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Abstract 

Through this article, a new generated family of distributions under the name of "The 

generalized odd Lomax-G family" by adding three additional parameters to generalize any 

continuous baseline distribution is provided. For the generalized odd Lomax-G family main 

properties, stochastic orderings, entropy measures have been studied. Three special models 

have been discussed for the new family. By using the maximum likelihood method, The 

model parameters are estimated. Simulation is carried out for one of the sub-models to 

check the asymptotic behavior of the maximum likelihood estimates. We explained the 

efficiency of the new family by using four applications to the real world. 
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1. INTRODUCTION 

 

Through dealing with the real world in several areas, it was found that the classical available distributions 

were not enough to model some types of data. So, there was a need to extend of these distributions. For 

these purposes, focus has been on new methods for building meaningful distributions see Lee et al. [1]. The 

Lomax distribution [2] counted as the most distributions for model lifetime data and has many practical 

applications in different fields, including business failure data, income and wealth data, reliability problems. 

Also, it has been applied as a replacement to some distributions when the data are heavy tailed. The Lomax 

distribution was used for modelling size spectra data in aquatic ecology [3]. Depending on the Lomax 

random variable a new class of distributions suggested by Cordeiro et al. [4] under the name of the Lomax 

generator of distributions. Recently, a very modern family has been proposed by Cordero et al. [5] with 

additional two parameters based on the Lomax random variable named the odd Lomax generator of 

distributions. Our motivations of this manuscript is to provide and study a new wider family of distributions 

by adding one shape parameter to the odd Lomax family [5] to generate a heavy-tailed distributions with 

left-skewed, right-skewed or reversed-J shape, and introduce distributions have all types of hazard rate 

functions which express of the nature and characteristics of the real life survival data and in general for 

modeling real-world data better than other models that were generated under the same baseline distribution. 

 

The remainder of this paper has been arranged as follows. The new family of distributions is defined in 

Section 2. Three models from the new family are presented in Section 3. Main characteristics of the new 

family are presented in Section  4. Section 5, is devoted to the stochastic orderings. The Rѐnyi and the 
Shannon entropies presented In Sec. 6. The model parameters are estimated using the maximum likelihood 

method in Section 7. In Section 8, to evaluate the performance of maximum likelihood estimators, a 
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simulation is stated. In Section 9, four applications are provided to prove the importance of the generalized 

odd Lomax-G family. Finally, Section 10, provided some concluding remarks. 

 

2. THE NEW FAMILY 

 

Cordeiro et al. [5] proposed the odd Lomax-G family with CDF in (1) and its corresponding PDF in (2) as 

follows: 

 𝐹(𝑥; 𝛼, 𝛽, 𝝍) = 𝛼𝛽𝛼 ∫ (𝛽 + 𝑡)−𝛼−1𝑑𝑡 =𝐺(𝑥:𝝍)1−𝐺(𝑥:𝝍)0 1 − 𝛽𝛼 [𝛽 + 𝐺(𝑥: 𝝍)1 − 𝐺(𝑥: 𝝍)]−𝛼                                           (1) 

 

and 

 𝑓(𝑥; 𝛼, 𝛽, 𝝍) = 𝛼𝛽𝛼𝑔(𝑥; 𝝍)[1 − 𝐺(𝑥: 𝝍)]−2 [𝛽 + 𝐺(𝑥: 𝝍)1 − 𝐺(𝑥: 𝝍)]−(𝛼+1) , 𝑡 ≥ 0.                                          (2) 

 

Such that 𝛽 > 0  and  𝛼 > 0  are the scale and shape parameter, respectively, and 𝑔(𝑥, 𝝍) and 𝐺(𝑥, 𝝍) are 

the probability and cumulative functions of the baseline distribution with parameter vector 𝝍. 

 

In this section, we will propose a generalization of the above family by adding one shape parameter 𝜃 > 0. 

Thus, the CDF and its corresponding PDF for the proposed family are shown as 

 𝐹(𝑥; 𝜃, 𝛼, 𝛽, 𝝍) = 1 − [1 + 𝐺(𝑥; 𝝍)𝜃𝛽(1 − 𝐺(𝑥; 𝝍)𝜃)]−𝛼 ,                                                                                              (3) 

 

and 

 𝑓(𝑥; 𝜃, 𝛼, 𝛽, 𝝍)   = 𝛼𝜃𝛽−1𝑔(𝑥; 𝝍)𝐺(𝑥; 𝝍)𝜃−1[1 − 𝐺(𝑥; 𝝍)𝜃]−2 [1 + 𝐺(𝑥; 𝝍)𝜃𝛽[1 − 𝐺(𝑥; 𝝍)𝜃]]−𝛼−1 ,              (4) 

 

respectively. 

 

This family will be known as the generalized odd Lomax-G (GOLx-G) family. Sometimes, we will delete 

the parameters and write  𝐺(𝑥)𝜃 instead of 𝐺(𝑥; 𝝍)𝜃,  𝑔(𝑥) instead of  𝑔(𝑥; 𝝍), 𝐹(𝑥) instead of 𝐹(𝑥; 𝜃, 𝛼, 𝛽, 𝝍)  and 𝑓(𝑥) instead of 𝑓(𝑥; 𝜃, 𝛼, 𝛽, 𝝍),  also, we write 𝑋~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼, 𝛽, 𝝍) if  𝑋 has the 

PDF (4). The following some choices of specified values of the parameters yields five particular cases of 

the GOLx-G family as seen through the Table 1. For the GOLx-G family, we find the hazard rate function 

(hrf) is 

 ℎ(𝑥; 𝜃, 𝛼, 𝛽, 𝝍) = 𝛼𝛽 + (1 − 𝛽)𝐺(𝑥)𝜃 × 𝜏(𝑥; 𝜃, 𝝍) ,                                                                                            (5) 

