
The Generalized Multiprocessor Periodic Resource Interface Model for Hierarchical
Multiprocessor Scheduling

Burmyakov, Artem; Bini, Enrico; Tovar, Eduardo

Published in:
[Host publication title missing]

2012

Link to publication

Citation for published version (APA):
Burmyakov, A., Bini, E., & Tovar, E. (2012). The Generalized Multiprocessor Periodic Resource Interface Model
for Hierarchical Multiprocessor Scheduling. In [Host publication title missing] (pp. 131-139)

Total number of authors:
3

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5fd7d702-dd6f-466d-ab76-644fc28aae28

The Generalized Multiprocessor Periodic Resource Interface Model for Hierarchical

Multiprocessor Scheduling

Artem Burmyakov∗, Enrico Bini†, Eduardo Tovar∗

∗CISTER-ISEP Research Center, Polytechnic Institute of Porto, Portugal
†Lund University, Sweden

Abstract—Composition is a practice of key importance in
software engineering. When real-time applications are com-
posed it is necessary that their timing properties (such as
meeting the deadlines) are guaranteed. The composition is
performed by establishing an interface between the application
and the physical platform. Such an interface does typically
contain information about the amount of computing capacity
needed by the application. In multiprocessor platforms, the
interface should also present information about the degree of
parallelism. Recently there have been quite a few interface
proposals. However, they are either too complex to be handled
or too pessimistic.

In this paper we propose the Generalized Multiprocessor
Periodic Resource model (GMPR) that is strictly superior to
the MPR model without requiring a too detailed description.
We describe a method to generate the interface from the appli-
cation specification. All these methods have been implemented
in Matlab routines that are publicly available.

I. INTRODUCTION

Reusing application code is a key design principle to

shorten the overall design time. According to this design

methodology, software components are designed in isolation,

possibly by different developers. Then, during the integration

phase, all components are bound to the same execution

platform. Clearly, the integration must be performed in such

a way that the properties of components are preserved even

after the composition is made.

In real-time systems, the key property that has to be

preserved during the integration phase is time predictability:

a real-time application that meets all its deadlines when

designed in isolation, should also meet all deadlines when

it is integrated with other applications on the same sys-

tem. This property is often guaranteed by introducing an

interface between the application and the physical platform.

Then the application is guaranteed over the interface, and

the physical platform must provide a virtual platform that

conforms with the interface. The scheduling problem over

a virtual platform is often called hierarchical scheduling

problem. In fact, the application tasks may contain an entire

application in a hierarchical fashion. The benefit of using

The research leading to these results was supported by the Marie Curie
Intra European Fellowship within the 7th European Community Framework
Programme.

an interface-based approach is significant: during the design

phase the interface of a virtual platform is designed such that

the timing requirements of the application are met; during

the integration phase the interfaces of all applications are

combined over the same physical platform.

Typically, interfaces that allow composition of real-time

components provide details about the amount of computation

that can be provided by the virtual platform. This informa-

tion can be provided with a varying degree of detail. For

example, a very simple interface of a virtual processor can

be just the fraction of provided time.

With the broad diffusion of multiprocessors, hierarchical

scheduling problems have recently been considered over ex-

ecution platforms that provide parallelism. The formulation

of interface models for multiprocessor, however, requires the

introduction of a new dimension: the degree of parallelism.

This extra characteristic of the interface makes the problem

certainly more challenging to be addressed.

The problem in selecting the appropriate interface is to

find the most opportune balance between accuracy and

simplicity of the interface. In this paper we propose a simple

interface that is a generalization of a previously proposed

one [20]. To better describe the context of our contribution,

next we describe the most relevant related works.

A. Related works

The problem of composing real-time applications is cer-

tainly not new. There actually have been numerous contribu-

tions in this area. Being fully aware of the impossibility to

provide a full coverage of the topic, we describe in this

section the works that, to our best knowledge, are more

related to ours.

One of the first papers to address the isolation of ap-

plications using resource reservations was published in

1993 by Parekh and Gallager [19], who introduced the

Generalized Processor Sharing (GPS) algorithm to share

a fluid resource according to a set of weights. Mercer et

al. [17] proposed a more realistic approach where a resource

can be allocated based on a required budget and period.

Stoica et al. [22] introduced the Earliest Eligible Virtual

Deadline First (EEVDF) for sharing the computing resource.

Deng and Liu [6] achieved the same goal by introducing a

two-level scheduler (using EDF as a global scheduler) in

the context of multi-application systems. Kuo and Li [12]

extended the approach to a Fixed Priority global scheduler.

