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ABSTRACT

Magnetic reconnection is an important process in space environments. As a result of 

magnetic reconnection, the magnetic field topology changes, which requires the breakdown of 

the frozen-in condition in ideal magnetofluids. In a collisional plasma, the resistivity associated 

with Coulomb collisions of charged particles is responsible for the breakdown of frozen-in 

condition. In a collisionless plasma, however, the cause of the breakdown of frozen-in condition 

remains unanswered. We address this problem by investigating the generalized Ohm’s law and 

the force balance near magnetic neutral lines based on two-dimensional particle simulations.

In a particle simulation with one active species, it is found that a weakly anisotropic and 

skewed velocity distribution is formed near the magnetic X line, leading to the presence of 

off-diagonal elements of plasma pressure tensor. The gradients of the off-diagonal pressure terms 

transport plasma momentum away from the X line to balance the reconnection electric field. 

The presence of the reconnection electric field results in the breakdown of frozen-in condition. 

The importance of both electron and ion off-diagonal pressure tensor terms in the generalized 

Ohm’s law near neutral lines is further confirmed in full particle simulations. The generation of 

the off-diagonal pressure terms can be explained in terms of the thermal dispersion of particle 

motions and the response o f particle distribution function in the electric and magnetic fields near 

the neutral lines.

In the particle simulations, we also find the presence of a new dynamo process, in which a 

large amount o f new magnetic flux near the magnetic 0  line is generated. This dynamo process 

is not allowed in resistive magnetofluids. However, in a collisionless plasma, the plasma inertia 

and momentum transport due to the off-diagonal plasma pressure terms can lead to E • J  < 0  near 

the magnetic O line and make the dynamo process possible.

ni

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



TABLE OF CONTENTS

Page
Abstract iii
Table of Contents iv
List of Figures vi
Acknowledgments x

1. Introduction 1

1.1 Breakdown of frozen-in condition in magnetic reconnection 2

1.1.1 The concept of "frozen-in" condition 2

1.1.2 The concept of magnetic reconnection 3

1.1.3 Breakdown of frozen-in condition in a resistive plasma 5

1.2 The generalized Ohm’s law and force balance equations near neutral lines 6

1.2.1 The generalized Ohm’s law in collisionless reconnection 6

1.2.2 Force balance equations near neutral lines 7

1.2.3 The generalized Ohm’s law near neutral lines 9

1.3 Dungey’s model 9

1.4 Outline of the thesis 13

2. Momentum transport near a magnetic X line in collisionless reconnection 15

2.1 Simulation model 15

2.2 Reconnection and reverse reconnection 17

2.3 Momentum transport due to the off-diagonal pressure elements 23

2.4 Force balance at the X line 29

2.5 Summary 33

3. Force balance at neutral lines in a full particle simulation 34

3.1 Simulation model 34

3.2 Magnetic reconnection and the electrostatic field 37

3.3 Force balance at neutral lines for electrons 43

3.4 Force balance at neutral lines for ions 49

3.5 The generalized Ohm’s law near neutral lines 52

3.6 Summary 55

iv

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



4. Origin of the off-diagonal pressure terms

4.1 Generation of the off-diagonal pressure terms

4.1.1 Generation of Pxy

4.1.2 Generation of P:y

4.2 Scale length for Pxy

4.2.1 Scale length of Pxy for the case with one active species

4.2.2 Scale length of P i ey for the case in a full particle simulation

4.3 Pxey in linear tearing instability

4.4 Summary

5. A new dynamo process near a magnetic O line

5.1 Generation of magnetic flux near an O line

5.2 Power-law for time scales

5.3 Discussion and summary

6 . Summary and future studies

6.1 Importance of particle simulation in magnetic reconnection

6.2 Main results in this thesis

6.2.1 Off-diagonal pressure terms and the breakdown of frozen-in condition

6.2.2 Origin of the off-diagonal pressure terms

6.2.3 The spatial scaling for Pxy

6.2.4 A new dynamo process

6.3 Future Studies

6.3.1 Inclusion of an initial guide magnetic Field

6.3.2 Magnetic reconnection in a current sheet with ion length scale

6.3.3 Steady-state magnetic reconnection

6.4 Conclusion

References

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



LIST OF FIGURES

Fig. 1.1 

Fig. 1.2

Fig. 2.1

Fig. 2.2

Fig. 2.3

Schematic illustration of magnetic reconnection process in a current 
sheet. The separatrices are shown by the heavy lines.

Contours of particle distribution function in the vx space at
x =  0.05, ;  =  0. All physical quantities are normalized based on (1.14) 
(Dungey, 1988).

Magnetic field lines at various simulation times. A magnetic X line 
is present near the center of the simulation domain (x = 0. s = 0) in 
(c)-(h). Our simulation domain is - 8 p i  < x < 8p, and - 8 p, < s < 8/9,. 
Only half of the simulation domain (,x\ < 8pt, |s| < 4Pi) is plotted.

Contours of the reconnection electric field E y in the x  -  z plane. The 
electric field is normalized by E 0 = B 0vtht, and the increment of E y 
between two neighboring contour lines is 0.004 E 0.

Contours of the current density J y in the x -  s plane. The current 
density is normalized by J0 = N cevtiu , and the increment of J y 
between two neighboring contours is 0.1 Jo. The outermost contour 
lines in each plot correspond to 0.05 Jo ■

Fig. 2.4 Particle scatterplots in the vx -uy plane at 3 = 0 and (a) x =  - 2 pt, (6)
x =  0 and (c) x = 2p t. The particles are sampled from t  = 29fi~1 to 
t  = 3 m " 1 with an area of 5A x 5A in the x -  * plane. The contour 
lines of constant /  are also shown.

Fig. 2.5 The contour lines of Pxy are plotted in the x -  3 plane at various
times. The increment between neighboring contours is O.OlPo, where 
P0 =  B q/2(1q.

Fig. 2.6 Same as Figure 2.5 except for P-y .

Fig. 2.7 Profiles of the off-diagonal elements of the plasma pressure tensor,
P xy( x , z  = 0) and p :y (x  = 0. i), at t = 3on,-1 and t  = 50n,_1. The
pressure tensor is normalized by P0 = B $ / 2 p 0.

Fig. 2.8 A schematic diagram for the transport of the y momentum near the X
line in the x -  s plane during collisionless magnetic reconnection: (a) 
the transport due to the off-diagonal elements o f the plasma pressure 
tensor, Pxy and P:y, and (b) the transport due to the plasma bulk 
motion, nm ,vx vy and nm,vz v,,.

Page

4

12

18

20

21

24

26

27

28

30

VI

y

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Fig. 2.9

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4 

Fig. 3.5

Fig. 3.6 

Fig. 3.7

Fig. 3.8 

Fig. 3.9

(a) Time evolution of the three terms during reconnection: the term 
[ l / n e ) d P xy/ d x  is drawn with the dotted line, (1 / n e ) d P zy/ d z  with 
dashed line, and (m , / e ) d v y / d t  with solid line, (b) Time history of the 
force balance at the X line: The sum of the three terms in Figure 2.9a is 
plotted with solid line, and the reconnection electric field E y is plotted 
with dashed line. All these terms are normalized by E 0 = B 0vtht .

Magnetic field lines at various simulation times. A magnetic island is 
formed with the presence of a reconnection X line and an 0  line. Our 
simulation domain is -4  pe < x  < 4 pe and - 4  pe < z < 4 pe. Only half 
of the simulation domain (j.r| < 4pe, U| < 2pe) is plotted.

Contours o f the reconnection electric field E y in the x  -  z plane. The 
increment of E y between two neighboring contour lines is 0.0025 E 0, 
where E 0 = Bo v the.

Contours of the electrostatic potential in the x  -  z plane at different 
times. The increment between neighboring contours is 0 .2 $ 0, where 
$o = B 0vthePe. Note that the electric field in the x  -  z plane can be 
as large as E 0 = B 0vthe, which is almost two orders larger than the 
reconnection electric field E y .

Contour plots of constant B y . The increment between neighboring 
contours is 0.002P0. The generated B y is very weak.

The contour lines of P iey are plotted in the x  -  z  plane at various 
times. The increment between neighboring contours is 0.0032P0, 
where P0 = B $ / 2 p 0.

Same as Figure 3.5 except for P- e)

Force balance at the X line for electrons, (a) Time evolution of 
the three terms during reconnection: the term { l / n ee)dPxl }/ d x  is 
drawn with the dotted line, (1 / n ee )d P zey / d z  with dashed line, and the 
reconnection electric field, E y, the dotted-dash line, (b) The sum of 
the three terms in Figure 3.7a is plotted with solid line, and the inertial 
term, ~ ( m e/ e ) d v {y )/d t ,  is plotted with broken line. All these terms are 
normalized by E 0 = B 0vthe.

Same as Figure 3.7 except for the force balance at the O line.

The contour lines of Pxy are plotted in the x  -  z plane at various 
times. The increment between neighboring contours is 0.32P0, where
P0 = B $ / 2 p 0.

VI1

32

38

39

40

42

44

45 

47

48

50

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Fig. 3.11 Force balance at the X line for ions, (a) Time evolution of the
three terms during reconnection: the term -(1  f n le ) d P x J / d x  is drawn 
with the dotted line, -(1  / n ^ d P x y  / d z  with dashed line, and the 
reconnection electric field, E y ~  0, the dotted-dash line. (b) The sum 
of the three terms in Figure 3.1 la is plotted with solid line, and the 
inertial term, (mi/ e ) d v y )/d t ,  is plotted with broken line. All these 
terms are normalized by E 0 = Bovthe.

Fig. 3.12 Same as Figure 3.11 except for the force balance at the O line.

Fig. 4.1 A schematic diagram for the generation o f the off-diagonal pressure
Pxy for Ey > 0. (a) The magnetic field B : and the electric field E y in 
the x  -  y  plane, (b) Four typical particles in the vx -  vy plane when they 
are at x  = - x lt x  = 0 and x  = x lt respectively. Particles a and b move 
from x  = - x y  to x = 0 and then to x — x x, and particles c and d move 
from ,r = X! to x = 0 and to x = - x i .  The independent motions of 
these particles in the electric and magnetic fields lead to deformations 
o f velocity distribution and hence generate the off-diagonal pressure 
term PIU-

Fig. 3.10 Same as Figure 3.9 except for P'Zy .

vm

53

51

54

58

Fig. 4.2 A schematic diagram for the generation of the off-diagonal pressure 61
P - y for Ey > 0. (a) The magnetic field B x and the electric field E y in 
the y  -  3 plane, (b) Four typical particles in the vy -  v : plane when 
they are at s =  - z L, z =  0 and 3 =  3!, respectively. Particles a and 
b move from 3 =  - z L to 3 =  0 and then to 3 =  z ls and particles c 
and d move from s = si to s = 0 and to s = - s i .  The independent 
motions of these particles in the electric and magnetic fields lead to 
deformations of particle distribution in the vy -  v; space and hence 
generate the off-diagonal pressure term P :y .

Fig. 4.3 (a) Lpxy  and Ld as a function of time, and (b) L d as a function of 64
Lpxy  for the case shown in Chapter 2. Here L p xy is the distance 
from the X line to the maximum or minimum of Pxy, and Ld is the 
Dungey’s scale length. The negative values o f scale length are used 
for the period o f reverse magnetic reconnection (Ey < 0 ).