 

where 𝜏(𝑥; 𝜃, 𝝍) is the hrf of the exp-G distribution and 
𝛼𝛽+(1−𝛽)𝐺(𝑥)𝜃 is a correction factor. We can get the 

quantile function of the new family by inverting (3), and hence 

 𝑄𝑋(𝑢) = 𝑄𝐺 [( 𝛽[1 − (1 − 𝑢)1 𝛼⁄ ]𝛽 − (𝛽 − 1)(1 − 𝑢)1 𝛼⁄ )1𝜃] ,                                                                                                         (6) 

 

 

where 𝑄𝐺(𝑢) = 𝐺−1(𝑢) is the qf of the parent distribution and 𝑢 ∈ (0,1). 
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Table 1. Some Special Models 𝛼 𝛽 𝜃 Reduced Model Authors 

- - 1 The OLx-G family [5] 

1 - - The MO exp-G family - 

1 - 1 The MO-G family [6] 

1 1 - The (phr) model [7] 

- 1 1 The (prhr) model [8] 

1 1 1 The baseline model G - 

 

3. SOME SPECIAL DISTRIBUTIONS  

 

3.1. The Generalized Odd Lomax Uniform Distribution (GOLxU) 

 

Let the parent distribution be uniform with PDF and CDF functions given by 𝑔(𝑥; 𝛾) = 1 𝛾⁄ , and 𝐺(𝑥; 𝛾) =𝑥 𝛾⁄ , respectively, where 𝛾 > 0. Then, the PDF of the GOLxU distribution given as follows 

 𝑓(𝑥; 𝛾, 𝜃, 𝛼, 𝛽) = 𝛼𝜃𝛽𝛼𝑥𝜃−1[1 − (𝑥 𝛾⁄ )𝜃]𝛼−1𝛾𝜃[(𝑥 𝛾⁄ )𝜃 + 𝛽(1 − (𝑥 𝛾⁄ )𝜃)]1+𝛼 . 
 

Figure 1 shows a wealth of possible shapes of the distribution once different choices of the parameters are 

made. For example, the shape can be left skewed, right skewed, reversed-J shape or symmetrical. Also, 

Figure 2 reveals that the hrf of the GOLxU distribution can be increasing, bathtub, upside-down or upside-

down and bathtub shapes. 

 

3.2. The Generalized Odd Lomax Lomax Distribution (GOLxLx) 

 

If the parent distribution is the Lomax distribution with PDF and CDF functions  𝑔(𝑥; 𝛾, 𝜆) =𝜆𝛾 (𝑥 𝛾⁄ + 1)−𝜆−1, and 𝐺(𝑥; 𝛾, 𝜆) = 1 − (𝑥 𝛾⁄ + 1)− 𝜆, respectively, where 𝜆, 𝛾 > 0. Then, the PDF of the 

GOLxLx distribution is 

 

𝑓(𝑥; 𝛾, 𝜆, 𝜃, 𝛼, 𝛽) = 𝛼𝜃𝜆𝛽𝛼 (𝑥𝛾 + 1)−(𝜆+1) [1 − [1 − (𝑥𝛾 + 1)− 𝜆]𝜃]𝛼−1 [1 − (𝑥𝛾 + 1)− 𝜆]𝜃−1
𝛾 [𝛽 − (𝛽 − 1) [1 − (𝑥𝛾 + 1)− 𝜆]𝜃]1+𝛼  . 

 

Figure 3 shows that the density of GOLxLx can be right skewed or reversed-J shape. Also, Figure 4 shows 

that the hrf can be decreasing or upside-down bathtub and unimodal shape. 

 

3.3. The Generalized Odd Lomax Weibull Distribution (GOLxW) 

 

If the parent distribution is the Weibull distribution with PDF and CDF functions   𝑔(𝑥; 𝛾, 𝜆) = 𝜆𝛾𝑥𝛾−1𝑒−𝜆𝑥𝛾
and 𝐺(𝑥; 𝛾, 𝜆) = 1 − 𝑒−𝜆𝑥𝛾

, respectively, where 𝜆, 𝛾 > 0 and 𝑥 ≥ 0. Then, the GOLxW 

distribution has PDF given by 

 𝑓(𝑥; 𝛾, 𝜆, 𝜃, 𝛼, 𝛽) =  𝛼𝜃𝜆𝛾 𝛽𝛼𝑥𝛾−1𝑒−𝜆𝑥𝛾[1 − 𝑒−𝜆𝑥𝛾]𝜃−1 [1 − (1 − 𝑒−𝜆𝑥𝛾)𝜃]𝛼−1[𝛽(1 − (1 − 𝑒−𝜆𝑥𝛾)𝜃) + (1 − 𝑒−𝜆𝑥𝛾)𝜃]𝛼+1  . 
 

Figure 5 shows that the density of GOLxW can be right skewed, left skewed, reversed-J or symmetrical 

shape. Figure 6 shows that the hrf can be decreasing, increasing or upside-down bathtub and unimodal 
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shape. Seventeen special models are listed in Table 2 for the GOLxW model including well known 

distributions discussed and studied in the literature. 

 

 
Figure 1. PDF plots of the GOLxU distribution 

 

 
Figure 2. Hazard rate plots of the GOLxU distribution 

 

 
Figure 3. PDF plots of the GOLxLx distribution 
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Figure 4. Hazard rate plots of the GOLxLx distribution 

 

 
Figure 5. PDF plots of the GOLxW distribution 

 

 
Figure 6. Hazard rate plots of the GOLxW distribution 
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4. MAIN PROPERTIES 

 

4.1. Asymptotics 

 

Proposition 1. If  𝑥 → −∞, then 

 𝐹(𝑥) ~ 1 − (1 + 𝐺(𝑥)𝜃 𝛽⁄ )−𝛼. 
 𝑓(𝑥) ~ 𝛼𝜃𝛽𝛼𝑔(𝑥)𝐺(𝑥)𝜃−1 (𝛽 + 𝐺(𝑥)𝜃)1+𝛼⁄ . 
 ℎ(𝑥) ~ 𝛼𝜃𝐺(𝑥)𝜃−1𝑔(𝑥) (𝛽 + 𝐺(𝑥)𝜃)⁄ . 