Kuo et al. [13] extended their previous work [12] to multi-

processors. However, they made very stringent assumptions

(such as no task migration and period harmonicity) that

restricted the applicability of the proposed solution.

Moir and Ramamurthy [18] proposed a hierarchical ap-

proach, where a set of P-fair tasks can be scheduled within

a time partition provided by another P-fair task (called

“supertask”) acting as a server. However, the solution often

requires the weight of the supertask to be higher than the

sum of the weights of the served tasks [11].

Many independent works proposed to model the service

provided by a uniprocessor through a supply function. Feng

and Mok introduced the bounded-delay resource partition

model [8]. Almeida et al. [1] provided timing guarantees

for both synchronous and asynchronous traffic over the FTT-

CAN protocol by using hierarchical scheduling. Lipari and

Bini [15] derived the set of virtual processors that can

feasibly schedule a given application. Shin and Lee [21]

introduced the periodic resource model also deriving a

utilization bound. Easwaran et al. [7] extended this model

allowing the server deadline to be different than the period.

Fisher and Dewan [9] proposed an approximation algorithm

to test the schedulability of a task set over a periodic

resource.

Recently, some authors have addressed the problem of

how to specify the application interface for an application

to be executed on multiprocessor systems, and provide

appropriate schedulability analysis to check if the application

is schedulable on the interface.

Leontyev and Anderson [14] proposed to use only the

overall bandwidth requirement w as interface for soft real-

time applications. The authors propose to allocate a band-

width requirement of w onto ⌊w⌋ dedicated processors, plus

an amount of w−⌊w⌋ provided by a periodic server globally

scheduled onto the remaining processors. An upper bound

of the tardiness of tasks scheduled on such interface was

provided.

Shin et al. [20] proposed the multiprocessor periodic

resource model (MPR) that specifies a period, a budget and

maximum level of parallelism of the resource provisioning.

Since our work is a generalization of the MPR, in Sec-

tion II-B we describe it in greater detail.

Chang et al. [5] proposed to partition the resource avail-

able from a multiprocessor by a static periodic scheme.

The amount of resource is then provided to the application

through a contract specification.

Bini et al. [4] proposed the Parallel Supply Function

(PSF) interface of a virtual multiprocessor. This interface

can be seen as a generalization of any possible interface

model and it is the most resource-efficient. However, it is

not investigated the assignment of the interface parameters

that guarantee a real-time application.

Lipari and Bini [16] described an entire framework for

composing real-time applications running over a multipro-

cessor. However their proposed interface was extremely

simple.

B. Contributions of the paper

The contributions of the paper are highlighted in bold in

the paragraph below.

In Section II we recall some previous interface mod-

els such as the Parallel Supply Function (PSF) and the

Multiprocessor Resource Model (MPR). In Section III we

provide an example illustrating that the MPR interface may

require some more resource than actually needed. Section IV

introduces the Generalized Multiprocessor Periodic Re-

source model (GMPR). We also show how to compute

the PSF interface of a GMPR interface. In Section V

a schedulability condition over a GMPR interface is

presented. This condition, inspired by the one proposed by

Bertogna, Cirinei and Lipari [3], can be applied to several

different policies for scheduling the application tasks. In

Section VI we show how to design a GMPR interface that

requires the minimal resource and can guarantee a real-

time application specified by a set of sporadic tasks with

deadline. In Section VII we briefly describe the problem of

scheduling the GMPR interfaces. Finally, in Section VIII

we report some simulations.

II. BACKGROUND

As our work is tightly tied to several previous works, in

this section we briefly review concepts and notations we

borrow.

A. The Parallel Supply Function resource model

The parallel supply function (PSF) was proposed by Bini

et al. [4] to characterize the resource allocation in hier-

archical systems executed upon a multiprocessor platform.

This interface introduces the minimum possible pessimism

in abstracting the amount of resource provided by a platform.

As a drawback it is certainly quite complicated to handled.

Without entering all the details of the definition (that can

indeed be found in [4]), we recall here the basic concepts.

Definition 1: The Parallel Supply Function interface

(PSF) of a multiprocessor resource is composed by the set

of functions {Yk}
m
k=1, where Yk(t) is the minimum amount

of resource provided in any interval of length t with a

parallelism of at most k. The function Yk(t) is called the

level-k parallel supply function.

To clarify this definition we propose an example. Suppose

that in the interval [0, 11] the resource is provided by three

processors according to the schedule drawn in gray in

Figure 1.

10 2 3 4 5 6 7 8 9 10 11

Figure 1. From a resource schedule to the PSF.