Fig. 4.4 (a) Lpxy  and Ld as a function of time, and (b) Ld as a function of L p xy 66
for the case shown in Chapter 3. Here L p xy is the distance from the 
X line to the maximum or minimum o f P i \ \  and Ld is the Dungey’s 
scale length.

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Fig. 4.5

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 5.4

Fig. 5.5

(a) Contour lines of the real part of the perturbed distribution function, 70
R e  glt in the vx -  vy plane, (b) The distribution of the off-diagonal 
pressure, in the x  -  z plane.

Magnetic field lines at various simulation times. A magnetic island is 73
formed with the presence of a reconnection X line and 0  line. Our 
simulation domain is - 4 pe < x  < 4pe and - 4 pe < z < 4pe. Only the 
central portion (|s| < 2pe ) of the simulation domain is plotted.

Contours of the reconnection electric field E y in the x  -  z  plane for 75
the case shown in Figure 5.1. The increment of E y between two 
neighboring contour lines is 0.0025 E 0, where E 0 = B 0vthe.

Contours of the current density Jy in the x  -  z plane. The increment 76
of J y between two neighboring contours is 2J0, where J 0 = i\'cevthe.
The outermost contour lines in each plot correspond to J0.

The evolution of the newly generated magnetic flux, the reconnected 78
magnetic flux and the total magnetic flux in the magnetic island for 
the cases with ion-electron mass ratio m t/ m e =  10, 100 and 1836, 
respectively.

The ion-electron mass ratio dependence of (a) T max, the time when the 80
total magnetic flux reaches its first maximum, and (b) Tosc, the period 
of the first oscillation of the total flux.

ix

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



ACKNOWLEDGMENTS

I would like to thank Professor L. C. Lee, my thesis advisor, for his constant encouragement, 

advice, and help during my thesis study. I have been extremely fortunate to have this opportunity 

to study space physics under his guidance.

My sincere appreciation also goes to the other members of my graduate advisory committee, 

Professors T. M. Jiang, J. L. Morack, D. D. Sentman, and D. W. Swift. Their concerns and 

helpful suggestions improved the quality of my thesis. The particle simulation codes used in my 

thesis study are first written by Professor D. W. Swift and developed by Dr. D. Q. Ding. I would 

like to express my deep appreciation to them.

I would like to thank Professor S. -I. Akasofu for his helpful information on geomagnetic 

substorms and his encouragement. Special thanks are also due to Professor J. G. Roederer for 

his lectures on magnetospheric physics. I would like to thank Drs. J. Johnson, Y. Lin, Z. W. Ma, 

and A. Otto for their helpful discussions. Other fellow students at the Geophysical Institute also 

offered me their generous help. I am grateful to them.

It is a great pleasure to thank Professor J. W. Dungey. His interests and comments on my

work are a great encouragement to me.

I am greatly indebted to my wife Ms. X. Y. Fan, whose love, support and expectation

encouraged me to finish this thesis with my greatest effort.

This work was supported by grants from the Department of Energy, the National Aeronautics 

and Space Administration, and the National Science Foundation to the University of Alaska. 

The computing work was supported by the San Diego Supercomputer Center, the Arctic Region 

Supercomputing Center and the Pittsburgh Supercomputing center.

x

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



CHAPTER 1 

Introduction

Magnetic reconnection, first proposed by Giovanelli [1947] to explain solar 

activities, is believed to be an important process in space environments [Dungey, 1961; 

Vasyliunas, 1975; Galeev, 1984; Lee, 1990] and fusion devices [Furth et al., 1963; 

Drake and Lee, 1977; Yamada et al., 1991]. As a result of magnetic reconnection, the 

magnetic field topology changes and the magnetic field energy converts into plasma 

kinetic energy. The change of field topology leads to the concept of open magnetosphere 

[Dungey, 1961], which provides a framework in the study of solar wind-magnetospheric 

coupling and explains the presence of polar cap and magnetotail lobes.

The change of magnetic field topology requires the breakdown of the "frozen-in" 

condition in ideal magnetohydrodynamics (MHD) equations. Most studies o f magnetic 

reconnection [Sweet 1958; Parker, 1957; Petschek, 1964; Sonnerup, 1970; Yeh and 

Axford, 1970; Priest and Forbes, 1986; Priest and Lee, 1991; and Lee, 1995] are based 

on resistive MHD equations in which the resistivity is responsible for the breakdown 

of "frozen-in" condition. In the resistive MHD equations, the resistivity is associated 

with Coulomb collisions of charged particles. However, magnetic reconnection can 

also occur in collisionless space plasmas, in which Coulomb collisions of particles can 

be neglected. The breakdown of "frozen-in" condition in a collisionless plasma can 

be due to the inertia effect of thermal particles, which is described in the generalized 

Ohm’s law in terms o f the off-diagonal elements of plasma pressure tensor [Vasyliunas, 

1975; Sonnerup, 1988; Dungey, 1988; Lyons and Pridmore-Brown, 1990; Cai et al., 

1994]. The purpose of the thesis is to study the momentum transport associated with the

1
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2

off-diagonal pressure terms and to examine the generalized Ohm’s law in collisionless 

magnetic reconnection.

1.1 Breakdown of frozen-in condition in magnetic reconnection

1.1.1 The concept of "frozen-in" condition

The "frozen-in" condition states that any two fluid elements which are at one time 

connected by a common magnetic field line remain so thereafter. Starting from the 

Faraday’s law
d B
-a 7  = - V x E ,  ( » )

and the Ohm’s law for a fluid with infinite conductivity

E +  v x B  =  0, ( 1.2 )

we have
dB ,
—  =  V x ( v x B ) .  (1.3)

where B  is the magnetic field, E is the electric field, and v is the fluid velocity.

It can be shown from (1.3) [e.g., Siscoe, 1983] that the magnetic flux through a 

closed loop moving with the fluid is conserved. Mathematically, this statement can be 

expressed as

d$B  n ,

~rtT = 0' (1"

where the magnetic flux through a closed loop, C, is defined as $ b  = f c  B • da, and

da is an element of area on any surface which has C as its perimeter. The total time
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derivative in (1.4) is used to indicate that $ b is to be evaluated in reference to the loop 

of fluid elements, C,  that move with the fluid.

Equation (1.4) indicates that we can regard the magnetic flux are frozen in the 

fluid. From this frozen-in condition, it is easy to see [e.g., Stern, 1966] that the elements 

of fluid which are connected by a magnetic field line at one time remain connected at 

subsequent times.

However, the frozen-in condition is violated during magnetic field line reconnection 

as demonstrated below.

1.1.2 The concept of magnetic reconnection

Fig. 1.1 shows the magnetic reconnection process in a localized region. Two regions 

with different magnetic field orientation are initially separated by a one-dimensional 

current sheet indicated by the dashed line as shown in Fig. 1.1a. The labels a, a’, b and 

b’ represent four fluid elements. At t =  0, the elements a and a’ are located on side A, 

and the elements b and b’ are located on side B. After the magnetic field line defined by 

fluid elements a and a’ and the oppositely-directed field line defined by fluid elements 

b and b’ approach each other and pass through the shaded area (diffusion region), as 

shown in Fig. 1.1b, the new reconnected field lines defined by fluid elements a and b 

and by fluid elements a’ and b’ convect away from the diffusion region. Due to the 

magnetic field tension force the outflow plasmas are accelerated to high speed V0lLt.

After magnetic reconnection, four different topological regions are formed. The 

boundaries o f these four regions are called separatrices, which are shown by the heavy 

lines in Figure 1.1b. The intersection point of the separatrices is located at the center of

3
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( a ) t = 0
V

Side A

B

-------------------------------------------------------------------------------------------------- ►

. a o '  ^
v

b # b '

------------------------------------------------------------------------------------- ----

B

t V
Side B

(b) t= t i

out

Figure 1.1 Schematic illustration of magnetic reconnection process in a 

current sheet. The separatrices are shown by the heavy lines.
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5

the figure and is called X point. In three-dimensional space, the separatrices are surfaces 

and the intersection of the separatrix surfaces is defined as a magnetic X line.

The frozen-in condition is violated since the connections between a and a’ and 

between b and b’ are broken as a result o f magnetic reconnection.

1.1.3 Breakdown of frozen-in condition in a resistive plasma

For a collisional plasma, the resistivity 77 is finite and the breakdown of frozen-in 

condition is due to binary collisions. The Ohm’s law (1.2) is modified in a collisional 

plasma as

where J is the electric current density. From Amperes law V x B =  /70J, the flux 

transport equation is modified as

where ^0 is the permeability in free space and the resistivity rj is assumed constant 

for convenience. The first term and the second term on the right hand side of Eq.(1.6) 

describe the magnetic convection and magnetic diffusion, respectively. In the region 

outside the current sheet, the magnetic field convection is dominant, implying that 

magnetic field lines diffuse slowly relative to the fluid and the frozen-in condition 

approximately holds. However, in the shaded region as shown in Figure 1.1, the 

magnetic field diffusion term becomes comparable to the magnetic convection term so 

that the frozen-in condition is violated in this local region.

As will be shown in the next section, the plasma inertia effect described by the 

bulk flow inertial terms and off-diagonal pressure terms can also lead to the breakdown 

of frozen-in condition near magnetic neutral lines.
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6

1.2 The generalized Ohm’s law and force balance equations near neutral lines

1.2.1 The generalized Ohm’s law in collisionless reconnection

In the fluid description, the generalized Ohm’s law can be written as [Rossi and 

Olbert, 1970]

E + v x B  =  i)J + -  J x B +  + V • (vJ + Jv)l -  — V • P(£> (1.7)
ne ne1 at ne

where m e and e are the electron mass and charge, respectively; n, v and P^e) are the 

plasma density, flow velocity and electron pressure tensor, respectively. In obtaining 

(1.7), terms with a factor of m e/m.i have been neglected, where mi is the ion mass.

In resistive MHD theory, the generalized Ohm’s law is simplified as (1.5). However, 

the resistivity due to binary collisions is negligible (rj ~  0) in collisionless plasmas. 

Therefore, in order to understand magnetic reconnection in collisionless plasmas, one 

has to search for dissipation mechanism other than binary collisions. An effective or 

anomalous resistivity may be generated near a magnetic X line in collisionless plasmas 

due to wave-particle interactions or nonlinear particle dynamics [e.g., Coroniti and 

Eviatar, 1977; Huba et al., 1980; Lee, 1982; Horton and Tajima, 1990]. An alternative 

approach is to include the inertial terms and off-diagonal electron pressure terms in the 

generalized Ohm’s law.

Speiser [1970] proposed that when the characteristic system length is smaller than 

a collisional mean-free-path, the finite transit time of particles across the system may 

provide an effective collisional time, leading to an effective resistivity. Vasyliunas 

[1975] pointed out that during a steady state magnetic reconnection the anisotropic 

electron pressure terms in the generalized Ohm’s law should balance the reconnection
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electric field in the neighborhood of a magnetic X line. Sonnerup [1988] emphasized 

that ion and electron inertial effects and/or gyroviscous effects are responsible for the 

unfreezing o f the magnetic field. Dungey [1988] proposed that a skewed velocity 

distribution o f electrons should be developed near a magnetic X line, leading to the 

presence of “ electron gyro viscosity” associated with off-diagonal elements of the 

electron pressure tensor. Dungey [1988] also pointed out that the skewed velocity 

distribution corresponds to the transport of y momentum when the reconnection electric 

field is in the y  direction. The skewed distributions and force balance in the y direction 

proposed by Dungey [1988] were later confirmed by Lyons and Pridmore-Brown 

[1990, 1992] based on test particle calculations. In a recent simulation by Hesse and 

Winske, the electrons are treated as a fluid; the effect of the off-diagonal pressure terms 

is obtained by truncating the hierachy of velocity moment equations.