 

Proposition 2. If   𝑥 → ∞, then 

 1 − 𝐹(𝑥) ~𝛼𝛽�̅�(𝑥)𝜃. 
 𝑓(𝑥) ~ 𝛼𝜃𝛽𝑔(𝑥)𝐺(𝑥)𝜃−1

. 

 ℎ(𝑥) ~  𝜃𝑔(𝑥)𝐺(𝑥)𝜃−1 �̅�(𝑥)𝜃⁄ . 
 

Table 2. Sub-models of the GOLxW(𝜃, 𝛼, 𝛽, 𝜆, 𝛾) 

S.N. 𝛼 𝛽 𝜃 𝜆 𝛾 Reduced Distribution Authors 

1 - - - - 2 The generalized OLxRay New 

2 - - - - 1 The generalized OLxExp New 

3 - - 1 - - The OLxW [5] 

4 - - 1 - 2 The OLxRay [5] 

5 - - 1 - 1 The  OLxExp [5] 

6 1 - - - - The MO-EEW [9] 

7 1 - - - 2 The MO- EGRay - 

8 1 - - - 1 The MO-EGExp - 

9 1 - 1 - - The MO-EW [10] 

10 1 - 1 - 2 The MO-ERay [10] 

11 1 - 1 - 1 The MO-EExp [10] 

12 1 1 - - - The exp-W [11] 

13 1 1 - - 2 The GRay or the Burr Type X [12] 

14 1 1 - - 1 The GExp [13] 

15 1 1 1 - - The W distribution [14] 

16 1 1 1 - 2 The Ray distribution [15] 

17 1 1 1 - 1 The Exp distribution - 

 

4.2. Linear Representation 

 
From the binomial expansion, we can write the PDF (4) as follows 

 𝑓(𝑥) = ∑ ∑(−1)𝑗𝛼𝜃𝛽−𝑖−1 (−(𝑖 + 2)𝑗 ) (−(𝛼 + 1)𝑖 )∞
𝑖=0

∞
𝑗=0 𝑔(𝑥)𝐺(𝑥)𝜃(1+𝑖+𝑗)−1,                                              (7) 

 

since 

 𝐺(𝑥)𝜃(1+𝑖+𝑗)−1 = ∑ ∑(−1)𝑘+𝑙𝑘
𝑙=0 (𝑘𝑙 ) (𝜃(1 + 𝑖 + 𝑗) − 1𝑘 ) 𝐺(𝑥)𝑙∞

𝑘=0 ,                                                                 (8) 
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By changing the sums over 𝑙 and 𝑘 in (8), and inserting (8) in (7), then we can write the PDF of the GOLx-

G family as below: 

 𝑓(𝑥) = ∑ 𝑎𝑙∞
𝑙=0 ℎ𝑙+1(𝑥),                                                                                                                                               (9) 

 

where  

 𝑎𝑙 = ∑ ∑ (−1)𝑘+𝑗+𝑙𝛼𝜃(𝑘𝑙 ) (−(𝑖+2)𝑗 ) (−(1+𝛼)𝑖 )(𝜃(1+𝑖+𝑗)−1𝑘 )𝛽𝑖+1(𝑙 + 1)∞
𝑘=𝑙

∞
𝑖,𝑗=0 , 

 

and 

 ℎ𝑙+1(𝑥) = (𝑙 + 1)𝑔(𝑥) 𝐺(𝑥)𝑙 . 
 

By integrating Eq. (9), the CDF of 𝑋 becomes 

 𝐹(𝑥) = ∑ 𝑎𝑙∞
𝑙=0 𝐻𝑙+1(𝑥),                                                                                                                                             (10) 

 

where  𝐻𝑙+1(𝑥) = 𝐺(𝑥)𝑙+1. 

 

4.3. Ordinary and Incomplete Moments 

 

Suppose 𝑋𝑙+1~ ℎ𝑙+1(𝑥), then the 𝑛th moment for random variable   𝑋  obtained as 

 𝜇𝑛′ = 𝐸(𝑋𝑛) = ∑ 𝑎𝑙∞
𝑙=0  𝐸(𝑋𝑙+1𝑛 ).                                                                                                                              (11) 

 

The 2nd alternative formula of  𝜇𝑛′   follows from Eq. (9) in expression of the baseline qf. 𝑄𝐺(𝑢) is 

 𝜇𝑛′ = ∑(𝑙 + 1)𝑎𝑙∞
𝑙=0 𝜏(𝑛, 𝑙),                                                                                                                                        (12) 

 

where  𝜏(𝑛, 𝑙) = ∫ 𝑄𝐺(𝑢)𝑛𝑢𝑙𝑑𝑢10 .  

 

Cordeiro and Nadarajah [16] determined 𝜏(𝑛, 𝑙) for some known and important distributions and therefore 

can be used. By the incomplete moment we can get many measurements. From Eq. (9) the 𝑟th incomplete 

moment of  𝑋 is  

 𝜂𝑟(𝑦) = 𝐸(𝑋𝑟|𝑋 < 𝑦) = ∑(𝑙 + 1)𝑎𝑙∞
𝑙=0 ∫ 𝑄𝐺(𝑢)𝑟𝐺(𝑦,𝜓)

0 𝑢𝑙𝑑𝑢 .                                                                        (13) 

 

We can compute the above integral in (13) analytically or numerically. 

 

4.4. Moment Generating Function 

 

In this subsection different forms will be provided for the (MGF)  𝑀(𝑡) = 𝐸(𝑒𝑡𝑋) of the random variable 𝑋. The first one is  
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𝑀(𝑡) = ∑ 𝑡𝑛𝑛!∞
𝑛=0 𝜇𝑛′  ,                                                                                                                                                     (14) 

 

where 𝜇𝑛′   is calculated from (11) or (12).  The second form for 𝑀(𝑡) comes from (9) as 

 𝑀(𝑡) = ∑ 𝑎𝑙∞
𝑘=0 𝑀𝑋𝑙+1(𝑡),                                                                                                                                           (15) 

 

where 𝑀𝑋𝑙+1(𝑡) is the mgf of the random variable 𝑋𝑙+1~exp-G (𝑙 + 1). 