In this case Y1(11) = 10 because there is always at

least one processor available in [0, 11] except in [8, 9]. Then

Y2(11) = 16; that is found by summing up all the resource

except one with parallelism 3 (provided only in [4, 5]).
Finally, Y3(11) = 17; that is achieved by summing all the

resources provided in [0, 11]. In general, the parallel supply

functions are computed also by sliding the time window of

length t and by searching for the most pessimistic scenario

of resource allocation. This minimization is somehow equiv-

alent to the one performed on uni-processor hierarchical

scheduling [8], [15], [21].

Although the PSF interface is capable to tightly capture

the amount of provided resource, its complexity prevents a

straightforward application. It is unclear how a PSF interface

should be designed so that an application is guaranteed. On

the other extreme, next we report a very simple interface

model.

B. The MPR interface model

The multiprocessor periodic resource model (MPR) [20]

is one of the simplest resource abstractions. Its definition is

as follows.

Definition 2: Let us set 0 as the time instant when the

resource is firstly supplied. A Multiprocessor Periodic Re-

source model (MPR) is modeled by a triplet

〈Π,Θ,m〉,

where Π is the time period and Θ is the minimal amount of

supply provided within each interval [kΠ, (k + 1)Π), with

k ∈ N, by at most m processors. Often we also say that

m is the concurrency (or the degree of parallelism) of the

interface. The utilization of a MPR interface is the ratio Θ
Π .

In this work we assume that Π and Θ are positive integers.

Since a MPR interface fixes only the aggregated parame-

ters Π, Θ and m of the supply pattern, any feasible allocation

of Θ resource units per time period Π should preserve

the schedulability of the underlying task set. In Figure 2,

we show an example of the resource allocation of a MPR

interface 〈7, 14, 3〉. It can be noted that in each period the

allocation patterns may be different.

As the task set should be guaranteed under any possible

resource allocation scenario, it is then necessary to find the

t7

3

!"#$%&&'#$()

'+',)

0 14 21

2

1

!"#$%&'(# !"#$%&'(# !"#$%&'(#

Figure 2. Graphical interpretation of a MPR model

worst-case supply allocation of the MPR. As shown by Shin

et al. [20], the worst-case scenario is the one depicted in

Figure 3. Since the PSF can be computed for any possible

Y
m
(t)

$#

!"

%!&$'# (#
$#

)#

(#

!"

%!&$'# (#
$#

)#

0 t
1

t
2

t
3
t
4
t
5
t
6

t
1
= 2!" 2(! +1)

t
2
= t

1
+ 2

t
3
= 2!" (! +1)

t
4
= t

3
+1

t5 = 3!" (2! +1)

t
6
= t

5
+1

!"

*#

$#

#$%&"

'()*+"

!#

+),+%*-!'#

(# " t2! 3!

t

,-../0"

! =
!

m

"

#"
$

%$
 " =!&!m

Figure 3. The worst-case supply allocation under the MPR model

resource allocation scheme, we can compute it also for the

MPR interface. At the bottom of Figure 3 we show the level-

m parallel supply function Ym(t) of a MPR interface. More

details about this computation can be found in [20].

The computation of the PSF interface {Yk}
m
k=1 of a MPR

enables the adaptation of schedulability tests developed over

a PSF interface to a MPR interface. More details about the

schedulability test will be provided in Section V.

III. MOTIVATION FOR EXTENDING THE MPR INTERFACE

In this section we motivate the necessity for extending

the MPR interface model. By proposing this extension we

aim at minimizing the overall resource abstracted in the

MPR interface required to guarantee the schedulability of

the underlying task set.

i Ci Ti Di

1 6 40 40
2 13 50 50
3 29 60 60
4 27 70 70

Table I
AN EXAMPLE OF A TASK SET.

Assume that a MPR interface 〈Π,Θ,m〉 abstracts the pro-

cessing requirements of a real-time tasks set. By definition,

a MPR interface specifies only the aggregated supply Θ.

However, we show below that, preserving the schedulability,

our approach allows to reduce the value of the required

resource in the abstraction by further detailing its allocation

in processors.

As an example, consider the tasks set with the parameters

reported in Table I, to be scheduled by global EDF (GEDF)

over the MPR interface. In this table, tasks are reported in

rows and for each task we denote its execution time by Ci,

its period by Ti, and its deadline by Di.

After setting the period of the interface Π = 15, we

compute a MPR interface 〈Π,Θ,m〉 that can guarantee the

task set. To check the schedulability, we reuse the PSF-

based test proposed by Bini et al. [4] (see Section V for

details). Based on this test, we determine that the minimal

feasible value of resource to guarantee the schedulability is

Θ = 39. Notice that there is quite a significant gap between

the utilization of the interface Θ
Π = 2.6 and the utilization

of the task set
∑

i
Ci

Ti
= 1.28.