1.2.2 Force balance equations near neutral lines

Since the generalized Ohm’s law is derived from the ion and the electron momentum 

equations [ Rossi and Olbert, 1970], the generalized Ohm’s law can be studied through a 

separate examination of the ion momentum equation and electron momentum equation.

The momentum equation for ions and electrons in a collisionless plasma can be 

written as

A
m a n a ( —  +  v (a) • V )v (a) +  V • =  ea n a ( e  +  v (o) x b )  , (1.8)

in which the number density is defined as nQ =  /  / Q(v)dv and the bulk veloc

ity is defined as v (a) =  f  v f a{ v ) d v / n Q, where f a {v) is the ion or electron
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velocity distribution function. The plasma pressure tensor is defined as =  

m a f (  v -  v^a) )(v  -  v ^ ) f a (v)dv.  Here a (=  i, e) denotes ions or electrons.

In this thesis we assume that (1) the collisionless magnetic reconnection is a 

two-dimensional process taking place in the x-z  plane, (2) the reconnection electric field 

is in the y direction, and (3) all physical quantities are independent of y  (i.e., d / d y  =  0).

Under these assumptions, the y component of (1.8) for electrons is

rr me dvJ ! _  +  v («) . V y f)  
dt  y

1.,

n ee dx
+

dP:(e)
-  rv (e)( v ^ x B ) y (1.9)

where the subscript y denotes the y component of a physical quantity, and Px6J  and Ptl 

are the off-diagonal elements of the electron pressure tensor P (e). During collisionless 

magnetic reconnection, the pressure gradient terms, d P x f / d x  and dP^ey /d z ,  contribute 

to the force balance in the y  direction near a reconnection X line [ Vasyliunas, 1975; 

Sonnerup, 1988; Dungey, 1988; Lyons and Pridmore-Brown, 1990].

To simplify (1.9) in the neighborhood of the neutral lines (both the X and O lines), 

we further assume that the plasma bulk flow velocities v ^  and are relatively small
(e)at the neutral lines and the bulk flow speed Vy is an even function of both x  and 

z. These assumptions are found applicable to our simulations so that the convection 

term associated with v (e) • can be neglected. Note that in the general case the 

convection term associated with v (e) • VT'ye) may be important to the force balance. 

Because the Lorentz force is also negligible near the neutral lines, (1.9) can be simplified 

as
_  m e dvje) i  d P ^ ] i  d p f f  

y e dt nee d x  nee dz  ’

Similarily, the force balance equation for ions near the neutral lines can be simplified as

1 dP3

( e )

( i )tp _  mi dvy
E'y ~  TT.----be dt

+
u;e dx  riie d

The first term on the right-hand side of (1.10) or (1.11) represents the inertia

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



effect o f the bulk flow. The second and third terms originate from the skewed velocity 

distribution and represent the transport of y momentum in the x  and z directions, 

respectively.

1.2.3 The generalized Ohm’s law near neutral lines

The generalized Ohm’s law at neutral lines can be obtained from (1.10) and (1.11)

as

where n =  n e =  ni for quasi-neutrality and the current density is defined as Jy =

factor o f m e/m i ,  equation (1.12) can also be obtained directly from (1.7).

Without the pressure tensor terms, (1.12) is reduced to d(Jy / n ) / d t  = (e2/ m e)Ey 

and J y / n  will increase to infinity in the presence of a constant inductive electric field. 

We will examine the importance of ion and electron off-diagonal pressure terms in 

(1.12) in Chapter 3.

1.3 Dungey’s model

We use the coordinate system in which a magnetic X line lies along the y axis and 

is parallel to the current. The x  -  y plane is the midplane of the current sheet, and the ; 

direction is normal to the current sheet.

In a two-dimensional model, we take d / d y  =  0. For simplicity, we consider only 

cases in which the guide field B y =  0 . The reconnection electric field is assumed to be
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uniform and in the y direction, E y = const. By neglecting the electrostatic field in the 

x  — z plane, we obtain the motion equations for a particle with mass m a and charge qa -

d,Vx
nte* ^ — QaVyB z

dv
m Q — Q(%[Ey 4“ vzBx VgBz')

dt

(1.12a)

(1.12b)

(1.12c)

Following Dungey [1988], we consider the Speiser [1965] type particle motion 

near the x  -  y  plane and assume vz ~  0. The equations can be further simplified by 

assuming B z = 3x  with 3  to be a constant. Equation (1.12) becomes

m,

d v'x „
^at  ^

dVy
l a  ^  — Q aE y 3qctvxx  

Renormalize. (1.13) by introducing Dungey’s space scale

m aE y i_

and time scale

L D = ( ^ L J L )

T  - f J H l — \k
3 E  a2 '

we have in the dimensionless form

di'x
dt

vyx,

v y ~ ’ l 'y *   ̂ >

(l'.13a)

(1.136)

(1.1-la)

( 1 .1 -16 )

(1.13a)

(1.136)

where vy* is the dimensionless integration constant.
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According to the Liouville theorem, the particle distribution function /  remains 

constant along a trajectory in the phase space (x, v). The distribution function /  is now 

considered as a function of (x, vx , vy ). The starting positions are assumed to be at small 

x  and the initial value of /  is taken to be independent o f x. It is then sufficient to allow 

for a spread in the input values o f vx and take all trajectories to start with the initial 

velocity vy0 =  0, knowing that vy will become positive due to the driving of the electric 

field. The assumed spatial symmetry also requires that at x =  0, /  should be an even 

function o f vx . Together with the constraint that d f / d x  =  0 for small x when vy =  0, 

f  must be an even function of vx when vy =  0 .

Figure 1.2 is constructed by computing particle trajectories starting with vx = ± 0 .1, 

vy =  0 and a range of small x values (say jxj < 0.1). Each time a trajectory passes 

through a certain position, e.g., x =  0.05, the velocity components provide a point on 

the plot. In Figure 1.2, the two separate curves belong to positive and negative initial 

values o f vx : some o f those electrons starting with negative vx have turned round, while 

all of those starting with positive vx still have positive vx . Note that /  =  const, along 

these two curves. The contours show a positive mean value of vx, corresponding to a 

bulk flow away from the X line. The skewed distribution in Figure 1.2 corresponds to a 

nonzero off-diagonal pressure term Pxy, which can lead to the transport of y-momentum 

in the x direction.

Dungey’s model [1988] has been further studied using numerical particle trajectory 

calculations by Lyons and Pridmore-Brown [1990, 1992]. In the calculations, the 

skewed velocity distributions in the vx -  vy space are obtained in the vicinity o f an 

X line. The resulting momentum transport due to the off-diagonal pressure terms can 

indeed balance the reconnection electric field.
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Figure 1.2 Contours of particle distribution function in the vx — vy space 

at x  =  0.05, c =  0. All physical quantities are normalized based on 

(1.14) (Dungey, 1988).
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1.4 Outline o f the thesis

In the test particle calculations, the reconnection electric fields and magnetic fields 

are not computed self-consistently from the particle motions. On the other hand, particle 

motions and electromagnetic fields are determined self-consistently in the particle 

simulations o f magnetic reconnection [e.g., Terasawa, 1981; Swift, 1986; Hewett et 

al., 1988; Allen and Swift, 1989; Pritchett et al., 1991; Dingetal., 1992].

In this thesis we use two-dimensional particle simulations to investigate the plasma 

dynamics and momentum transport near neutral lines during the evolution of collisionless 

magnetic reconnection. The origin and spatial scale of the off-diagonal pressure terms 

are studied.

In Chapter 2, we present the first particle simulation study of the off-diagonal 

elements of plasma pressure tensor using a two-dimensional magnetoinductive particle 

code, in which only ions are treated as active particles while electrons are assumed 

to provide a charge-neutral background. It is found that a weakly skewed velocity 

distribution is formed near a magnetic X line, leading to the presence o f off-diagonal 

elements of plasma pressure tensor. The gradients o f off-diagonal pressure terms 

transport particle momentum away from the X line and make an important contribution 

to balance the reconnection electric field.

In Chapter 3, we extend our study on the force balance near magnetic neutral lines 

to full particle simulations, in which both ions and electrons are treated as particles. It is 

found that the off-diagonal electron pressure terms play a dominant role near a magnetic 

X line while the reconnection electric field plays a dominant role near an 0  line in the 

force balance for electrons. On the other hand, the deceleration or acceleration o f ion 

bulk velocity in the direction along the X or 0  line results from the momentum transport
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due to the off-diagonal elements of ion pressure tensor. The reconnection electric field 

plays an insignificant role in the force balance for ions.

In Chapter 4, an explanation for the origin o f the off-diagonal pressure terms is 

given. We then discuss the scale length o f Pxy based on the simulation data from 

Chapters 2 and 3. The off-diagonal pressure term for electrons, PxeJ , is also calculated 

from the perturbed distribution function in the collisionless tearing instability.

A new dynamo process, in which magnetic flux emerges outward from an 0  line 

in the magnetic island formed by reconnection, is reported in Chapter 5. A power-law 

dependence of characteristic reconnection time scales on the ion-electron mass ratio is 

also presented in this chapter.

In the last chapter, we briefly summarize the results and suggest possible topics for 

future studies.

14

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



Momentum transport near a magnetic X line in collisionless reconnection

CHAPTER2

In this chapter we use two-dimensional particle simulations to investigate plasma 

dynamics and momentum transport near an X line during the evolution of collisionless 

magnetic reconnection. It is found that the'off-diagonal elements of plasma pressure 

tensor play an important role in the transport of the y momentum near the X line. Section

2.1 describes the two-dimensional particle simulation model, in which ions are treated 

as active particles and electrons are assumed to provide a charge-neutral background. 

Magnetic reconnection and reverse magnetic reconnection is presented in section 2.2. 

The momentum transport near a magnetic X line due to the off-diagonal elements of 

pressure tensor is discussed in section 2.3. The force balance at the X line is presented 

in section 2.4 and a summary is given in section 2.5.

2.1 Simulation model

The present simulation study is carried out using a two-dimensional, magnetoin- 

ductive particle code which has been described in previous papers [Ambrosiano et al., 

1983; Ding et al., 1986; Lee and Ding, 1987]. In this code ions are treated as active 

particles while electrons are assumed to provide a charge-neutral background [Terasawa,

15
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1981; Pritchett et al., 1991]. The field equations used in the simulations are

V 2A  =  - j i 0J (2 .1)

and

B =  V x A ( 2 .2 )

where A  is the vector potential. The equations for particle motion are

(2.3)

and

(2.4)

where x*;, v*. and p t are, respectively, the position, velocity, and canonical momentum 

of the kth particle. The current density is calculated from

where S[x  -  x fc(f)] is the weighting factor based on the first-order particle-in-cell 

bilinear interpolation method [Birdsall and Langdon, 1985]. At the position of a panicle, 

the magnetic field is calculated by the same interpolation method. A second-order, 

leap-frog time-stepping algorithm is used in the simulation.