  

The 3rd form for 𝑀(𝑡) employed from (9) as 

 𝑀(𝑡) = ∑(𝑙 + 1)𝑎𝑙∞
𝑙=0 ∫ 𝑒𝑡𝑥𝑔(𝑥) 𝐺(𝑥)𝑙𝑑𝑥∞

−∞ = ∑(𝑙 + 1)𝑎𝑙∞
𝑙=0 𝜌(𝑡, 𝑙),                                                              (16) 

 

where 

 𝜌(𝑡, 𝑙) = ∫ 𝑒𝑥𝑝(𝑡𝑄𝐺(𝑢)) 𝑢𝑙1
0 𝑑𝑢, 

 

and it be calculated from the baseline qf  𝑄𝐺(𝑢) = 𝐺−1(𝑢). Table 3 displays mean, variance, skewness and 

kurtosis of the GOLxW distribution for some choices values of the parameters. 

 

Table 3. The calculated values of mean, variance, skewness and kurtosis for the GOLxW distribution with 𝜆 = 1.25,  𝛾 = 1.5 and different values of 𝜃, 𝛼 and 𝛽 𝜃 𝛼 𝛽 Mean Variance Skewness Kurtosis 

1.5 1 1 0.1536 0.1241 2.3876 8.2356 

  1.5 0.1560 0.1370 2.4423 8.3805 

  3 0.1501 0.1524 2.6606 9.3948 

  6 0.1333 0.1559 3.0460 11.6147 

  9 0.1201 0.1520 3.3568 13.6759 

  20 0.0914 0.1333 4.1846 20.2181 

  50 0.0606 0.1018 5.5814 34.5906 

  100 0.0419 0.0772 7.0700 54.4495 

2 1.5 1 0.5798 0.2079 0.3880 2.6462 

  1.5 0.5995 0.2594 0.3877 2.3776 

  3 0.6105 0.3609 0.4828 2.1191 

  6 0.5919 0.4669 0.6729 2.1228 

  9 0.5687 0.5233 0.8177 2.2557 

  20 0.5038 0.6065 1.1610 2.8365 

  50 0.4129 0.6406 1.6404 4.1382 

  100 0.3431 0.6237 2.0666 5.7217 

 

We note from Table 3 that the skewness of the GOLxW distribution is always possitive, whereas the 

kurtosis of the GOLxW distribution varies only in the interval (2.12, 54.45). 

 
4.5. Order Statistics 

 

By taking a random sample say, 𝑋1, 𝑋2, … , 𝑋𝑛   from GOLx-G family and 𝑋1:𝑛, 𝑋2:𝑛, …, 𝑋𝑛:𝑛 are the order 

statistics for this sample. Let  𝑋𝑖:𝑛  is 𝑖th order statistic, then the PDF of  𝑋𝑖:𝑛 is 
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𝑓𝑖:𝑛(𝑥) = ∑ 𝐾(𝑗)𝑛−𝑖
𝑗=0 𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1,                                                                                                                        (17) 

 

where 𝐾(𝑗) = (−1)𝑗 𝑛!𝑗!(𝑖−1)!(𝑛−𝑖−𝑗)! . 
 

From (3) and (4) and applying the generalized binomial expansion, we find that 

 𝐹(𝑥)𝑖+𝑗−1 𝑓(𝑥)    = ∑ ∑ (−1)𝑘+𝑠𝜃𝛼𝛽−𝑟−1 (𝑖 + 𝑗 − 1𝑘 ) (−𝑟 − 2𝑠 ) (−1 − 𝛼(𝑘 + 1)𝑟 )∞
𝑟,𝑠=0

𝑖+𝑗−1
𝑘=0× 𝑔(𝑥)𝐺(𝑥)𝜃(1+𝑟+𝑠)−1.                                                                                                               (18) 

 

By inserting (18) in (17), we find the probability density function of  𝑋𝑖:𝑛 is 

 𝑓𝑖:𝑛(𝑥) = ∑ 𝛾𝑟,𝑠∞
𝑟,𝑠=0 ℎ𝜃(𝑟+𝑠+1)(𝑥),                                                                                                                            (19) 

 

where  ℎ𝜃(𝑟+𝑠+1)(𝑥) = 𝜃(𝑟 + 𝑠 + 1)𝑔(𝑥)𝐺(𝑥)𝜃(𝑟+𝑠+1)−1, and 

 𝛾𝑟,𝑠 = ∑ ∑ (−1)𝑘+𝑠+𝑗𝛼 𝑛! (𝑖+𝑗−1𝑘 )(−𝑟−2𝑠 )(−𝛼(𝑘+1)−1𝑟 )𝛽𝑟+1(𝑟 + 𝑠 + 1) 𝑗! (𝑖 − 1)! (𝑛 − 𝑖 − 𝑗)!𝑖+𝑗−1
𝑘=0

𝑛−𝑖
𝑗=0 . 

 

Based on (19), we can get many statistical properties of the order statistic. 

 

5. STOCHASTIC ORDERINGS 

 

It is said that the random variable  𝑋 is less than the random variable 𝑌 in the 

 

1. Usual stochastic order, if 𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥) ∀𝑥, and denoted by 𝑋 ≤𝑠𝑡 𝑌. 

2. Hazard rate order, if  ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥)  ∀𝑥, and denoted by 𝑋 ≤ℎ𝑟 𝑌. 

3. Reversed hazard rate order, if 𝐹𝑋(𝑥) 𝐹𝑌⁄ (𝑥)  is decreases in 𝑥, and denoted by 𝑋 ≤𝑟ℎ 𝑌. 

4. Mean residual life order, if  𝑚𝑋(𝑥) ≤ 𝑚𝑌(𝑥)  ∀𝑥, and denoted by 𝑋 ≤𝑚𝑟𝑙 𝑌. 

5. Likelihood ratio order, if  𝑓𝑋(𝑥) 𝑓𝑌⁄ (𝑥) is decreases in  𝑥, and this is expressed by the 

symbol  𝑋 ≤𝑙𝑟 𝑌. 