As we will show in greater detail in the next sections,

our proposed interface requires only 34 resource units per

period, meaning that it has a utilization of 34
15 = 2.267.

IV. THE GENERALIZED MULTIPROCESSOR PERIODIC

RESOURCE MODEL

As highlighted in Section III, the MPR resource model

can lead to some waste of computational resources. In this

section we describe a resource model that is better capable

to tightly capture the resource requirement of the underlying

task set.

Definition 3: Let us set 0 as the time instant when the

resource is firstly supplied. We define the Generalized Mul-

tiprocessor Periodic Resource model interface (GMPR) as

〈Π, {Θ1, . . . ,Θm}〉,

where Π is the time period, Θk is the minimal supply

provided by at most k processors. The period Π and all the

values of Θk are positive integers. Also, the values of Θk

must satisfy the following constraints for any k = 1, . . . ,m

(for notational convenience we denote Θ0 = 0):

0 < Θk+1 −Θk ≤ Π

Θk+1 −Θk ≤ Θk −Θk−1

(1)

By definition, a GMPR interface is a guarantee for the

schedulability of a task set, meaning that any feasible supply

allocation compliant to the GMPR model will result in

meeting all the deadlines under the employed scheduling

policy.

A. The Parallel Supply Functions of GMPR

To be able to borrow the schedulability tests developed

over the PSF interface [4], we introduce the computation of

the parallel supply functions Yk(t) for the GMPR specifica-

tion.

Following a similar reasoning as for the MPR in [20],

the worst-case supply pattern for the GMPR model is as

depicted in Figure 4. Let us introduce an auxiliary function

!"#$%&&'#$()

!"

m !
m
!!

m!1

!
1
!!

0

!
3
!!

2

!
2
!!

1

t0 " 2" 3"

1

2

3

!" !"

t
1

*
t
2

*
t
3

*
t
m

*
...

Figure 4. The worst-case supply allocation under the GMPR model

supplyk(t) to quantify the supply provided by the first k

concurrency levels within the time interval [0, t]. According

to the worst-case scenario of Figure 4, it follows that

supplyk(t) =

k
∑

ℓ=1

min {t,Θℓ −Θℓ−1}+

⌊

(t−Π)0
Π

⌋

Θk+

+

k
∑

ℓ=1

(((t−Π)0 mod Π)− (Π− (Θℓ −Θℓ−1)))0

where (x)0 denotes max(x, 0). Then, from the definition of

the PSF function, it follows that

Yk(∆t) = min
∀t≥0

(supplyk(t+∆t)− supplyk(t))

Now we make the classic observation that a minimum of

the previous expression must always occur at t equal to

some instant of termination of a resource supply. These

candidate time instants are denoted in Figure 4 by t∗i . Hence

the minimum can be computed over T ∗ = {t∗1, t
∗
2, ..., t

∗
m}

without making any optimistic assumption. Therefore the

PSF of a GMPR can be computed by

Yk(∆t) = min
t∈T∗

(supplyk(t+∆t)− supplyk(t)). (2)

0 5 10 15 20 25
0

10

20

30

40

50

60

t

Y
i(t

)

Y
2
(t)

Y
3
(t)

Y
4
(t)

Y
1
(t)

!"#$%&&'#$()

t0

1

2

3

4

7 14 21

Figure 5. The PSF (top) and the worst-case supply pattern (bottom) of
the GMPR interface 〈7, {6, 11, 15, 17}〉

We also observe that the k-th function of the PSF can be

upper bounded by the following simple linear function

Yk(t) ≤ Y k(t) =
Θk

Π
t. (3)

This upper bound will be exploited in Section VI to reduce

the complexity of the algorithm to compute the GMPR

interface of an application composed by a set of tasks.

As an example, in Figure 5 we illustrate the 4 paral-

lel supply functions {Yk(t)}
4
k=1 of the GMPR interface

〈7, {6, 11, 15, 17}〉. At the bottom of the figure we also

represent the worst-case resource supply that originates the

parallel supply functions.

V. SCHEDULABILITY OVER GMPR

The GMPR interface describes the amount of computing

resources provided to an application. We can then formulate

a schedulability test over the GMPR.

Let us consider a task set T composed by the tasks

τ1, . . . , τn. Each task τi is modeled by its computation time

Ci, period Ti, and deadline Di.