The simulation is performed in the x-z  plane. We consider only the y  component of 

the vector potential, A  =  A yey . The reconnection electric field E y is associated with the 

variation of and can be calculated from E y =  - d A y/d t .  The initial particle number 

density and magnetic field profiles are given by n(x,  z, 0) =  N csech2{ z / \ )  -f N b and 

B(.r, z, 0) =  B 0 tanh(c/A )er , where B 0 is the magnetic field far away from the current 

sheet, A is the half-thickness of the current sheet, N b and N c are, respectively, the
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background particle number density and the current sheet particle number density. The 

initial particle velocity distribution is a drift-Maxwellian, with a drift speed in the y 

direction determined from the specified ion number density and magnetic field profiles.

The boundary conditions used in the simulation are as follows. In the x direction, 

periodic conditions are imposed for both particle motions and the vector potential. In 

the c direction, particle buffer zones are set up to handle the particles which move 

across the boundaries [Ding et al., 1992]. The vector potential .4^ at the boundaries 

c =  ± L : is set to the initial constant value. Therefore the electric field E y along these 

boundaries is zero. The net panicle flux into and out of the boundaries is very small. We 

have simulated several cases with different parameters and obtained similar results. The 

simulation results o f a typical case with -V6/.VC = 0.25 are presented in next sections.

The simulation is run on 128 x 128 grids. The grid size is A =  0.125p;, where 

Pi =  vthi/Qi is the ion gyroradius, vthi is the initial thermal speed of ions, and 

flj =  eBo/nii  is the ion gyrofrequency. We choose the half-thickness of the initial 

current sheet as A =  1.0pi and set the ratio of background density to current sheet 

density N b /N c =  0.25. Nearly 110,000 particles are loaded in our simulation. The 

simulation is run from t = 0 to t = lOOfl'1, with a time-step of A t =

2.2 Reconnection and reverse reconnection

Plotted in Figure 2.1 are the magnetic field lines, which are the contours of .4V, at 

different simulation times. We plot the magnetic field lines by fixing the increment of 

Ay  between two neighboring contours. As mentioned in section 2, .4,, at the boundaries 

■c =  ± 8pj is set to the initial constant value. Notice that only the central part ('x\ < 8p, , 

M < 4/?j) o f our simulation domain is presented to save space in these plots. Figure

17
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M agnetic  F ie ld  Lines

(a) 0, t  = 0

z /P i

- 4

4

z /P i

- 4

4

z /P i

- 4

(b) Q, t = 10

-

(c) Q, t = 20

8

Figure 2.1 Magnetic field lines at various simulation times. A magnetic 

X line is present near the center of the simulation domain (x =  0, 2 =  0) 

in (c)-{h). Our simulation domain is - 8 p i  <  x <  8pi  and — 8pi <  
z  <  8pi. Only half of the simulation domain (W  <  8Pi, \z\ <  4pi) is 

plotted.
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2.1a shows the initial magnetic field configuration at / =  0. Figures 2.16-2.1/? show the 

magnetic field lines at the subsequent times. We choose the length in the x  direction in 

such a way that only one X line is formed. We shift the X line to the center (x =  0, 

z =  0) by taking the advantage of the periodic boundary conditions in the x  direction. 

Figures 2.1e, 2.lg,  and 2.1/? show that there are eight reconnected magnetic field lines 

at / =  40fit-1 , seven reconnected field lines at t = SOfl"1, and eight reconnected field 

lines again at t =  70f2“ 1. The number of the reconnected field lines provides a measure 

of the reconnected magnetic flux. The variation of the number of field lines is related to 

the reconnection electric field at the X line.

Figures 2.2 and 2.3 show contours of the reconnection electric field E y and the 

current density Jy in the x — z plane, respectively. In Figure 2.2, the electric field 

is normalized by E 0 = B 0vthi• The solid contours correspond to positive values, 

and the dotted lines correspond to negative values. The increment of E y between 

two neighboring contour lines is 0.004 Eo. Note that the electric field is zero at the 

boundaries, z — ± 8pif because we fixed the value of the vector potential A y at these 

boundaries in our simulations. The contours in Figure 2.2 show that the electric field 

near the X line is positive and increases from t =  lOfi" 1 to t =  35ft” 1, and it becomes 

negative at/ =  45f/“ I and/ =  SOfl” 1. A t/ =  60Q~L the electric field is positive again. 

In Figure 2.3, the current density is normalized by Jo = N cevthi = Bof(p-oPi)- The 

increment of Jy between two neighboring contours is 0.1 Jo, and the value corresponding 

to the outermost contour line in each plot is 0.05 Jo - Note that the position of maximum 

particle number density is located near the center of the magnetic island (z = 0 and 

x  =  ± 8  p^ ,  while the locations of the maxima of Jy, as shown in Figure 2.3, are mainly 

determined by the maxima of the bulk drift velocity in the y direction. The contours in 

Figure 2.3 show that the current density near the X line decreases during / =  10 -  43n,~ 1
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E lec tr ic  Fie ld  E,

(a) 0, t  = 10

Figure 2.2 Contours of the reconnection electric field E y in the x  —  z 
plane. The electric field is normalized by E q = B o v t h i ,  and the increment 

of E y between two neighboring contour lines is 0.004 Eq.
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(a) Qj t  = 10

Z /P i

- 4

4

z /P i

- 4

4

z /P i

- 4

(b) 0, t = 20

(c) Q, t = 30

(d) 0; t = 35

C u rr en t  D e n s i ty  J

(e) Qj t  = 40

8

Figure 2.3 Contours of the current density J y in the x  -  z  plane. The 

current density is normalized by Jq =  N cevt.hi, and the increment of J y 
between two neighboring contours is 0.1 Jq. The outermost contour lines 

in each plot correspond to 0.05 J q .
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and slightly increases during t = -15 -  o09.~l . The current density in the whole domain 

remains positive throughout the process in our simulation.

The magnetic field energy equation can be written as

r , ^  = - v - s - E -3' <2-6>

where S =  E x B /^ o  is the Poynting vector, and E • J denotes the energy conversion 

from the magnetic field to particles. Near the X line the magnetic field is very weak 

and the term d / d t ( B 2/2/.i0) in the energy equation can be neglected. At t = 30f2fl , 

Ey > 0, Jy > 0 and hence E • J > 0 near the X line. The magnetic field energy is 

converted to panicles and a normal reconnection proceeds at this moment. We also find 

from the simulation data that V • S < 0 near the X line. In contrast, at t =  oOfl” 1, 

Ey < 0, Jy > 0, E  • J < 0, and V • S > 0. The energy is converted from the particles 

to the magnetic field.

Following Lyons et al. [1989] and Lyons and Pridmore-Brown [1992], we denote 

the process with E • J <  0 near the X line by the term “reverse magnetic reconnection. ” 

From the time evolution of the reconnection electric field at the X line, as shown in Figure 

2.9b, we find that the reverse reconnection process occurs at t ~  and the normal 

reconnection process takes place again at t ~  58ft"1. It appears that the overcompressed 

plasma near the O line, due to the imposed periodic boundary conditions, causes the 

reversal of reconnection in our simulation. A complete understanding of the reverse 

reconnection process is not the focus of this present work and would require a substantial 

amount of further investigation. However, reconnection processes with E • J < 0 near 

X lines have been previously presented by Hewett et al. [1988], who conducted particle 

simulations with large ion to electron mass ratio. Observational results suggest that the

22
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reverse reconnection may be possible in the nightside magnetosphere [de la Beaujardiere 

et al., 1991].

2.3 Momentum transport due to the off-diagonal pressure elements

Figure 2.4 shows the particle scatterplots in the vx -vy plane at z =  0 and x  =  -2 ,  

0 and 2pi, respectively. The particles are sampled from t =  29Q~1 to t = 31f2~1 

with an area of 5A x 5A in the x  -  z plane. The constant /  contours are also shown 

in the scatter plots. Figures 2.4a and 2.4c indicate that the velocity distributions of 

particles are weakly skewed. However, these weakly skewed distributions can generate 

the off-diagonal elements of the pressure tensor with a gradient large enough to balance 

the reconnection electric field as discussed below.

Because the velocity distributions are only weakly skewed in our simulation, the 

off-diagonal terms of the pressure tensor is very small compared with the diagonal terms. 

One should be very careful in extracting the off-diagonal terms under the condition 

of limited number of simulation particles. In our simulation, the zeroth-order, the 

first-order and the second-order moments of velocity distribution are evaluated from 

particles sampled in five time steps on each grid. We then obtain the plasma density n, 

momentum density nm;V, and kinetic pressure tensor K  by averaging these quantities 

both in space and in time. The thermal pressure tensor P  is calculated from the equation 

P  =  K  -  nrriivv. This evaluation procedure implies that we calculate, for example, the 

nonlinear term vz (dvy/ d z )  by <vz > (d<vy > /dz )  rather than <vz (dvy /d z )> ,  where 

< ...>  denotes the averages, which ensures the term vz (dvy/d z )  to be zero at an X line 

as expected theoretically.

23
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Figure 2.4 Particle scatterplots in the ox-vy plane at 2 =  0 and (a) 
x =  — 2pi, (6) x =  0 and (c) x =  2p^. The particles are sampled from 
t  =  2 9 f)“ 1 to t  =  31f2~1 with an area of 5A  x  5 A  in the x — z 
plane. The contour lines of constant /  are also shown.
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Figures 2.5 and 2.6 show the evolution of the off-diagonal elements of pressure 

tensor, Pxy and Pzy, in the x  -  z plane. The pressure tensor terms are normalized 

by Pq =  Bl/2f.iQ. The solid lines correspond to positive values, and the dotted lines 

correspond to negative values. The increment between neighboring contours is 0.01P0. 

It is shown in Figure 2.5 that a clear pattern of Pxy emerges from t = 2012“ 1 to 

t =  30I2"1 and the pattern becomes complicated after t =  3012“ x. Pzy is much weaker 

than Pxy. However, coherent patterns of Pzy near the X line can still be seen in Figures 

2 .6c and 2.6d.

In order to study the contribution of the off-diagonal pressure elements to the 

momentum transport near the X line, we plot the profiles of the pressure tensor elements 

at t =  3012“ 1 and t = 50I2F1 in Figure 2.7. Profiles of PXy(x,  z =  0), the distribution 

of Pxy along x  axis, are shown on the left column, while profiles of Pzy{x =  0. z), the 

distribution of Pzy along z axis, are on the right column. Notice the different scales for 

PXy ( x , z  =  0) and Pzy(x = 0 , z). The off-diagonal elements of the pressure tensor, 

which are also normalized by P q  = B$/2y,0 =  N crriiV?hi, are usually less than 0.1 as 

shown in Figure 2.7. For comparison, the initial diagonal elements of the pressure tensor 

in the central current sheet are (1 +  N b/. \rc)P0 = 1.25P q .  These results also indicate 

that the plasma velocity distributions are only weakly skewed.