 

For all the previous orders we have the following chains of implications: 

 

 𝑋 ≤𝑙𝑟 𝑌   imply that   𝑋 ≤ℎ𝑟 𝑌   imply that    𝑋 ≤𝑠𝑡 𝑌. 

 𝑋 ≤𝑙𝑟 𝑌  imply that   𝑋 ≤𝑟ℎ 𝑌  imply that    𝑋 ≤𝑠𝑡 𝑌. 

 𝑋 ≤𝑙𝑟 𝑌  imply that   𝑋 ≤𝑚𝑟𝑙 𝑌. 

 

For our family, the following Theorem and corollaries provides the stochastic comparison results with 

respect to the above orderings. 

 

Theorem 1 : Let  𝑋~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼1, 𝛽1 ) and 𝑌~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼2, 𝛽2 ). If 𝛼1 ≥ 𝛼2 and 𝛽2 ≥ 𝛽1, then 𝑋 ≤𝑙𝑟 𝑌. 

 

Proof: We have 
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𝑓𝑋(𝑥)𝑓𝑌(𝑥) = (𝛼1𝛽1𝛼1𝛼2𝛽2𝛼2) ((𝛽2�̅�(𝑥)𝜃 + 𝐺(𝑥)𝜃)𝛼2+1(𝛽1�̅�(𝑥)𝜃 + 𝐺(𝑥)𝜃)𝛼1+1) (1 − 𝐺(𝑥)𝜃)𝛼1−𝛼2 , 
 

where  �̅�(𝑥)𝜃 = 1 − 𝐺(𝑥)𝜃. 

 

Thus, 

 𝑙𝑜𝑔 (𝑓𝑋(𝑥)𝑓𝑌(𝑥)) = 𝑙𝑜𝑔 (𝛼1𝛽1𝛼1𝛼2𝛽2𝛼2) + (𝛼2 + 1)𝑙𝑜𝑔(𝐺(𝑥)𝜃 + 𝛽2�̅�(𝑥)𝜃) − (𝛼1 + 1)𝑙𝑜𝑔(𝐺(𝑥)𝜃 + 𝛽1�̅�(𝑥)𝜃)+ (𝛼1 − 𝛼2)𝑙𝑜𝑔(1 − 𝐺(𝑥)𝜃). 
 

By diff erentiating the last Eq. and after some simplifications, we get 

 𝑑𝑑𝑥 [𝑙𝑜𝑔 (𝑓𝑋(𝑥)𝑓𝑌(𝑥))]  = [(𝛼2 − 𝛼1)𝐺(𝑥)𝜃 + (𝛽1 − 𝛽2)�̅�(𝑥)𝜃 + (𝛼2𝛽1 − 𝛼1𝛽2)�̅�(𝑥)𝜃]× 𝜃𝑔(𝑥)𝐺(𝑥)−1+𝜃(𝐺(𝑥)𝜃 + 𝛽1�̅�(𝑥)𝜃) × �̅�(𝑥)𝜃 × (𝐺(𝑥)𝜃 + 𝛽2�̅�(𝑥)𝜃) , 
 

therefore, when  𝛼1 ≥ 𝛼2 and 𝛽2 ≥ 𝛽1, then  
𝑑𝑑𝑥 [𝑙𝑜𝑔 (𝑓𝑋(𝑥)𝑓𝑌(𝑥))] < 0 for all 𝑥. This implies that 𝑋 ≤𝑙𝑟 𝑌. 

 

Corollary 1 : Let  𝑋~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼, 𝛽1 ) and 𝑌~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼, 𝛽2 ). If 𝛽2 ≥ 𝛽1, then  𝑋 ≤𝑙𝑟 𝑌. 

 

Corollary 2 : Let  𝑋~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼1, 𝛽 ) and 𝑌~𝐺𝑂𝐿𝑥 − 𝐺(𝜃, 𝛼2, 𝛽 ). If  𝛼1 ≥ 𝛼2, then 𝑋 ≤𝑙𝑟 𝑌. 

 

From the previous evidence, we find that the GOLx-G family has the strongest ordering (likelihood ratio 

order) under some restrictions for the parameters. 

 

6.  RENYI AND SHANNON ENTROPY 

 

 For the random variable 𝑋 the Rѐnyi entropy is defined as 

 𝐼𝑅(𝛿) = 11 − 𝛿 𝑙𝑜𝑔 ∫ 𝑓(𝑥)𝛿𝑑𝑥,∞
−∞                                                                                                                            (20) 

 

where 𝛿 > 0 and 𝛿 ≠ 1. 
 

Based on the expansion of the generalized binomial, we have 

 𝑓(𝑥)𝛿 = ∑ 𝛱𝑘,𝑙∞
𝑘,𝑙=0 𝑔(𝑥)𝛿𝐺(𝑥)(𝛿+𝑘+𝑙)𝜃−𝛿 ,                                                                                                            (21) 

 

where 

 𝛱𝑙,𝑘 = (−1)𝑙(𝛼𝜃)𝛿𝛽−(𝑘+𝛿) (−𝑘 − 2𝛿𝑙 ) (−𝛿(𝛼 + 1)𝑘 ). 
 

By combining (20) and (21), we can get of the Rѐnyi entropy of the GOLx-G family in the form of  

 



747 Waleed MARZOUK, Farrukh JAMAL, A-Hadi N.AHMED, A.A. E. AHMED / GU J Sci, 32(2): 737-755 (2019) 

 

 

𝐼𝑅(𝛿) = 11 − 𝛿 𝑙𝑜𝑔 [ ∑ 𝛱𝑘,𝑙 ∫ 𝑔(𝑥)𝛿𝐺(𝑥)𝜃(𝛿+𝑘+𝑙)−𝛿𝑑𝑥∞
−∞

∞
𝑘,𝑙=0 ]. 

 

The Shannon entropy can be obtained by lim𝑟→1 𝐼𝑅(𝑟).  