As schedulability test for the application, we choose the

extension of the test by Bertogna et al. [3] to the PSF

interface developed in [4]. We choose this condition because

it applies to several different application schedulers such as

global EDF or global FP, although it assumes constrained

deadline tasks, i.e. for all tasks τi, Di ≤ Ti. While choosing

other tests is possible [2], the proposed formulation has the

advantage of highlighting the constraint on the interface.

Thanks to the lossless transformation of a GMPR interface

into a PSF (see Section IV-A), we can apply directly the

schedulability condition developed over PSF. Below we

report, for completeness, the schedulability condition in the

simpler expression proposed by Lipari and Bini [16].

Theorem 1 (Theorem 1 in [16]): A set of tasks {τi}
n
i=1

is schedulable on a resource modeled by the PSF {Yk}
m
k=1,

if
∧

i=1,...,n

∨

k=1...,m

k Ci +Wi ≤ Yk(Di), (4)

where Wi is the maximum interfering workload that can be

experienced by task τi in the interval [0, Di], defined as

Wi =

n
∑

j=1,j 6=i

⌊

Di

Tj

⌋

Cj +min

{

Cj , Di −

⌊

Di

Tj

⌋

Tj

}

, (5)

if the application tasks are scheduled by global EDF. Instead

if the application tasks are scheduled by global FP

Wi =
∑

j∈hp(i)

Wji, (6)

where hp denotes the set of indices of tasks with higher pri-

ority than i, and Wji is the amount of interfering workload

caused by τj on τi, that is

Wji = NjiCj +min {Cj , Di +Dj − Cj −NjiTj} (7)

with Nji =
⌊

Di+Dj−Cj

Tj

⌋

.

Below we exploit such a schedulability condition to

compute the GMPR parameters Θ1, . . . ,Θm for a given task

set.

VI. THE GMPR COMPUTATION

When an application T = {τ1, . . . , τn} is given, it is of

key importance to select the interface that can guarantee

the timing constraints of the application and, at the same

time, requires the minimal amount of resource. Hence,

in this section we describe an algorithm to generate a

GMPR interface 〈Π, {Θk}
m
k=1〉 of a given sporadic task set

{τ1, . . . , τn}. As schedulability condition, we choose the one

of Theorem 1.

To compute a GMPR interface, we follow a similar

approach as the one proposed by Shin et al. [20] to generate

a MPR interface. First, the period Π of the GMPR interface

is set by the system designer considering such aspects

as preemption overheads and etc. Then for a fixed value

of m (the parallelism of the interface) not smaller than
⌈

∑

i
Ci

Ti

⌉

, our algorithm finds the values of cumulative

Algorithm 1 Reduction of the search space.

1: procedure REDUCESEARCHSPACE

2: SΘ ← ∅ ⊲ initialize SΘ

3: for each τi ∈ T do

4: compute vi ⊲ from Eq. (9)

5: Snew ← {vi} ⊲ initialize Snew

6: for v ∈ SΘ do

7: if ∀k, vik ≤ vk then

8: Snew ← ∅ ⊲ ignore vi

9: break

10: end if

11: if ∀k, vik ≥ vk then

12: SΘ ← SΘ \ {v} ⊲ remove v

13: end if

14: end for

15: SΘ ← SΘ ∪ Snew

16: end for

17: return SΘ

18: end procedure

resource Θm, . . . ,Θ1 such that the computing resource is

minimized.

Rather than simply (but in a very time consuming way)

enumerating all possible values of Θk as proposed by Shin

et al. [20], we exploit the condition on Θk that follows from

the linear upper bound of Eq. (3). In fact, from (4) and (3)

it follows that any feasible values of Θ1, . . . ,Θm must also

be such that

∧

i=1,...,n

∨

k=1...,m

k Ci +Wi ≤
Θk

Π
Di,

from which we have the following condition on all Θk

∧

i=1,...,n

∨

k=1...,m

Θk ≥

⌈

Π

Di

(k Ci +Wi)

⌉

, (8)

by also accounting for the integrality of Θk.

The necessary condition of Eq. (8) can be exploited to

reduce significantly the search space. For any task τi, let us

define the vector vi ∈ N
m as

vi =

[⌈

Π

Di

(Ci +Wi)

⌉

, . . . ,

⌈

Π

Di

(mCi +Wi)

⌉]

. (9)

The reduced search space is computed by Algorithm 1. We

illustrate its execution by an example.

