THE GENERALIZED INVERSE OF A NONNEGATIVE MATRIX

R. J. PLEMMONS AND R. E. CLINE¹

ABSTRACT. Necessary and sufficient conditions are given in order that a nonnegative matrix have a nonnegative Moore-Penrose generalized inverse.

1. Introduction. Let A be an arbitrary $m \times n$ real matrix. Then the Moore-Penrose generalized inverse of A is the unique $n \times m$ real matrix A^+ satisfying the equations

$$A = AA^{+}A,$$
 $A^{+} = A^{+}AA^{+},$
 $(AA^{+})^{T} = AA^{+},$ and $(A^{+}A)^{T} = A^{+}A.$

The properties and applications of A^+ are described in a number of papers including Penrose [7], [8], Ben-Israel and Charnes [1], Cline [2], and Greville [6]. The main value of the generalized inverse, both conceptually and practically, is that it provides a solution to the following least squares problem: Of all the vectors x which minimize ||b - Ax||, which has the smallest $||x||^2$? The solution is $x = A^+b$.

If A is nonnegative (written $A \ge 0$), that is, if the components of A are all nonnegative real numbers, then A^+ is not necessarily nonnegative. In particular, if $A \ge 0$ is square and nonsingular, then $A^+ = A^{-1} \ge 0$ if and only if A is monomial, i.e., A can be expressed as a product of a diagonal matrix and a permutation matrix, so that $A^{-1} = DA^T$ for some diagonal matrix D with positive diagonal elements. The main purpose of this paper is to give necessary and sufficient conditions on $A \ge 0$ in order that $A^+ \ge 0$. Certain properties of such nonnegative matrices are then derived.

2. Results. In order to simplify the discussion to follow, it will be convenient to introduce a canonical form for a nonnegative symmetric

© American Mathematical Society 1972

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Received by the editors August 27, 1970.

AMS 1969 subject classifications. Primary 1515; Secondary 1560, 1565.

Key words and phrases. Generalized inverse, idempotent matrix, nonnegative matrix, singular values, stochatics matrix.

¹ Research by both authors was supported by N.S.F. Grant 15943.

idempotent matrix. Flor [5] has shown that if E is any nonnegative idempotent matrix of rank r, then there exists a permutation matrix P such that

$$PEP^{T} = \begin{pmatrix} J & JB & 0 & 0 \\ 0 & 0 & 0 & 0 \\ AJ & AJB & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

where A and B are arbitrary nonnegative matrices of appropriate sizes and

$$J = \begin{pmatrix} J_1 & & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & & J_r \end{pmatrix}$$

with each J_r a nonnegative idempotent matrix of rank 1. This gives the following lemma.

LEMMA 1. Let $E \ge 0$ be a symmetric idempotent matrix of rank r with q nonzero rows. Then there exists integers $\lambda_1, \dots, \lambda_r$ and a permutation matrix P such that $q = \lambda_1 + \dots + \lambda_r$ and such that PEP^T has the form

(1)
$$PEP^{T} = \begin{pmatrix} J_{1} & 0 & | \\ \cdot & | & 0 \\ & \cdot & | & 0 \\ 0 & J_{r} & | \\ \hline 0 & 0 & | & 0 \end{pmatrix}$$

where each J_i is a $\lambda_i \times \lambda_i$ positive idempotent matrix of rank 1.

The main result is given next. The theorem characterizes $A \ge 0$ so that $A^+ \ge 0$, and its proof indicates a method by which such an A^+ can be constructed readily.

THEOREM 1. Let A be an $m \times n$ nonnegative matrix of rank r. Then the following statements are equivalent.

(i) A^+ is nonnegative.

(ii) There exists a permutation matrix P such that PA has the form²

. **D** .

(2)
$$PA = \begin{pmatrix} B_1 \\ \cdot \\ \cdot \\ B_r \\ 0 \end{pmatrix}$$

where each B_i has rank 1 and where the rows of B_i are orthogonal to the rows of B_j whenever $i \neq j$.

(iii) $A^+ = DA^T$ for some diagonal matrix D with positive diagonal elements.

PROOF. Suppose (i) holds so that A, $A^+ \ge 0$. Since $E = AA^+$ is a symmetric idempotent, there exists a permutation matrix P so that $K = PEP^T$ has the form (1). Let B = PA. Then $B^+ = A^+P^T$, $BB^+ = K$, KB = B, and $B^+K = B^+$. Now B can be partitioned into the form (2), where r is the rank of A and where each B_i , $1 \le i \le r$, is a $\lambda_i \times n$ matrix with no zero rows, since A and B have the same number of nonzero rows. It remains to show each B_i has rank 1 and $B_iB_i^T = 0$, for $1 \le i \ne j \le r$. Let $C = B^+$. Then C can be partitioned into the form

$$C = (C_1, \cdots, C_r, 0)$$

where, for $1 \leq i \leq r$, C_i is an $n \times \lambda_i$ matrix with no zero columns. Moreover, since *CB* is symmetric, a column of *B* is nonzero if and only if the corresponding row of *C* is nonzero. Now KB = B implies that $J_iB_i = B_i$, so that B_i has rank 1, for $1 \leq i \leq r$. It remains to show that the rows of B_i are orthogonal to the rows of B_j for $i \neq j$. Since BC = Khas the form (1),

$$B_i C_j = J_i$$
, if $i = j$, and
= 0, if $i \neq j$,

for $1 \leq i, j \leq r$. Suppose the *l*th column of B_i is nonzero. Then $B_iC_k = 0$ for $k \neq i$ implies that the *l*th row of C_k is zero. However, since the *l*th row of C is nonzero, the *l*th row of C_i is nonzero. In this case, the *l*th column of B_k is zero for all $k \neq i$, since $B_kC_i = 0$. Thus

$$B_i B_j^T = 0$$
 for all $1 \leq i \neq j \leq r$,

and (ii) is established.