 

7. ESTIMATION 

 

Let 𝑥1, 𝑥2, … , 𝑥𝑛 are the observed values from the GOLx-G family with parameters 𝜃, 𝛼, 𝛽 and 𝝍. Let 𝚽 =(𝜃, 𝛼, 𝛽, 𝝍)𝑇 be the parameters vector, then 𝑙(𝚽) = log 𝐿(𝚽) where 𝐿(𝚽) is the likelihood function is 

given by 

 𝑙(𝜱) = 𝑛 𝑙𝑜𝑔𝛼 + 𝑛 𝑙𝑜𝑔𝜃 + 𝛼𝑛 𝑙𝑜𝑔𝛽 + ∑ 𝑙𝑜𝑔𝑔(𝑥𝑖; 𝝍)𝑛
𝑖=1 + (𝜃 − 1) ∑ 𝑙𝑜𝑔𝐺(𝑥𝑖; 𝝍)𝑛

𝑖=1+ (𝛼 − 1) ∑ 𝑙𝑜𝑔(1 − 𝐺(𝑥𝑖; 𝝍)𝜃)𝑛
𝑖=1 − ∑(𝛼 + 1)𝑙𝑜𝑔(𝛽 + (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃)𝑛

𝑖=1 . 
 

The score vector is 𝑈(𝚽) = (𝑈𝜃 = 𝜕𝑙(𝚽)𝜕𝜃 , 𝑈𝛼 = 𝜕𝑙(𝚽)𝜕𝛼 , 𝑈𝛽 = 𝜕𝑙(𝚽)𝜕𝛽 , 𝑈𝝍𝒌 = 𝜕𝑙(𝚽)𝜕𝝍𝒌 )𝑇 , therefore its 

components are given by 

 𝑈𝜃 = 𝑛𝜃 + ∑ 𝑙𝑜𝑔𝐺(𝑥𝑖; 𝝍)𝑛
𝑖=1 − (𝛼 − 1) ∑ 𝐺(𝑥𝑖; 𝝍)𝜃 𝑙𝑜𝑔𝐺(𝑥𝑖; 𝝍)1 − 𝐺(𝑥𝑖; 𝜓)𝜃𝑛

𝑖=1− (𝛼 + 1) ∑ (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃𝑙𝑜𝑔𝐺(𝑥𝑖; 𝝍)𝛽 + (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃𝑛
𝑖=1  . 

 𝑈𝛼 = 𝑛𝜃 + 𝛼𝑛 𝑙𝑜𝑔𝛽 + ∑ 𝑙𝑜𝑔(1 − 𝐺(𝑥𝑖; 𝝍)𝜃)𝑛
𝑖=1 − ∑ 𝑙𝑜𝑔(𝛽 + (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃)𝑛

𝑖=1 . 
 𝑈𝛽 = 𝛼𝑛𝜃 − ∑ (𝛼 + 1)(1 − 𝐺(𝑥𝑖; 𝝍)𝜃)𝛽 + (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃𝑛

𝑖=1  . 
 

and 

 𝑈𝝍𝒌 = ∑ 𝜕𝑔(𝑥𝑖, 𝝍) 𝜕𝝍𝒌⁄𝑔(𝑥𝑖; 𝝍)𝑛
𝑖=1 + (𝜃 − 1) ∑ 𝜕𝐺(𝑥𝑖, 𝝍) 𝜕𝝍𝒌⁄𝐺(𝑥𝑖; 𝜓)𝑛

𝑖=1− 𝜃 [∑ (𝛼 − 1)𝐺(𝑥𝑖; 𝝍)𝜃−1 𝜕𝐺(𝑥𝑖, 𝝍) 𝜕𝝍𝒌⁄1 − 𝐺(𝑥𝑖; 𝝍)𝜃𝑛
𝑖=1+ ∑ (1 − 𝛽)(𝛼 + 1)𝐺(𝑥𝑖; 𝝍)𝜃−1 𝜕𝐺(𝑥𝑖, 𝝍) 𝜕𝝍𝒌⁄𝛽 + (1 − 𝛽)𝐺(𝑥𝑖; 𝝍)𝜃𝑛

𝑖=1 ] . 
 

By equating  𝑈𝛼 , 𝑈𝛽 , 𝑈𝜃 and 𝑈𝝍 to zero and solve the equations simultaneously we can get the MLEs  �̂� =(�̂�, �̂�, 𝜃, �̂�)𝑇
. We can use the statistical software to solve these equations. 
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8. SIMULATION STUDY 

 

Through current section, a numerical study will be implemented to calculate the performance of the MLEs 

of GOLxW parameters. The random observations from GOLxW distribution are generated by using the 

quantile function that obtained from the cdf of GOLxW distribution. 1000 samples of size n =20, 50, 150 

and 300 are generated. Performance of estimates is evaluated based on their bias of the MLEs of the model 

parameters, the mean squared error (MSE) of the MLEs. The empirical study was conducted with software 

Mathematica 2010 and the results are given in Table 4. It is observed from Table 4 and Figure 7 that the 

biases and MSEs decrease as n increases. The simulation study shows that the maximum likelihood method 

is appropriate for estimating the parameters of the GOLxW distribution. 

 

Table 4. Biases and MSEs for the MLEs of the parameters of the GOLxW distribution 

n Par. Initial value Bias MSE Initial value Bias MSE 

 

 

20 

𝛼 1 0.7802 0.0682 0.5 0.6989 0.0679 𝛽 2.5 1.0693   0.0600 1.5 1.6180 0.0552 𝜃 1.5 1.8286   0.0594   0.5 1.9912 0.0808 𝜆 1.5 1.1411 0.0612 2.5 0.6511 0.0686 𝛾 2.5 1.4106 0.0691 2 0.6666 0.0691 

 

 

50 

𝛼 1 0.5404 0.0422 0.5 0.6631 0.0382 𝛽 2.5 0.8098 0.0219 1.5 1.5894 0.0414 𝜃 1.5 1.8123 0.0370   0.5 1.7858 0.0504 𝜆 1.5 1.0739 0.0438 2.5 0.6188 0.0429 𝛾 2.5 1.2021 0.0636 2 0.6174 0.0446 