Let us assume to have 4 tasks and m = 2. Let us also

assume that the values of v1, v2, v3, v4 are the ones depicted

in Figure 6. In the first run of the outer loop (lines 3–16)

the set SΘ is empty. Then v1 is simply added to SΘ. When

i = 2, none of the two conditions of lines 7, 11 are true,

hence v2 is also added to SΘ. When i = 3, the condition

at line 11 is true when v = v2. Hence, v2 can be removed

!
1

!
2

v
1

v
2

v
4

v
3

0

Figure 6. Illustration of the search space reduction.

i Ci Ti Di Wi (GEDF)

1 12 40 40 38
2 23 50 50 37
3 15 60 60 57

Table II
AN EXAMPLE OF A TASK SET.

from SΘ because the schedulability condition (8) for i = 3
is stricter than the one for i = 2. Finally, when i = 4
the condition at line 7 is true when v = v3 and then the

vector v4 can be ignored. It can be noted that Algorithm 1

for determining the reduced search space has complexity

o(n2m) that is polynomial. Moreover its result does not

depend on the order in which the vectors vi are visited.

Once SΘ is determined by Algorithm 1, the GMPR

generation process is then based on searching the assignment

that requires the minimum amount of resource among all

values (Θ1, . . . ,Θm) satisfying the following constraints

∀v ∈ SΘ ∃k = 1, . . .m, Θk ≥ vk (10)

Θ1 ≤ Π (11)

∀k = 1, . . . ,m− 1 Θk+1 −Θk ≤ Θk −Θk−1 (12)

Θm ≥ Θm−1 (13)

where Condition (10) follows from (8), while Condi-

tions (11)–(13) follow from Definition 3 of the GMPR

interface.

A. Example of GMPR computation

We illustrate the algorithm by an example. Let us consider

the task set T with the parameters reported in Table II. If

the task set is scheduled by GEDF over the interface then,

from Eq. (5), we can compute the quantities Wi that are

reported in the last column of the table.

We set Π = 15 and m = 2. From (9), we have that

v1 = (19, 24), v2 = (18, 25), and v3 = (18, 22). However,

by executing the REDUCESEARCHSPACE algorithm we find

that the vector v3 can be ignored, since the condition (8)

with i = 3 is implied by the others. Hence SΘ = {v1, v2}.
The search space is depicted in Figure 7, in gray. Fig-

ure 7(a) shows the feasible values of (Θ1,Θ2) by only

considering the constraints (11)–(13) that follow from Def-

inition 3 of GMPR. In Figure 7(b) we show how much the

search space is shrunk by enforcing the necessary condition

of (8). Among the possible selections of (Θ1,Θ2), in Fig-

ure 7(b), we also show, which ones are capable to guarantee

the deadline constraints of the task set (denoted by a black

dot) and which ones are not (denoted by a red cross). Hence

the GMPR interface that consumes the minimal amount of

resource is 〈15, {15, 26}〉. It is also interesting to observe

that in this example the best MPR interface was 〈15, 27〉 that

consumes one unit of resource more than the best GMPR.

VII. SCHEDULABILITY ANALYSIS OF GMPR

INTERFACES

Once the processing requirements of each component in

a hierarchical system are abstracted using GMPR interfaces,

they should be scheduled upon a hardware platform. For

this purpose we introduce a notion of interface tasks. An

interface task set for a GMPR interface 〈Π, {Θk}
m
k=1〉 is

defined as

T ′ = {τ ′1 = (C ′
1,Π), . . . , τm = (C ′

m,Π)},

where C ′
i = (Θk − Θk−1). We recall that we set Θ0 = 0

for notational convenience. It is easy to see that the overall

processing requirement of T ′ is Θm per period Π as

4

!
1

0 5 10 15

8

12

16

20

24

28

!
2

32

4

!
1

0 5 10 15

8

12

16

20

24

28

!
2

32

S!

0 !"
1
! #

"
1
+1!"

2
! 2"

1

!"#$!%#$

&'()*+,"%-,-./$.)&.$

0",-*$

-10",-*$

Figure 7. The example of a GMPR interface computation

∑m

k=1 C
′
k = Θm. Therefore, we propose to schedule GMPR

interfaces by transforming each one into interface tasks

and to schedule the resulting union of these periodic tasks

instead.

The notion of interface tasks supports another important

property for hierarchical systems, which is composability:

by the given GMPR interfaces of child components we can

compute a GMPR interface of a parent component.

VIII. IMPLEMENTATION AND SIMULATIONS

The algorithm for generating GMPR interfaces is imple-

mented in Matlab and it is available at http://retis.sssup.it/
∼bini/publications/2012GMPR.html.