As shown in Figures 2.7a and 2.76, in the neighborhood of the X line (x =  0, 2 =  0), 

Pxy(x,  z =  0) is an odd function of x  and Pzy(x =  0, z)  is an odd function of 2. This 

asymmetric feature bears resemblance to the profile of Pxy by Vasyliunas [1975, Figure 

5]. The profiles o f P xy(x, 2 =  0) and Pzy{x = 0. 2) at t =  30I2"1 show that during the 

periods of normal reconnection the gradients of the off-diagonal elements of the plasma 

pressure tensor at the X line are positive, indicating that the y momentum of the plasma 

is transferred from the region near the X line to regions outside the X line. Figures

25
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O f f -D ia g o n a l  P r e s s u r e  Pxy
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o i l n i  
i f f < W ,L
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( e )  n. t = 40

(h) Qj t = 60

Figure 2.5 The contour lines of PX!J are plotted in the x  — z  plane at 

various times. The increment between neighboring contours is 0.01 Po. 
where Pq =  Bq/2/j ,0.
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Figure 2.6 Same as Figure 2.5 except for Pzy.
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O f f - d i a g o n a l  E l e m e n t s  o f  P r e s s u r e  T e n s o r

(b) 0,t = 30

(c) Qjt = 50
0.12

xy

■ 0.12
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-0 .0 6

(d) 0,t = 50
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- 0 .0 6
8 - 4 Z/Pi 4

Figure 2.7 Profiles of the off-diagonal elements of the plasma pressure 

tensor, Pxy( x , z  =  0) and P .-J .r  =  0, s), at t  = 3 0 O ” 1 and 

t =  5 0 f i~ x. The pressure tensor is normalized by Pg =  Bq/2/j.o-
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2.7c and 2.7d show that during the reverse reconnection the sum of the gradients of 

the off-diagonal pressure terms are negative, which indicates that the y  momentum is 

transferred into the X line (also see the later discussion associated with Figure 2.9).

To obtain a visualized picture of the y  momentum transport in the x-z  plane, 

schematic diagrams for the y momentum flux during the normal magnetic reconnection 

(Ey > 0) period, t < 4312“ \  are shown in Figure 2.8. Figure 2.8a is a schematic 

diagram for the y  momentum flux in the x-z  plane associated with the off-diagonal 

elements of the plasma pressure tensor, Pxy and P-y, in the neighborhood of the X line. 

The divergence of the flux near the X line is positive, which indicates a net transport 

of the y  momentum. For comparison, the transport of y  momentum in the x-z  plane 

associated with the plasma bulk motion, nm ivx vy and n m iv z vy, near the X line is 

plotted in Figure 2.86. As mentioned in section 3, the transport of the y  momentum 

associated with the plasma bulk motion, V • (n m * vy v ), near the X line can be reduced to 

- m . i V y d n / d t . Therefore there is no net transport of the y  momentum due to the plasma 

bulk motion in the steady state reconnection.

2.4 Force balance at the X line

We plot in Figure 2.9 the time-evolution of each term at the X line (x =  0,2  =  0 ) 

in the force balance equation (1.11), which is rewritten in currently used notations as

r _  TUi dVy 1 0 P Xy 1 d P Zy
B y  — --- ~r ̂ -----o 1----- o—  *e at ne ox  ne oz

All terms in (2.7) are normalized by E 0 =  B 0vthi. In Figure 2.9a, the dotted 

line corresponds to the y momentum transport in the x  direction, (1 /n e )d P xy/d x ,  the 

dashed line corresponds to the y momentum transport in the 2 direction, (1 / ne)dPz , , /0 z .

29
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Transport of y Momentum

(a) Due to Off-Diagonal Pressures

'zy

xy xy

'zy

(b) Due to Plasma Bulk Motions

n m |v z v y

n m jv 2 v y

Figure 2.8 A schematic diagram for the transport of the y  momentum 

near the X line in the x —z plane during collisionless magnetic reconnection 

: (a) the transport due to the off-diagonal elements of the plasma pressure 

tensor, Pxy and Pzy, and (b) the transport due to the plasma bulk motion,

nrriiVxvy and nrriivzvy.
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and the solid line is the inertial term, (m i/e )dvy / d t . The solid line in Figure 2.96 shows 

the sum o f the above three terms, which is the right-hand side o f (2.7), whereas the 

dashed line in Figure 2.96 shows the evolution of the reconnection electric field E y . It 

can be clearly seen that the reconnection electric field is approximately balanced by the 

sum of the three terms in Figure 2.9a.

Figure 2.96 also shows that the evolution of the reconnection electric field undergoes 

a transition from positive to negative at t ~  43Q" 1 and another transition from negative 

to positive at t ~  5 8^“ As shown in Figure 2.9a, similar transitions also occur for 

the momentum transport terms, (1 /ne )dPxy/ d x  and ( l / n e ) d P :y/ d z . As mentioned 

earlier, the current density near the X line, Jy, is positive throughout the simulation. 

Therefore, before t ~  1, E • J > 0 and the magnetic energy is converted into the

plasma kinetic energy near the X line by magnetic reconnection. During the reverse 

reconnection between t ~  4317F1 and t ~  58Q"1, E • J < 0 and the plasma kinetic 

energy is converted back into magnetic energy near the X line. The transitions from 

the normal magnetic reconnection (E y > 0) to the reverse reconnection (Ey < 0) and 

then from the reverse reconnection to the normal reconnection shown in Figure 2.96 

are consistent with the magnetic field line patterns plotted in Figures 2.1e-2.1/i. For 

t > 80 f2 fL, Ey still oscillates but with a damped amplitude. It is expected that £ v 

would approach 0 as t -*  oc.

Notice that the inertial term, m,idvy/d t ,  varies approximately out of the phase with 

the momentum transport terms after t ~  S S fif1 as shown in Figure 2.9a. In addition, 

the acceleration of the bulk velocity (vy) at the X line can be out o f phase with the 

reconnection electric field E y in some periods of time. For example, the velocity c,, 

decreases during £ ~  33 -  43Dt-1  (dvy/ d t  < 0 as shown in Figure 2.9a) when E,, 

is still positive, and vy increases during t ~  45 -  o lftF 1 when the electric field is
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Force Balance  at the  X Line

0 .0 8

0 .0 0

- 0 .0 8

(b)
0 .0 8

0 .0 4

0 .0 0

- 0 .0 4
0 20  4 0  60  80

Q,t

Figure 2.9 (a) Time evolution of the three terms during reconnection: the 

term (1 / n e ) d P xy/ d x  is drawn with the dotted line, (1 j n e ) d P zyj d z  
with dashed line, and (m i / e ) d v y / d t  with solid line. (6) Time history of 

the force balance at the X line: The sum of the three terms in Figure 2.9a 

is plotted with solid line, and the reconnection electric field E y is plotted 

with dashed line. All these terms are normalized by Eq = B ov thi-
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negative. Therefore the momentum transport due to the off-diagonal elements o f the 

pressure tensor can sometimes give rise to a greater force than the reconnection electric 

field and dominate the dynamics along the X line.

2.5 Summary

We have investigated the momentum transport near a magnetic X line during 

time-dependent collisionless reconnection. It is found that the momentum transport 

associated with the off-diagonal elements of plasma pressure tensor plays a dominant 

role in the force balance near the X line. The main results of our simulation study are 

the following:

(1) A weakly skewed velocity distribution is formed near the magnetic X line, 

resulting in the presence of off-diagonal elements of plasma pressure tensor, Pxy and

P * y

(2) During the normal magnetic reconnection, the gradients of the off-diagonal 

pressure tensor terms, dPxy/ d x  and dP:y/d z ,  lead to a transfer of y  momentum from 

the region near the X line to regions outside the X line.

(3) During the reverse magnetic reconnection with E • J < 0 near the X line, the 

momentum transport associated with the off-diagonal pressure terms can transfer the y 

momentum into the X line.

(4) The momentum transport due to the off-diagonal pressures can sometimes 

provide a greater force than the reconnection electric field and dominate the dynamics 

near the X line.

(5) The inertial term, nmidi 'y /d t ,  also plays a significant role in the force balance 

near the X line.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER3

Force balance at neutral lines in a full particle simulation

In this chapter, we extend our study on momentum transport near magnetic neutral 

lines to full particle simulations, in which both ions and electrons are treated as 

particles. The full particle simulation model is briefly described in Section 1. Magnetic 

reconnection and the accompanying electrostatic field are presented in Section 2. Force 

balance at neutral lines for electrons and for ions is discussed in Section 3 and Section 

4, respectively. A summary is given in Section 5.

3.1 Simulation model

The present simulation study employs a two-dimensional, magnetoinductive par

ticle code [Swift, 1986; Ding et al., 1992], in which particle motion is advanced by a 

second-order, leap-frog algorithm based on the following equations

where a  (=  i, e) denotes ions or electrons, m a and qa are the mass and electric charge 

for ions or electrons, and x ak and p ak are, respectively, the position and canonical 

momentum of fc-th particle of species a . The electrostatic potential <(> is obtained by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3.1)

(3.2)

34



solving the Poisson equation

V 2o =  —a ep (3.3)

and the vector potential A  is solved together with the time derivative of 6 { \  — '86/dt) ,  

by iteration based on the following equations

V 2A  =  - a mJ  +  — V X , (3.-1)
O-e

V 2\  =  a eV • J, (3.5)

where a e and a m are electric and magnetic coupling constants, respectively, which can 

be chosen artificially in particle simulations.

The charge density p and current density J are calculated from the following 

equations.

p = YL<i°n * (:3-6)

35

and

J = Z  t w ° -  < £  p-7>
a

The moments are evaluated from

n* = ^  S _ x -  x afc(t)] (3.8)
k

and

w« = H Pafc5,-x_XQfĉ )]!
k

where 5  [x -  x a k ( t )] is the first order particle-in-cell bilinear weighting factor. Note that 

in the above formulation the Coulomb gauge, V • A  =  0, is used. The electromagnetic 

fields can be obtained from E =  - V o  -  OXjOl and B  =  V x A.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The simulation is performed in the x-z plane. The initial particle (both ion and 

electron) number density and magnetic field profiles are given by n(x.  z, t = 0) =  

N csech2(z /a)  + Nb and B(.r, z, t = 0) =  B 0 tanh(s/a)ex, where B 0 is the magnetic 

field far away from the current sheet, a is the half-thickness of the current sheet, and N b 

and N c are, respectively, the background particle number density and the current sheet 

particle density. The initial particle velocity distribution is a drift-Maxwellian, with a 

drift speed in the y direction determined from the initial local particle number density 

and current density associated with the initial magnetic field.

The boundary conditions used in the simulation are described as follows. The 

simulation length in the x  direction is L x and periodic conditions are imposed for both 

particle motions and electromagnetic fields at x  =  ± L x /2. In the z direction, particle 

buffer zones are set up to handle the particles which move across the boundaries [Ding 

et al., 1992]. The electrostatic potential d> and the vector potential A x at the boundaries 

z = ± L z /2  are fixed, while the Coloumb gauge condition V • A  =  0 requires that 

d A - / d z  =  0 at z = ± 1 - /2 .  The vector potential A y at the boundaries z =  ± L z/2  

is set to the initial constant value. Therefore the inductive electric field E y , which is 

calculated from E tJ = - d A y/d t ,  along these boundaries is zero. The net particle flux 

into or out o f the boundaries is very small.

We run a case with an ion-electron mass ratio of m j/m e =  1836. The ion-electron 

temperature ratio is set to Ti / Te = 0.2. The simulation is run on 64 x 64 grids. The 

simulation lengths are L x = 8pe and L z = 8pe, and the grid size is A =  0.125p„. 

Here pe = i'the/tte is the electron gyroradius, vthe is the thermal speed o f electrons, 

and f le =  e B 0/ m e is the electron gyrofrequency. Note that ions are unmagnetized in 

the whole simulation domain because the ion gyroradius, pi ~  20pe, is larger than the 

simulation lengths.

36
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We choose the half-thickness of the initial current sheet as a =  0.25pe and set the 

density ratio as N b /N c =  0.1. The length in the x  direction has been chosen such that 

the most unstable tearing mode has a wavelength A ~  L x . Nearly 50,000 particles for 

each species are loaded in our simulation. The time-step is Af =  O.lft"1. Simulation 

results from t = 0 to t =  are presented below.