² Note that the zero block may not be present.

Now assuming (ii) holds, let B = PA have the form (2). Then for $1 \le i \le r$, there exist column vectors x_i, y_i such that $B_i = x_i y_i^T$. Furthermore, B_i^+ is the nonnegative matrix

$$B_i^+ = (\|x_i\|^2 \|y_i\|^2)^{-1} B_i^T$$

and moreover $B^+ = (B_1^+, \dots, B_r^+, 0)$, since $B_i B_j^T = 0$ for $i \neq j$. In particular then, $B^+ = DB^T$ where D is a diagonal matrix with positive diagonal elements and thus $A^+ = DA^T$, yielding (iii).

Clearly (iii) implies (i) so the proof is complete.

The next theorem considers doubly stochastic matrices, that is, square matrices $B \ge 0$ whose row sums and column sums are 1. The matrix $A \ge 0$ is said to be diagonally equivalent to a doubly stochastic matrix if there exist diagonal matrices D_1 and D_2 such that D_1AD_2 is doubly stochastic. Classes of nonnegative matrices with this property have been the subject of several recent papers (for example, see Djoković [4]). Part of the following theorem identifies another such class.

THEOREM 2. Let $A \ge 0$ be square with no zero rows or columns. If $A^+ \ge 0$ then A is diagonally equivalent to a doubly stochastic matrix. Moreover, if A is doubly stochastic then A^+ is doubly stochastic if and only if the equation A = AXA has a doubly stochastic solution, in which case $A^+ = A^T$.

PROOF. The first statement follows since there exist permutation matrices P and Q such that

$$PAQ = \begin{pmatrix} B_1 & & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & & B_r \end{pmatrix}$$

where each B_i is a positive square matrix.

For the second statement note that a doubly stochastic idempotent matrix E is necessarily symmetric; for in particular, there exists a permutation matrix P such that PEP^T has the form (1), where each row and column is nonzero and where each J_i is a positive, idempotent doubly stochastic matrix of rank 1. Then each entry of J_i is $1/\lambda_i$ so that PEP^T and, accordingly, E are symmetric matrices. This means that A^+ is the only possible doubly stochastic solution to the equations A = AYA and Y = YAY, since AY and YA are symmetric and A^+ is unique. Thus A^+ is doubly stochastic if and only if A = AXA has a doubly stochastic solution, in which case $A^+ = XAX$, and so $A^+ = A^T$ by Theorem 1.

The final result determines the singular values of A (i.e., the positive square roots of the nonzero eigenvalues of $A^T A$) whenever $A^+ \ge 0$.

THEOREM 3. Let $A \ge 0$ be an $m \times n$ real matrix with $A^+ \ge 0$ and let *PA* have the form (2). Let $\{x_i, y_i\}_{i=1}^r$ be column vectors so that $B_i = x_i y_i^T$ for $1 \le i \le r$. Then the singular values of A are the numbers $||x_i|| \cdot ||y_i||$.

PROOF. The eigenvalues of AA^T are the eigenvalues of BB^T . But these are the eigenvalues of the matrices $B_iB_i^T$ for $1 \le i \le r$, that is, the numbers $||x_i||^2 \cdot ||y_i||^2$.

REFERENCES

1. A. Ben-Israel and A. Charnes, Contributions to the theory of generalized inverses, J. Soc. Indust. Appl. Math. 11 (1963), 667–699. MR 31 #3441.

2. R. E. Cline, Representations for the generalized inverse of a partitioned matrix, J. Soc. Indust. Appl. Math. 12 (1964), 588-600. MR 30 #3106.

3. —, Inverses of rank invariant powers of a matrix, SIAM J. Numer. Anal. 5 (1968), 182–197. MR 37 #2769.

4. D. Z. Djoković, Note on nonnegative matrices, Proc. Amer. Math. Soc. 25 (1970), 80-82. MR 41 #1768.

5. P. Flor, On groups of nonnegative matrices, Compositio Math. 21 (1969), 376–382. MR 41 #1769.

6. T. N. E. Greville, Some applications of the pseudo-inverse of a matrix, SIAM Rev. 2 (1960), 15–22. MR 22 #1067.

7. R. Penrose, A generalized inverse for matrices, Proc. Cambridge Philos. Soc. 51 (1955), 406-413. MR 16, 1082.

8. ____, On the best approximate solutions of linear matrix equations, Proc. Cambridge Philos. Soc. 52 (1956), 17-19. MR 17, 536.

9. R. Plemmons, Graphs and nonnegative matrices, Linear Algebra and Appl. (to appear).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TENNESSEE, KNOXVILLE, TENNESSEE 37916