In the performed experiments, we compared the utilization

of the interface Θm

Π as the interface period Π varies. For all

the three experiments reported below we plot the interface

utilization of GMPR and MPR for both FP and EDF

scheduling policies. The experiments were conducted by

randomly generating task sets. All the experiments share the

following characteristics:

• the minimum task period was random extracted be-

tween 20 and 40,

• the total utilization of tasks was set equal to U = 1.5,

and

• the number of processors was set equal to m = 4.

In the first experiment, reported in Figure 8, we set the

maximum utilization of a single task equal to Umax = 0.4
and the ratio between the maximum and minimum task

periods Tmax

Tmin
= 1.5. It can be observed that the gain in term

5 10 15 20 25
2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

Interface period !

In
te

rf
a

c
e

 u
ti
liz

a
ti
o

n

"

m
 /

 !

max

GMPR EDF

MPR EDF

GMPR FP

MPR FP

Figure 8. Case (a): Umax = 0.4, Tmax

Tmin
= 1.5.

of overall resource usage of GMPR w.r.t. MPR is in the

order of 5%, when tasks are scheduled by FP (blue plots)

and around 10% when tasks are scheduled by EDF (black

plots). Notice that the gain of GMPR increases with the

period of the interface.

To explore the dependency on the weight of the individual

tasks, in the second experiment we set Umax = 0.7, keeping

the ratio Tmax

Tmin
= 1.5. Results are shown in Figure 9. With

5 10 15 20 25

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Interface period !

In
te

rf
a
c
e
 u

ti
liz

a
ti
o
n

"

m
 /
 !

max

GMPR EDF

MPR EDF

GMPR FP

MPR FP

Figure 9. Case (b): Umax = 0.7, Tmax

Tmin
= 1.5.

these settings, the gain of GMPR compared to MPR is in the

order of 10% for FP (blue plots) and 15% for EDF (black

plots). The trend with an increasing gain as a function of Π
is confirmed.

In the third and final experiment (depicted in Figure 10),

we also investigate the dependency on the task periods

by setting Tmax

Tmin
= 10 and Umax = 0.4. An interesting

5 10 15 20 25

3

3.1

3.2

3.3

3.4

3.5

3.6

Interface period !

In
te

rf
a

c
e

 u
ti
liz

a
ti
o

n

"

m
 /

 !

max

GMPR EDF

MPR EDF

GMPR FP

MPR FP

Figure 10. Case (c): Umax = 0.4, Tmax

Tmin
= 10.

phenomenon that we observe in this case is that FP requires

a smaller amount of resource w.r.t. EDF. This has to be ex-

plained with the nature of the schedulability test. The gains

of GMPR over MPR are in the same order of magnitude as

in the previous experiments.

In all experiments we can observe a quite significant

distance between the interface utilization, always around

3 and the task set utilization that is 1.5. This waste of

resource, however, does not depend on the particular in-

terface selected. It has instead to do with the pessimism

introduced by the schedulability tests. We believe that if the

schedulability tests can be tightened, for example by using

more sophisticated tests that better account for the amount

of task interference [10], then the loss due to the interface

can certainly be reduced as well.

IX. CONCLUSIONS

Motivated by the need to save resource, we introduced the

Generalized Multiprocessor Periodic Resource model. Since

GMPR is a generalization of MPR, it can consume at most

as much as MPR. We provided a schedulability algorithm

for task sets scheduled over GMPR by FP or EDF. We also

provided an algorithm that is capable to select the minimal

interface parameters for a given set of tasks.

REFERENCES

[1] Luı́s Almeida, Paulo Pedreiras, and José Alberto G. Fonseca.
The FTT-CAN protocol: Why and how. IEEE Transaction on
Industrial Electronics, 49(6):1189–1201, December 2002.

[2] Sanjoy Baruah, Vincenzo Bonifaci, Alberto Marchetti-
Spaccamela, and Sebastian Stiller. Improved multiprocessor
global schedulability analysis. Real-Time Systems Journal,
46:3–24, 2010.

[3] Marko Bertogna, Michele Cirinei, and Giuseppe Lipari.
Schedulability analysis of global scheduling algorithms on
multiprocessor platforms. IEEE Transactions on Parallel and
Distributed Systems, 20(4):553–566, April 2009.

[4] Enrico Bini, Marko Bertogna, and Sanjoy Baruah. Virtual
multiprocessor platforms: Specification and use. In Proceed-
ings of the 30

th IEEE Real-Time Systems Symposium, pages
437–446, Washinghton, DC, USA, December 2009.

