statistics:

$$\mathsf{Z}^* = \mathsf{U}^{-1}\mathsf{Z} \xrightarrow[n \to \infty]{\mathcal{L}} MVN(\mathbf{0}, \mathsf{I}_p)$$

Method	SKAT	MinP
Test statistic	$\sum_{j=1}^{p} Z_j^2$	$\max_{j}\{ Z_j \}$
Pros	High power when signal sparsity is low. Accurate p-values can be obtained quickly.	High power when signal sparsity is high.
Cons	Can have very low power when sparsity is high.	Slightly lower power when sparsity is low. Difficult to obtain accurate analytic p- values.

The higher criticism

Let

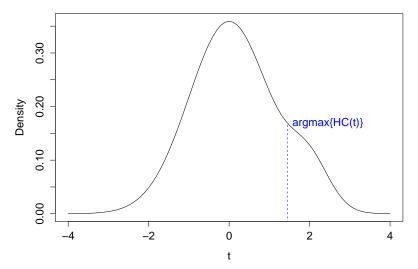
$$\mathcal{S}(t)=\sum_{j=1}^{p}\mathbf{1}_{\{|Z_j|\geq t\}}$$

• Assumes $\Sigma = I_p$

- Under H₀, S(t) ~ Binomial(p, 2Φ(t)) where Φ(t) = 1 − Φ(t) is the survival function of the normal distribution.
- The Higher Criticism test statistic is:

$$HC = \sup_{t>0} \left\{ \frac{S(t) - 2p\bar{\Phi}(t)}{\sqrt{2p\bar{\Phi}(t)(1 - 2\bar{\Phi}(t))}} \right\}$$

The higher criticism



Adjusting for correlation

Recalling that $\mathbf{Z}^* = \mathbf{U}^{-1}\mathbf{Z}$, let

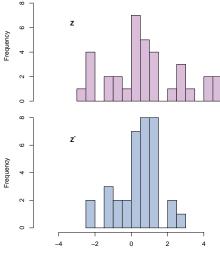
$$S^*(t) = \sum_{j=1}^{
ho} \mathbf{1}_{\{|Z_j^*| \geq t\}}$$

- Note that under H₀, S^{*}(t) ~ Binomial(p, 2Φ(t)) regardless for general correlated Σ.
- The innovated Higher Criticism test statistic is:

$$iHC = \sup_{t>0} \left\{ \frac{S^*(t) - 2p\bar{\Phi}(t)}{\sqrt{2p\bar{\Phi}(t)(1 - 2\bar{\Phi}(t))}} \right\}$$

Adjusting for correlation

Cancer Genetic Markers of Susceptibility (CGEM) Breast Cancer GWAS: FGFR2 gene



Marginal test statistics

Decorrelating causes iHC to lose power.

Ian Barnett

Method		SKAT	iHC
Robust to signal sparsity	\checkmark		\checkmark
Robust to correlation/LD structure	\checkmark		\checkmark
Computationally efficient		\checkmark	\checkmark
Does not require decorrelating test statistics		\checkmark	

Method		SKAT	iHC	GHC
Robust to signal sparsity			\checkmark	\checkmark
Robust to correlation/LD structure			\checkmark	\checkmark
Computationally efficient		\checkmark	\checkmark	\checkmark
Doesn't require decorrelating test statistics	\checkmark	\checkmark	\checkmark	\checkmark

*We will also consider the omnibus test, OMNI, in our power simulations. It is based on the minimum p-value of the SKAT, MinP, and GHC.

Our contribution: the generalized higher critcism (GHC)

Recall

$$S(t)=\sum_{j=1}^{p}\mathbf{1}_{\{|Z_j|\geq t\}}$$

- Now we allow Σ to have arbitrary correlation structure.
- *S*(*t*) is no longer binomial. Instead we approximate with Beta-binomial, matching on first two moments.
- The Generalized Higher Criticism test statistic is:

$$GHC = \sup_{t>0} \left\{ \frac{S(t) - 2p\overline{\Phi}(t)}{\sqrt{\widehat{Var}(S(t))}} \right\}$$

The variance estimator $\widehat{Var}(S(t))$

Theorem 1

Let
$$\overline{r^n} = \frac{2}{p(1-p)} \sum_{1 \le k < l \le p} (\Sigma_{kl})^n$$
 and let $\mathcal{H}_i(t)$ be the Hermite
polynomials: $\mathcal{H}_0(t) = 1$, $\mathcal{H}_1(t) = t$, $\mathcal{H}_2(t) = t^2 - 1$ and so on. Then
 $Cov\left(S(t_k), S(t_j)\right) = p[2\bar{\Phi}(\max\{t_j, t_k\}) - 4\bar{\Phi}(t_j)\bar{\Phi}(t_k)] + 4p(p-1)\phi(t_j)\phi(t_k)\sum_{i=1}^{\infty} \frac{\mathcal{H}_{2i-1}(t_j)\mathcal{H}_{2i-1}(t_k)\overline{r^{2i}}}{(2i)!}$

Proof follows from Schwartzman and Lin (2009) where they showed:

$$P(Z_k > t_i, Z_l > t_j) = \bar{\Phi}(t_i)\bar{\Phi}(t_j) + \phi(t_i)\phi(t_j)\sum_{n=1}^{\infty} \frac{\sum_{kl}^n}{n!} \mathcal{H}_{n-1}(t_i)\mathcal{H}_{n-1}(t_j)$$

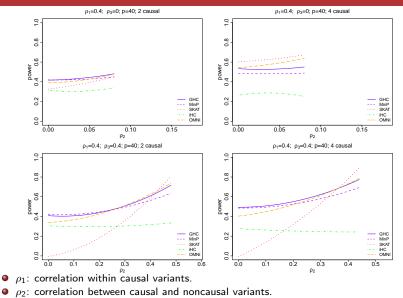
• Letting *h* be the observed *GHC* statistic:

$$p-value = pr\left(\sup_{t>0}\left\{\frac{S(t) - 2p\bar{\Phi}(t)}{\sqrt{\widehat{Var}(S(t))}}\right\} \ge h\right)$$

• There exists $0 < t_1 < \cdots < t_p$, such that

$$\mathsf{p} ext{-value} = 1 - \mathsf{pr}\left(igcap_{k=1}^{\mathsf{p}}\left\{S(t_k) \leq \mathsf{p} - k
ight\}
ight)$$

Power simulations

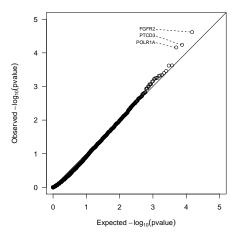


• ρ_3 : correlation within non-causal variants.

lan Barnett

Data analysis

The National Cancer Institute's Cancer Genetic Markers of Susceptibility (CGEM) breast cancer GWAS. Sample has 1145 cases, 1142 controls with european ancestry.



- Thresholding tests (GHC and MinP) and summing tests (SKAT) are good complements
- Combining these classes of tests in a more principled way (than OMNI) is to use the following test statistic:

$$\sup_{\gamma,t} \left\{ \sum_{j=1}^p |Z_j|^{\gamma} I_{\{|Z_j|>t\}} \right\}$$

- $\gamma = 2$, $t = 0 \rightarrow \mathsf{SKAT}$
- $\gamma = 0 \rightarrow \text{GHC}$
- We label this test as OPT.

Simulations p = 20, exchangeable correlation ρ

- For OPT, the supremum is selected from $t \in (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4)$ and $\gamma \in (0, 0.5, 1, 1.5, 2)$.
- Non-zero β decrease with ρ .