 

 

150 

𝛼 1 0.5021 0.0163 0.5 0.5131 0.0203 𝛽 2.5 0.7999 0.0223 1.5 1.6027 0.0150 𝜃 1.5 1.7688   0.0327 0.5 1.6833 0.0343 𝜆 1.5 1.0083 0.0189 2.5 0.6238 0.0311 𝛾 2.5 1.0652 0.0229 2 0.6422 0.0183 

 

 

300 

𝛼 1 0.4638 0.0082 0.5 0.5901 0.0054 𝛽 2.5 0.7146   0.0100 1.5 1.5699 0.0098 𝜃 1.5 1.5566 0.0194 0.5 1.6863 0.0203 𝜆 1.5 0.8341 0.0112 2.5 0.4823 0.0079 𝛾 2.5 0.5733 0.0079 2 0.6400 0.0084 

  

9. DATA ANALYSIS 

 

In this section, we prove the efficiency and flexibility of the GOLx-G family empirically by providing three 

real data sets. Our special model GOLxW, GOLxLx and GOLxU will compared with some competitive 

models (LxMW) by [17], (WLx) by [18] and (ELx) by [19]. The parameters of each model are estimated 

by the method of maximum likelihood using (L-BFGS-B) method and the goodness-of-fit statistics AIC 

(Akaike information criterion), BIC (Bayesian information criterion), A* (Anderson-Darling), W* 

(Cramér–von Mises), KS (Kolmogorov Smirnov with its p-value (PV)) are used to compare the five models. 

Where 𝑙 is the maximized log-likelihood. The smaller values of these statistics are the best to the data. The 

R-script has been used to implement all computations. The first data is the taxes in Egypt from 2006 to 

2010. This data used in [20]. The second data is the strengths of 1.5 cm glass fibres and obtained by the UK 

(NPL) and has been used by [21]. The third data set was analyzed in [22]. This data is a carbon fibre tensile 

resistance that have been tested with measured lengths 20 mm. Tables 5, 7 and 9 lists the maximum 

likelihood estimates of the model parameters and its corresponding standard errors. The numerical values 

of the AIC, BIC, A* and W* statistics are displayed in Tables 6, 8 and 10. The results indicate that the 

GOLx-G family provides the best fit as compared to the other models. Moreover, we apply the considered 

sub-models of the family to the fourth censored data set, where the data consist of death times (in weeks) 

of patients with cancer of tongue with aneuploidy DNA profile (see [23]). As it can be seen from Table 11, 

the family models are good competitor to the compared models. Noting that goodness-of-fit statistics 
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computations have not been developed much for censored data, but the quality of fit can be checked by 

Akaike and Bayesian information criteria (AIC and BIC), see [24]. 

 

 
Figure 7. Graph for Biases and MSEs for the MLEs of the parameters of the GOLxW distribution given in 

Table 4 

 

Table 5. The parameters estimation and its standard errors for data 1 

Model �̂� �̂� 𝜃 �̂� 𝛾 

GOLxW 0.3738 

(0.1675) 

0.0583 

(0.0311) 

5.8193 

(4.7474) 

0.0446 

(0.0221) 

1.4807 

(0.5640) 

GOLxLx 0.5379 

(0.2140) 

0.3838 

(0.1951) 

08.1610 

(03.1414) 

0.0215 

(0.0201) 

15.0326 

(2.1580) 

GOLxU 0.6850 

(0.0545) 

0.0029 

(0.0010) 

3.7238 

(0.1005) 

- 46.0177 

(23.4322) 

LxMW 0.0001  

(0.0023) 

0.0002  

(0.0064) 

0.0092  

(0.0020) 

13.7060 

(0.0064) 

0.0072 

(0.0009) 

WLx 10.4253 

(12.6150) 

3.7294 

(1.4547) 

0.1962 

(0.1018) 

1.8943 

(2.7799) 

- 

ELx 12.3552 

(5.9394) 

40.9410 

(7.8352) 

4.9398 

(1.3514) 

- - 

Lx - - - 0.0063 

(0.0025) 

12.0624 

(4.8309) 

W - - - 0.0064 

(0.0025)  

1.8493 

(0.1310) 
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Table 6. Comparison criteria for data set 1 

Model 𝑙 AIC BIC W* A* KS KS(PV) 

GOLxW 187.4011 384.8022 395.1899 0.0254 0.1963 0.0515 0.9976 

GOLxLx 187.9596 385.9193 396.3069 0.0318 0.2109 0.0630 0.9730 

GOLxU 188.8160 385.6320 393.9422 0.0815 0.4639 0.0651 0.9636 

LxMW 212.8455 435.6911 446.0787 0.1919 1.1918 0.30504 3.409e-05 

WLx 194.0453 396.0906 404.4008 0.2129 1.3343 0.1290 0.2798 

ELx 190.9645 387.9290 394.1616 0.1370 0.8218 0.1113 0.4571 

Lx 214.1132 432.2264 436.3814 0.1771 1.0888 0.3060 0.0001 

W 197.2924 398.5847 402.7398 0.2933 1.8721 0.1434 0.1763 

  

  
Figure 8. Estimated PDFs and CDFs for data 1, respectively 

 
Table 7. The parameters estimation and its standard errors for data 2 

Model �̂� �̂� 𝜃 �̂� 𝛾 

GOLxW 0.9341 
(0.7710) 

17.0563 

(10.6305) 

0.6338 

(0.6094) 

0.4966 

(0.3313) 

3.6720 

(2.2389) 

GOLxLx 3.2629 

(1.5132) 

25.9333 

(1.9546) 

20.5535 

(2.3212) 

0.0514 

(0.0302) 

100.1415 

(6.0016) 

GOLxU 19.5563 

(7.2504) 

0.7128 

(2.2032) 

5.6814 

(1.0024) 

2.9251 

(1.3559) 

- 

LxMW 6.3237 

(2.4224) 

0.0285 

(0.0161) 

6.7887 

(0.9486) 