[5] Yang Chang, Robert Davis, and Andy Wellings.
Schedulability analysis for a real-time multiprocessor
system based on service contracts and resource partitioning.
Technical Report YCS 432, University of York, 2008.
available at http://www.cs.york.ac.uk/ftpdir/reports/2008/
YCS/432/YCS-2008-432.pdf.

[6] Zhong Deng and Jane win-shih Liu. Scheduling real-time
applications in Open environment. In Proceedings of the
18

th IEEE Real-Time Systems Symposium, pages 308–319,
San Francisco, CA, U.S.A., December 1997.

[7] Arvind Easwaran, Madhukar Anand, and Insup Lee. Com-
positional analysis framework using EDP resource models.
In Proceedings of the 28

th IEEE International Real-Time
Systems Symposium, pages 129–138, Tucson, AZ, USA, 2007.
IEEE Computer Society.

[8] Xiang Feng and Aloysius K. Mok. A model of hierarchical
real-time virtual resources. In Proceedings of the 23

rd IEEE
Real-Time Systems Symposium, pages 26–35, Austin, TX,
U.S.A., December 2002.

[9] Nathan Fisher and Farhana Dewan. Approximate bandwidth
allocation for compositional real-time systems. In Proceed-
ings of the 21

st Euromicro Conference on Real-Time Systems,
pages 87–96, Dublin, Ireland, July 2009.

[10] Nan Guan, Martin Stigge, Wang Yi, and Ge Yu. New response
time bounds for fixed priority multiprocessor scheduling. In
Proceedings of the 30

th IEEE Real-Time Systems Symposium,
pages 387–397, Washington, DC, U.S.A., December 2009.

[11] Philip Holman and James H. Anderson. Group-based pfair
scheduling. Real-Time Systems, 32(1–2):125–168, February
2006.

[12] Tei-Wei Kuo and Ching-Hui Li. Fixed-priority-driven open
environment for real-time applications. In Proceedings of
the 20

th IEEE Real-Time Systems Symposium, pages 256–267,
Phoenix, AZ, U.S.A., December 1999.

[13] Tei-Wei Kuo, K. Lin, and Y. Wang. An open real-time
environment for parallel and distributed systems. In Pro-
ceedings of the 20

th International Conference on Distributed
Computing Systems, pages 206–213, Taipei, Taiwan, April
2000.

[14] Hennadiy Leontyev and James H. Anderson. A hierarchical
multiprocessor bandwidth reservation scheme with timing
guarantees. In Proceedings of the 20

th Euromicro Confer-
ence on Real-Time Systems, pages 191–200, Prague, Czech
Republic, July 2008.

[15] Giuseppe Lipari and Enrico Bini. Resource partitioning
among real-time applications. In Proceedings of the 15

th

Euromicro Conference on Real-Time Systems, pages 151–158,
Porto, Portugal, July 2003.

[16] Giuseppe Lipari and Enrico Bini. A framework for hi-
erarchical scheduling on multiprocessors: from application
requirements to run-time allocation. In Proceedings of the 31st

Real-Time Systems Symposium, pages 249–258, San Diego,
CA, USA, December 2010.

[17] Clifford W. Mercer, Stefan Savage, and Hydeyuki Tokuda.
Processor capacity reserves: Operating system support for
multimedia applications. In Proceedings of IEEE Interna-
tional Conference on Multimedia Computing and Systems,
pages 90–99, Boston, MA, U.S.A., May 1994.

[18] Mark Moir and Srikanth Ramamurthy. Pfair scheduling of
fixed and migrating periodic tasks on multiple resources. In
Proceedings of the 20

th IEEE Real-Time Systems Symposium,
pages 294–303, Phoenix, AZ, U.S.A., December 1999.

[19] Abday K. Parekh and Robert G. Gallager. A generalized pro-
cessor sharing approach to flow control in integrated services
networks: the single-node case. IEEE/ACM Transactions on
Networking, 1(3):344–357, June 1993.

[20] Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical
scheduling framework for virtual clustering multiprocessors.
In Proceedings of the 20

th Euromicro Conference on Real-
Time Systems, pages 181–190, Prague, Czech Republic, July
2008.

[21] Insik Shin and Insup Lee. Periodic resource model for
compositional real-time guarantees. In Proceedings of the 24th

Real-Time Systems Symposium, pages 2–13, Cancun, Mexico,
December 2003.

[22] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, Sanjoy K.
Baruah, Johannes E. Gehrke, and Charles Gregory Plaxton.
A proportional share resource allocation algorithm for real-
time, time-shared systems. In Proceeding of the 17

th IEEE
Real Time System Symposium, pages 288–299, Washington,
DC, U.S.A., December 1996.