3.2 Magnetic reconnection and the electrostatic field

Plotted in Figure 3.1 are the magnetic field lines, which are the contours of constant

at different simulation times. Only the central portion (jzl < 2pe) o f our simulation 

domain is presented to save space in these plots. During the simulation, a magnetic 

island is formed with the presence of a reconnection X line at x  ~  -0 .9 p e, z =  0 and an 

O line at x  ~  3.1pe, z =  0 . We plot the magnetic field lines by fixing the increment of 

A y between two neighboring contours. The solid lines in these plots denote the newly 

generated magnetic flux, which will be studied in detail in Chapter 5.

We plot in Figure 3.2 contours of the reconnection electric field, E y =  - d A tJ/d t ,  

in the x -  z plane at different times. The solid contours denote positive values and the 

dotted contours denote negative values. The increment of E y between two neighboring 

contours is 0.0025£o> where E 0 = B 0i'the• Because the current density (not shown) 

is positive in the y  direction, the negative reconnection electric field near the O line 

indicates that there exists a dynamo process in which E • J < 0. The time history of E y 

at the X line and at the O line will be presented later.

Figure 3.3 shows contours of the electrostatic potential $  in the x  -  z plane at 

different times. The solid lines correspond to positive values, and the dotted lines 

correspond to negative values. Note that we set the electric potential to be zero at

37
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(a) Qet = 5....

Z/ ' P e  ; ......................................................................■

(b) Oet = 15 ___________

z/ p e ..............................

(c) Qet = 25

(d) Oet = 35

- 4  x/ p e

(e) Qet = 55

r s V ' / '  ■ V

(f) Qet = 75

liiiiSB
(e) n.t = 95

IK)) ((ill
(h) O.t = 115

id
- 4  x/ p e 4

Figure 3.1 Magnetic field lines at various simulation times. A magnetic 

island is formed with the presence of a reconnection X line and an O line. 

Our simulation domain is — 4/;,. <  x  < 4 pe and — 4 pe < z < 4pe. 
Only half of the simulation domain (|.r| <  4p r , |z| <  2pe) is plotted.
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Figure 3.2 Contours of the reconnection electric field E y in the x  -  z 
plane. The increment of E u between two neighboring contour lines is 

0.0025 Eq, where Eq = Bq
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Figure 3.3 Contours of the electrostatic potential in the x  —  z  plane at 
different times. The increment between neighboring contours is 0.2$o. 

where $o  =  B^VthePe- Note that the electric field in the x  —  z plane 
can be as large as E q =  Boi'n,,,. which is almost two orders larger than 

the reconnection electric field E.r
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boundaries z =  ± 4 pe. The increment of $  between two neighboring contours is 0 ,2$0 

with 3>o =  BovthePe• It is seen from Figure 3.3 that the electric potential is positive at 

the magnetic X line and negative at the O line from t =  25fl~1 to t =  75ft;:1. As the 

magnetic reconnection proceeds, the magnetized electrons move faster than ions toward 

the 0  line and the ions are then pulled toward the O line by the electrostatic field. At 

t =  115f2~1, the electrostatic potential is positive at the O line and negative at the X 

line. Simulation data show that at this time electron flow and ion flow are moving 

outward from the O line and the electron flow is faster than the ion flow. The tendency 

that electron bulk flow is faster than ion flow leads to the presence o f current in the 

x - z  plane and is consistent with the generation of B y shown in Figure 3.4. The electric 

field in the x - z  plane can be as large as l.OE’o, which is almost two orders larger than 

the reconnection electric field E y . The interaction between ions and electrons is mainly 

through the electrostatic field in this case.

Figure 3.4 shows contours of constant B y , where B y is the generated magnetic 

field in the y  direction due to the magnetic reconnection. Quadrupole patterns about 

the X line or the 0  line are clearly seen, indicating the difference between ion flows 

and electron flows into or out of the 0  line. The increment between the neighboring 

contours is 0.002. The generated B y in this case is rather weak with jB y \ < 0.01 B 0. It 

is expected that the generated B y does not affect the particle dynamics in the electron 

diffusion region, where electrons are not completely magnetized. On the other hand, a 

large B y field is observed in the hybrid simulation of magnetic reconnection [Mandt et 

al., 1994], in which electrons are treated as a magnetized fluid. It is interesting to note 

that the generation of B y is also observed in the external shock region, as demonstrated 

in hybrid simulations of rotational discontinuity [Swift and Lee, 1983] and Riemann

41
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By
(a) Q t = 5 (e) fi t = 55

(b) Qet = 15

(d) Qet = 35 (h) Qet = 115

Figure 3.4 Contour plots of constant Bu. The increment between 

neighboring contours is 0.002Z?n. The generated By is very weak.
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problems [Lin and Lee, 1993]. In all cases, the Hall effect due to the decoupled motion 

of magnetized electrons and unmagnetized ions leads to the generation of B y.

3.3 Force balance at neutral lines for electrons

As mentioned in Chapter 2, one should be very careful in extracting the off-diagonal 

terms because they are very small compared with the diagonal terms. In our simulation, 

the zeroth-order, the first-order and the second-order moments of velocity distribution 

are evaluated from particles sampled five times in every 20 time steps on each grid. We 

then obtain the plasma density na , momentum density na mav (a), and kinetic pressure 

tensor by averaging these quantities both in space and in time. The thermal 

pressure tensor is calculated from the equation =  K3q) - n amav(aM a) for 

both electrons and ions.

Figures 3.5 and 3.6 show respectively the evolution of the off-diagonal elements 

of pressure tensor, PxeJ  and Pzy \  in the x - z  plane. The pressure tensor terms are 

normalized by P0 =  B $ / 2 p 0. The solid lines correspond to positive values, and the 

dotted lines correspond to negative values. The increment between neighboring contours 

is 0.0032P0. Figure 3.5 shows that a clear pattern of P i^  emerges from t = loQ ” 1 

and the pattern becomes complicated after t =  TSftj1. The maximum PxlJ is less than 

0.03Po, indicating that the electron distribution is only weakly skewed in the vx -  vy 

velocity space. The P ^J  contours in Figure 3.6 also show coherent patterns near the 

neutral lines. Note that a relative strong Pj^  at t =  oflj'1 results from initial particle 

loading.

We plot in Figure 3.7 and Figure 3.8 the time-evolution of each term in the force 

balance equation (1.10) at the X line (.r ~  -0 .9 pe, z =  0) and at the 0  line ( i  ~  3 . lpe,
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Figure 3.5 The contour lines of P jf^  are plotted in the x  — z plane at 

various times. The increment between neighboring contours is 0.0032Po. 
where Pq = B q /  2fi0.
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Figure 3.6 Same as Figure 3.5 except for P
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=  0), respectively. For convenience equation (1.10) is rewritten as

46

dvie) c  , i  d P $  , i  dP&
= E y + ---------2 L  + -------- -2L  (3.10)

e at n ee ox  nee az

All terms in (3.10) are normalized by E 0 = B 0vthe in Figures 3.7 and 3.8.

In Figure 3.7a, the dotted line corresponds to the y  momentum transport in the x  

direction, (1 / n Pe ) d P ^ ) / d x ,  the dashed line corresponds to the y momentum transport 

in the z direction, (1 / n ee )d P z f  / dz,  and the dotted-dash line is the reconnection electric 

field, Ey. The solid line in Figure 3.7b shows the sum of the above three terms, which 

is the right-hand side of (3.10), whereas the broken line in Figure 3.7b shows the 

inertial term, - ( m e/e)dvye) /d t ,  corresponding to the acceleration of electrons in the 

—y direction. Note that the initial drift velocity of electrons is in the - y  direction.

It can be clearly seen from Figure 3.7b that the inertial term is approximately 

balanced by the sum of the three terms in Figure 3.7o. However, the electron bulk 

velocity in the - y  direction is decelerated although the reconnection electric field tends 

to accelerate it, indicating that the momentum transport due to the off-diagonal elements 

of electron pressure tensor gives rise to a greater force than the reconnection electric 

field and dominate the dynamics along the X line.

Figure 3.8 is the same as Figure 3.7 except for the electron force balance at the O 

line. It is seen that the momentum transport due to the off-diagonal pressure terms still 

plays a significant role but not a dominant one.
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Force Balance at the X Line
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Figure 3.7 Force balance at the X line for electrons, (a) Time evolution 

of the three terms during reconnection: the term (1 / n ee ) d P x ^ / d x  is 

drawn with the dotted line, (1 / n ee)dP~y^/dz with dashed line, and 

the reconnection electric field, E y, the dotted-dash line, (b) The sum of 

the three terms in Figure 3.7a is plotted with solid line, and the inertial 

term, — (m e/e)dvye^/dt,  is plotted with broken line. All these terms are 

normalized by Eq = Bot'the-
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Figure 3.8 Same as Figure 3.7 except for the force balance at the O 

line.
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3.4 Force balance at neutral lines for ions

Figures 3.9 and 3.10 show the evolution of the off-diagonal elements of pressure 

tensor, Pxy and Pzy , in the x -  z plane. The pressure tensor terms are normalized 

by Pq =  Sq/2^0- The solid lines correspond to positive values, and the dotted lines 

correspond to negative values. The increment between neighboring contours is 0.32P0. 

Figure 3.9 shows that a clear pattern of Pxy emerges from t =  35Q71 and the pattern 

becomes complicated after t =  The off-diagonal term Pxy can be as large

as 4.5Po, indicating that the ion velocity distribution is strongly anisotropic. The P-y 

contours in Figure 3.10 also show coherent patterns near the neutral lines. Note that the 

off-diagonal term P~lJ  at early times (t < 75ft” 1) results mainly from the initial particle 

loading.

We rewrite the force balance equation for ions (1.11) as the following.

mi dv i l) _  1 d P f f  1 d P $  h t 1 1
rs, —  -fcy ,-s (J .l l)e at nie ox  n;e az

Force balance for ions at the X line and the 0  line is presented in Figure 3.11 

and Figure 3.12, respectively. In these figures all terms in (3.11) are normalized by

Po = Po L'the'

In Figure 3.11a, the dotted line corresponds to the y momentum transport in the x  

direction, - ( 1  /riie)dPxy /d x ,  the dashed line corresponds to the y momentum transport 

in the 2 direction, - ( 1  /nie)dPz]J/dz,  and the dotted-dash line is the reconnection 

electric field, E y, which can hardly be seen because it is about two orders smaller than 

the off-diagonal ion pressure terms. The solid line in Figure 3.116 shows the sum of 

the above three terms, whereas the broken line in Figure 3.116 shows the inertial term,
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Figure 3.9 The contour lines of P f.]j are plotted in the x  — z  plane at 

various times. The increment between neighboring contours is 0.32Po, 
where Pq = BI/2/j.q.
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Figure 3.10 Same as Figure 3.9 except for Pzy .
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( m i /e )d v y ^ /d t ,  corresponding to the acceleration of ions in the y  direction. The initial 

ion drift velocity is in the y  direction.

It is seen from Figure 3.116 that the inertial term is approximately balanced by the 

off-diagonal ion pressure terms in Figure 3.1 lo . The reconnection electric field plays an 

insignificant role in the force balance at the X line for ions.

Figure 3.12 is the same as Figure 3.11 except for the ion force balance at the O line. 