16.9657 

(13.0057) 

0.0318 

(0.0354) 

WLx 0.0195 

(0.0389) 

3.2897 

(1.3828) 

12.0107 

(40.3310) 

12.6730 

(42.1120) 

- 

ELx 18.1615 

(4.0606) 

32.2211 

(3.1215) 

30.1213 

(5.0132) 

- - 

Lx - - - 0.0100 

(0.0072) 

66.3221 

(7.9671) 

W - - - 0.0597 

(0.0204) 

5.7796 

(0.5751) 

 
Table 8. Comparison criteria for data set 2 

Model 𝑙 AIC BIC W* A* KS KS(P-V) 

GOLxW 11.9153 33.8306 44.5462 0.0878 0.5051 0.0968 0.5959 

GOLxLx 13.1865 36.3730 47.0887 0.1637 0.8986 0.1287 0.2472 

GOLxU 15.2077 38.4154 46.9879 0.2350 1.2939 0.1517 0.1097 

LxMW 15.1195 40.2391 50.9548 0.1301 0.7591 0.1300 0.2368 
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WLx 14.4110 36.8221 45.3947 0.1841 1.0280 0.1406 0.1651 

ELx 31.9050 69.8101 76.2395 0.7990 4.3550 0.2286 0.0027 

Lx 89.2816 182.5633 186.8496 0.5735 3.1452 0.4167 6.28*10^-10 

W 15.5068 38.5136 48.6999 0.2372 1.3038 0.1523 0.1075 

 

  
Figure 9. Estimated PDFs and CDFs for data 2, respectively 

 

Table 9. The parameters estimation and its standard errors for data 3 

Model �̂� �̂� 𝜃 �̂� 𝛾 

GOLxW 1.9601 

(0.4918) 

47.6841 

(24.1313) 

4.9272 

(2.8580) 

3.3305 

(0.6326) 

0.8714 

(1.7225) 

GOLxLx 1.9122 

(7.0625) 

56.5855 

(37.0700) 

2.5998 

(3.1526) 

0.0256 

(0.0026) 

113.9693 

(55.4095) 

GOLxU 6.3391 

(1.2900) 

0.5893 

(1.2174) 

3.1638 

(0.6121) 

3.4600 

(2.0106) 

- 

LxMW 6.4021 

(7.7873) 

0.1446 

(0.0323) 

3.6086 

(5.2244) 

16.9331 

(6.3424) 

0.0239 

(0.0113) 

WLx 3.6725 

(0.4244) 

2.7313 

(0.9682) 

4.8209 

(2.4422) 

15.4613 

(11.9462) 

- 

ELx 91.1149 

(11.0110) 

45.3534 

(8.5950) 

7.0179 

(1.0392) 

- - 

Lx -          - - 0.0113 

(0.0081) 

60.8846 

(8.6734) 

W - - - 0.2098 

(0.0465) 

    3.2487 

  (0.3065) 

 

Table 10. Comparison criteria for data set 3 

Model 𝑙 AIC BIC W* A* KS KS(P-V) 

GOLxW 48.5338 107.0678 118.2383 0.0146 0.1366 0.0376 1.000 

GOLxLx 48.6139 107.2278 118.3984 0.0152 0.1363 0.0384 1.000 

GOLxU 48.9634 105.9269 114.8634 0.0284 0.2420 0.0460 0.9970 

LxMW 48.9777 107.9585 119.1269 0.0186 0.1579 0.0437 0.9976 

WLx 48.9789 107.7580 118.6944 0.0253 0.2195 0.0488 0.9955 

ELx 57.0067 120.0136 126.7159 0.2135 1.4454 0.1131 0.3400 

Lx 95.2008 194.4017 198.8699 0.1266 0.8894 0.3613 2.97*10^-8 

W 49.0005 107.9001 119.4693 0.0260 0.2202 0.0437 0.9969 
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Figure 10. Estimated PDFs and CDFs for data 3, respectively 

 

Table 11. MLEs and their standard errors with AIC and BIC for censored data set 

Distribution Parameter and (S.E) -L AIC BIC 

GOLxW �̂� = 0.4791(0.3833) �̂� = 2.9403(0.8849) 𝜃 = 4.4319(0.6092) �̂� = 0.7231(0.6603) 𝛾 = 0.3675(0.1460) 

181.5575   370.1150      375.9687 

GOLxLx �̂� = 1.3361(1.1460) �̂� = 20.9897(3.5253) 𝜃 = 13.6143(0.1012) �̂� = 7.0102 (0.2643) 𝛾 = 0.8261(0.2240) 

181.7975   371.1150      376.9687 

GOLxU �̂� = 0.4639(0.2431) �̂� = 0.0598(0.0840) 𝜃 = 1.1396(0.2864) �̂� = 418.7976(29.6408) 

182.7187    373.4373   380.2423 

WLx �̂� = 0.0685(0.0099) �̂� = 0.4343(0.1061) 𝜃 = 2.0572( 0.6190) �̂� = 8.1386(0.8779) 

183.7187    375.4373   383.2423 

ELx  �̂� = 0.7443(0.3257) �̂� = 39.2425(38.6966) 𝜃 = 1.2541(0.4195) 

182.5575   372.1150     376.9687 

Lx �̂� = 0.3471(0.0924) 𝛾 = 13.5801(6.0837) 

185.7654    375.5309    379.4334 

W �̂� = 0.0170(0.0096) 𝛾 = 0.8176 (0.1175) 

182.4754 372.0507 376.4394 
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Figure 11. Plots of estimated cdfs of the models compared in censored data set 

 

10.  CONCLUSIONS 

 
In this paper one shape parameter is added to the odd Lomax-G family to provide the generalized odd 

Lomax-G family. the main properties of the generalized odd Lomax-G family and other properties 

associated with the area of reliability are discussed. It has been noted that the distributions generated by the 

generalized odd Lomax-G family are highly flexible in data modeling where we used three members to fit 

four real data to illustrate the importance of this family. These members provided consistently better fits 

than the other comparative distributions. 
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