It is seen that only the the off-diagonal ion pressure terms contributes to the deceleration 

or acceleration of ion drift velocity in the y  direction. The reconnection electric field 

plays an insignificant role in the force balance at the 0  line for ions.
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3.5 The generalized Ohm’s near neutral lines

For convenience, we rewrite the generalized Ohm’s law at neutral lines (1.12) as

_  m e d (J y/ n )  m e 1 ( d P $  d P $ \  1 (  dP ^J  d P $ \  
y e2 dt mi ne  y dx dz J  ne  y dx dz J  '

by setting 1 +  m e/ m i  ~  1.

As shown in Figures 3.7-3.8 and 3.11-3.12, the E y terms are about 0.02£'o. The 

electron off-diagonal pressure terms can be as large as 0 .08£o- The ion off-diagonal 

pressure terms are on the order of 4 .0£0. The contribution o f the ion tensor terms to 

(3.12) is on the order of 4.0(m e/m i)E o  ^  0.002£;o, which is one order smaller than 

the reconnection electric field. Therefore, the electron off-diagonal pressure terms play 

a more important role than the ion terms in the generalized Ohm’s law for the case with 

the temperature ratio T i /T e = 0 .2 .

However, in the case with a larger ion-electron temperature ratio, the result can be 

different. We run another case with T i /T e =  5 while other parameters are the same as
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Figure 3.11 Force balance at the X line for ions, (a) Time evolution of 

the three terms during reconnection: the term — (1 /riie)dPxy /dx is 

drawn with the dotted line, —  (1 jriie)dP^y /dz with dashed line, and 

the reconnection electric field, E y ~  0, the dotted-dash line. (b) The sum 
of the three terms in Figure 3.11a is plotted with solid line, and the inertial 

term, (rrii/e)dvy^/dt, is plotted with broken line. All these terms are 

normalized by Eq =  Bovthe-
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those in the above case. It is found that the ion off-diagonal pressure terms are on the 

order of'lOO.E'o. The contribution of ion terms in (3.12) is ~  0 .2£0, while Ey ~  0.02E0 

and the electron pressure tensor terms ~  0.08250 • Therefore, the neglect of ion pressure 

terms in (1.7) is not justified for cases with T i /T e > 1.

3.6 Summary

Based on two-dimensional full particle simulations in which the ion-electron mass 

ratio is set to be 1836, we found that the off-diagonal plasma (both ion and electron) 

pressure terms play a very important role in the force balance equations or in the 

generalized Ohm’s law near neutral lines (both X and O lines). The main results in our 

simulation study are:

(1) The off-diagonal electron pressure terms play a dominant role in the force 

balance for electrons at both the magnetic X line and 0  line.

(2) The deceleration or acceleration of ion bulk velocities in the direction of 

reconnection electric field (E y) results mainly from the momentum transport due to the 

off-diagonal elements of ion pressure tensor; the reconnection electric field plays an 

insignificant role in the force balance for ions.

(3) Both the ion and electron off-diagonal pressure terms can be dominant terms in 

the generalized Ohm’s law near neutral lines. The neglect of ion pressure terms in the 

conventional generalized Ohm’s law (1.7) is not justified for cases with Ti /T e > 1.

(4) The electrostatic fields in the x - z  plane are two orders larger than the 

reconnection electric field Ey.
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CHAPTER 4 

Origin of the off-diagonal pressure terms

As shown in Chapters 2 and 3, the off-diagonal pressure tensor terms play a 

dominant role in the generalized Ohm’s law near neutral lines in collisionless magnetic 

reconnection. Therefore, an understanding of the origin of the off-diagonal pressure 

terms is of great importance.

In principle, the evolution of the pressure tensor is related to the third moments of 

particle velocity distribution, and the evolution of the third moments is related to the 

fourth moments and so on. it is not clear at present if there is a suitable closure scheme 

to truncate the hierarchical equations.

It is expected that the presence of the off-diagonal pressure terms is related to 

particle demagnetization. In the region far from the neutral sheet, particles are strongly 

magnetized and their velocity distribution is gyrotropic or isotropic. Therefore, the 

off-diagonal elements of pressure tensor vanish in the coordinates we have chosen in 

this thesis. In the region close to the neutral sheet, however, particle motions are rather 

complicated and can give rise to non-zero off-diagonal pressures.

In this chapter, we study the origin of the off-diagonal pressure terms by examining 

the particle motions and the response of particle distribution function in the presence of 

a reconnection electric field and magnetic field near the neutral lines. We also examine 

the spatial scale for Pxy based on our simulation data.
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4.1 Generation of the off-diagonal pressure terms

As mentioned in Section 1.3, Dungey [1988] suggested that the presence of PxPy 

is associated with a strong anisotropy of velocity distribution from the calculation of 

electron trajectories. However, in our simulation shown in Chapter 2, only weakly 

anisotropic distributions are present (see Figure 2.4). The weakly skewed distributions 

are sufficient in balancing the reconnection electric field.

In our case the generation of both Pxy and Pzy can also be explained in terms of 

the thermal dispersion of particle motions in the electric and magnetic fields near neutral 

lines.

4.1.1 Generation of Pxy

In order to provide a simple demonstration for the generation of Pxy, we consider 

the trajectories in the ux -  vy plane of four typical ions near the X line during the normal 

reconnection with E y > 0. In Figure 4.1a, the electric field E y and the magnetic field 

B z in the x  — y  plane (z =  0) are marked. The X line is located along the y axis. 

The positions o f x '= ± .n  are also marked, where xy is much smaller than the ion 

gyroradius. In Figure 4.16, we plot the locations of these four particles on the vx — vy 

plane when their positions are at x  = —x i, x = 0 and x  =  x i ,  respectively. Particles a 

and 6 move from x  =  - z i  to x  =  0 and then to x  =  x lt and particles c and d move 

from x  = x \  to x  =  0 and to x  =  —z i .  As shown in Figure 4.16, the average velocity 

of these particles in the y direction is positive.

Let Pxy denote the contribution o f these four particles to Pxy. The positions of the 

four particles in the vx -  vy plane are chosen such that Pxy is zero along the X line 

(z =  0), which is consistent with the symmetry property of Pxy [ Vasyliunas, 1975].
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Figure 4.1 A schematic diagram for the generation of the off-diagonal 

pressure Pxy for Ey >  0. (a) The magnetic field B ,  and the electric 

field Ey in the x  — y plane. (b) Four typical particles in the vx -  vy 
plane when they are at x  =  —  .c i , x  =  0 and x  = xi ,  respectively. 

Particles a and b move from x = - . c i  to x  = 0 and then to x  =  x i ,  

and particles c and d  move from x  =  x i  to x  =  0 and fo x  =  - X i .  
The independent motions of these particles in the electric and magnetic 

fields lead to deformations of velocity distribution and hence generate the 

off-diagonal pressure term Pxy.
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The average velocity in the x  direction at x  =  0 is also set to zero by symmetry. The 

velocities of these particles at x -  0 are on the order of the thermal speed.

We consider the trajectories of particles a and 6 which move in the positive x 

direction. They are accelerated in the y direction by the electric field E y as they move 

from x  =  - x i  to x  = 0 and from x  =  0 to x = x i .  In addition, they are slightly rotated 

on the vx -  vy plane with respect to the origin of the vx -  vy plane due to the weak 

magnetic field B z . As particle a moves from x  = - x i  to x  = 0 , its vy increases while 

vx decreases. As particle a moves from x  = 0 to x  = x \ ,  vy increases and so does 

vx . Therefore vx and vy of particle a are relatively large at x  = x i .  For particle b, as 

it moves from x  =  - x i  to x  =  0, both vy and vx increase. As particle b moves from 

x  =  0 to x  = x i ,  vy increases but vx decreases.

The same arguments can be applied to particles c and d, which move in the negative 

x  direction. The final distributions of these particles in the vx -  vy plane at x = - x L 

and x  = Xi are shown in Figure 4.16. These distributions lead to Pxy < 0 at x  =  - x i  

and Pxy > 0 at x  =  x i.

Note that our argument does not contradict with the chaotic feature of a particle's 

orbit [ Martin, 1986]. The chaotic feature refers to the long time behavior of the orbit. 

In our discussion, however, only a segment of the orbit is concerned. In addition, the 

velocity change of any particle obeys the same rules deduced from Newton's law when 

it moves, for example, from a to a' regardless the history of the particle’s orbit.

It should be emphasized that both the acceleration due to E y and the rotation due 

to B z reinforce each other in generating the skewing of velocity distribution function.
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Similar explanation is also applicable to the generation of Pzy near the X line. 

Now, we consider the trajectories in the vy -  vz plane of four typical ions. The magnetic 

field B x in the y -  z  plane (x =  0) and the reconnection electric field E y > 0 are 

marked in Figure 4.2a. The positions of z =  ± z i on the z-axis are also marked. The X 

line is along the y axis. In Figure 4.26, we plot the locations o f these four particles on 

the v,j -  vz plane when their positions are at z =  - z y ,  z =  0 and z  = z L, respectively. 

Particles a and 6 move from z =  - z y  to z =  0 and then to z =  z y ,  and particles c and d 

move from z  =  zy  to z  — 0 and to z  =  - z y .

Particles a and 6 are accelerated in the y direction by the electric field E y as they 

move from z =  - z i t o z  =  z i . In addition, they are slightly rotated on the vy -  vz plane 

with respect to the origin of the vy -  v- plane due to magnetic field B x . As particle a 

moves from z =  - z y  to z =  0, its vy increases and so does vz . As particle a moves from 

z =  0 to z =  z y ,  vy increases but vs decreases. Therefore, for particle a, its vy increases 

but its vy does not change much as it moves from z =  - z y  to z =  zy .  For particle 6, as 

it moves from z =  - z y  to z =  0, vy increases but vz decreases. As particle 6 moves 

from z =  0 to z =  z i, both vy and vz increases. The same arguments can be applied to 

particles c and d, which move in the negative z direction. The final distributions of these 

particles in the v y -  vz plane at z =  - z y  and z =  z y  are shown in Figure 4.26. These 

distributions lead to Pzy <  0 at z =  - z L and Pzy > 0 at z =  z1} where Pzy denotes the 

contribution of these four particles to Pzy.

It is noticed that the rotation due to B x tends to reduce the skewing of distribution 

function in the vy -  vz space generated by the acceleration due to E y . This is consistent
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Figure 4.2 A schematic diagram for the generation of the off-diagonal 

pressure for Ey > 0. (a) The magnetic field B x and the electric 

field E y in the y  —  2 plane. (b) Four typical particles in the vy -  vz 
plane when they are at 2 =  —  zj., z =  0 and z =  z \ ,  respectively. 

Particles a and b move from z =  —  z i  to z  =  0 and then to z =  z i,  
and particles c and d, move from c =  z i  to z =  0 and to 2 =  —  Zi. 
The independent motions of these particles in the electric and magnetic 

fields lead to deformations of particle distribution in the vy — vz space 

and hence generate the off-diagonal pressure term Pzy.
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with the result shown in Chapters 2 and 3 that the magnitude of Pzy is usually smaller 

than that of Pxy.

62

4.2 Scale length for Pxy

In this section, we determine the scale length of Pxy from our simulation data and 

compare the result with the scale length in (1.14a) given by Dungey [1988].

4.2.1 Scale length of Pxy for the case with one active species

In Chapter 2, we have presented a particle simulation case in which only ions 

are treated as active particles while electrons are assumed to provide a neutralized 

background. In this case, the off-diagonal pressure tensor term Pxy shown in Figure 2.5 

has a coherent pattern from t = 200^ to t = 50ft;. The distance between the X line 

Or = 0 in this case) and the minimum or the maximum of Pxy can be measured during 

that time period. We regard the distance as a typical spatial scale for Pxy, which is 

denoted by L p xy.

In Figure 4.3'a, the spatial scale L p xy at different times are shown with diamonds 

which are connected with solid lines. The negative values of L p xy correspond to the 

Pxy patterns obtained during the period of reverse magnetic reconnection with Ey < 0.

From our simulation data, we can also calculate the Dungey’s scale length in 

(1 .14a), which is rewritten for ions as

t , , n
( 4 ' 1 )

where E y is the reconnection electric field and f) = d B z / d x  is the gradient of magnetic 

field B z along the x axis.
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We use values of E y and 3 at the X line to evaluate the Dungey’s scale length L d 

at each time. The results are shown in Figure 4.3a with triangles which are connected 

with dashed line. Note that the negative L d comes from the negative E y in (4.1). It is 

seen that the magnitudes of L Pxy are larger than those of L d except at t =  2 0 We  

plot L d versus L p xtJ in Figure 4.3b with crosses. The scale length L Pxy at t =  20f>j is 

limited by the system size and hence the data point at t =  20f2; is not plotted in Figure 

4.3b. As shown in Figure 4.3b, all data points are almost on the dotted straight line, 

which is their regression line and can be expressed as

L p x;i =  1.8L d -  0.39/?j. (4.2)

The result shown in Figure 4.3 indicates that the Dungey’s scale length can be used 

to determine the spatial scale of the off-diagonal pressure term Pxy for the case with one 

active species.

4.2.2 Scale length of P^J for the case in a full particle simulation

In Chapter 3, we presented details of the off-diagonal pressure tensor terms for 

the case in a full particle simulation. In this case, the off-diagonal electron pressure
(e)term Pxy shown in Figure 3.5 has a coherent pattern from t =  15Qj to t =  65f>;. The 

distance between the X line ( x  ~  - 0 .9 pe in this case as shown in Figure 3.1) and the 

minimum or the maximum of Pxy can be measured during that time period. We regard 

the distance as a typical spatial scale for Pxl \  which is denoted as L Pxy.

In Figure 4.4a, the spatial scale L Pxy at different times are shown with diamonds 

which are connected with solid lines. From our simulation data, we can also calculate
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Figure 4.3 (a) Lpxy and Lp  as a function of time, and (b) L q  as a 

function of L p xy for the case shown in Chapter 2. Here L p xy is the 

distance from the X line to the maximum or minimum of Pxy, and Lp> is 

the Dungey’s scale length. The negative values of scale length are used 

for the period of reverse magnetic reconnection (E y < 0).
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the Dungey’s scale length in (1.14a), which is rewritten for electrons as

l D = l ^ ) i .  (4.3)

We use values of E y and 3  at the X line to evaluate the Dungey’s scale length L p  

at each time. The results are shown in Figure 4.4a with triangles which are connected 

with dashed line. It is seen that the magnitudes of L p xy are much larger than those 

of L d . We plot L d versus L p xy in Figure 4.4b with crosses. The dotted line is the 

regression of those points and can be expressed as

L p x y  =  4 .4 1  p  +  0.79 p e (4 .4)

The result shown in Figure 4.4 indicates that the Dungey’s scale length is approx

imately proportional to the spatial scale of the off-diagonal pressure term P^J  for the 

case in a full particle simulation. However, the large numerical factor 4.4 indicates that 

the interaction between electrons and ions through strong electrostatic fields, which is

not included in the Dungey’s simple model, may also be important in determining the

scale length of a magnetic reconnection process.

(e)4.3 Pxy in linear tearing instability

In a kinetic treatment of linear tearing instability [e.g., Galeev, 1984; Swift, 1986], 

one can start from Harris’ model in which

B (c) =  B 0ta nh(z /X )ex (4.7)

and the particle distribution function

f  — r r n ■ l 'x +  ( V'J ~  U a y ) 2 +  , 0 .

h “ -  ( ^ 7 F ^ ' cp- s  1 (J-S)

where a (=  i, e) denotes ions or electrons, A is the half thickness of the current sheet, 

Uay is the constant drift velocity, vthn is the thermal speed, and the density n(c) =
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Figure 4.4 (a) Lpxy and as a function of time, and (b) Lp as a 

function of Lpxy for the case shown in Chapter 3. Here Lpxy is the 

distance from the X line to the maximum or minimum of Pxey , and Ld is 

the Dungey’s scale length.
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n 0sech2( z / A). A reference frame of coordinates is chosen such that UjjTi = - U e/ T e, 

where 7* and Te are thermal temperatures; hence there is no zero-order electric field in 

this reference frame.

Assume that the perturbed vector potential A i =  A i yelkiX+ytey and other 

perturbed quantities have similar forms. One obtains the first order distribution functions 

in the unmagnetized region, \z\ < da, by solving the linearized Vlasov equation [e.g., 

Swift, 1986],

67

f l a  = Tjrfoa
a

/ t  ̂  \ / \
\Pay ~~ uy ) ^ l y  +  \ 7 ~  ~ “  (Pl)

*xVx 7̂
(4 .9)

where dn =  (APa)1̂ 2, qa is the charge, and pa is the gyroradius based on B 0. The 

electrostatic potential <i>i is determined from the quasi-neutrality condition, n u  = n le,

, _ Z'(ft)-Z'(ge) TT ,
1 Z'(&) +  (T i/Te) Z ' { ^ )  ty‘ l!/ (41  }

where = i j / ( k xv ta), and Z(£) is the plasma dispersion function. In the limit of 

|&ie| 1, Z'(€a ) ~  1 +  £a Z((,a) and Z{£a) ~  iix1!2, (pi is negligible and we have

• jly = Î iK{ez(Ze)Aly (4 .11)
77?/gC

In (4.11), only the non-adiabatic term from electrons is kept; this term is dominant in 

the region |s| <  de.

The electron pressure tensor can be evaluated directly from the definition, P^e) = 

m e J  rfv(v -  U e)(v  -  U e)(/oe +  fie)-  From (4.8) and (4.9), we obtain the off-diagonal
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elements of the pressure tensor,

68

p iu  =  0 (4.12)

and

where

PXy rp {P/‘Xly) j  dvx dvydvzvx [vy Uey')Ql (4.13)

g i ( v y,vx ) =  - ( — )(vy -  Uey) f 0e (4.14)
^x  ̂ ! / "'x

Carrying out the integration, we obtain [Cai and Lee, 1994]

P $  = - e n ( s ) ( f  )(1 +  (4.15)
k'X

From (4.15) and E iy = —d A \ yj d t  =  - 7 .4 ^ , we have

From (4.11) and (4.16), we obtain

m e dJiy  1 ,dPxJ
E "  -  T ^ - g r  ~  zre {— ) (4-1 ,)

which is the y-component of the generalized Ohm’s law in the central region (|~| < <lc ) 

of the current sheet.

It is interesting to note that the reconnection electric field in (4.17) is mainly 

balanced by the gradient of P itJ-The inertial term, d.Jiy/d t ,  contributes only a small 

part to the balance of E \ y.

The off-diagonal pressure term originates from the Landau resonance as indicated 

by the denominator in (4.14). Figure 4.5a shows the contour lines of the real part of 

the perturbed distribution function, /?<• </, in the vx -  vy plane. For demonstration
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purpose, we choose j / ( k x vte) = 0.01 in (4.14) for this plot. The solid lines denote 

positive values, and the dotted lines denote negative values. The asymmetry feature of 

R e  g i (vy . Vx) leads to a non-zero Pxy • The distribution of PxfJ in the x - z  plane 

is plotted in Figure 4.5b. Note that outside the central region of the current sheet, 

'cl > de, electrons are strongly magnetized and Pxey goes to zero. Therefore a factor of 

sech2{ z /d e) has been multiplied in the calculation of PXy . The PxeJ  pattern shown in 

Figure 4.5b is consistent with that obtained in particle simulations presented in Chapters 

2 and 3.

The results in Figure 4.5 show that the off-diagonal pressure tensor term Pil) 

can be obtained from the response of particle distribution function in the reconnection 

electric field near the X line.

4.4 Summary

We have examined the particle motions and the response of particle distribution 

function in the presence of a reconnection electric field and magnetic field near the 

neutral lines, which lead to the generation of the off-diagonal pressure terms. The scale 

length of Pxy is determined from our simulation data and the result is compared with 

Dungey’s scale length. The main results are:

(1) The acceleration of particles due to Ey and the rotation of velocity due to 13: 

reinforce each other in the generation of Pxy .

(2) The rotation due to B x tends to reduce the skewing of distribution function in 

the v,j -  Vs space generated by the acceleration due to Ey.  Therefore, P-y is usually 

smaller than Pxy.
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Figure 4.5 (a) Contour lines of the real part of the perturbed distribution 

function, Re gi, in the vx -  vu plane, (b) The distribution of the 

off-diagonal pressure, P ^ J , in the .r -  z plane.
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(3) The Dungey’s scale length, L d =  (m E y/ e 3 2)1/z, can be used to determine the 

scale length of the off-diagonal pressure term Pxy for the case with one active species.

(4) The modified Dungey’s scale length, L*D =  (m*eE y/ e 3 2) l/:i, with an effective 

electron mass m* = (^ -)° -36me due to a strong electrostatic interaction between 

electrons and ions, provides a good scaling for Px f  in a full particle simulation.

(5) The response of particle distribution function in the reconnection electric field 

near the X line results in the off-diagonal pressure tensor term Pxey in linear tearing 

instability, which is consistent with our simulation results.
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CHAPTER 5 

A new dynamo process near a magnetic O line

In this chapter, we report a new dynamo process, in which magnetic flux is generated 

near a magnetic O line inside the magnetic island formed by the tearing process. In 

other words, the total magnetic flux in the magnetic island is more than the reconnected 

magnetic flux. This dynamo process cannot exist in a resistive magnetofluid.

5.1 Generation of magnetic flux near an O line

We replot the magnetic field lines for the case studied in Chapter 3 for a longer 

time period in Figure 5.1. Again, the increment of A y between two neighboring field 

lines is fixed so that the number of the field lines provides a measure of the magnetic 

flux.

Initially the value of is - 3 .8 5 0pe < < 0 (Ay =  0 along z =  0). The solid

lines in these plots denote the newly generated magnetic flux. Figure 5.1a shows no 

solid line. A careful examination indicates that there is no magnetic flux generated in the 

initial stage of reconnection. Figures 5.16 -  5 .le  show that more and more solid lines 

(up to 6) are present, which means that more and more magnetic flux is newly generated 

near the O line during the period from t =  SOfl"1 to t =  110C"1. Figures 5 .1 / -  5.1# 

show that there are 4 solid lines and Figure 5.16 shows that there are 5 solid lines, which 

means that the generation of magnetic flux has an oscillatory feature. The reconnected 

magnetic flux can be represented by the reconnected dotted lines inside the magnetic 

island in Figure 5.1. The variation of the number of dotted field lines is related to the
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Figure 5.1 Magnetic field lines at various simulation times. A magnetic 

island is formed with the presence of a reconnection X line and O line. Our 

simulation domain is — 4pe < .r <  4 pP and — 4p e <  2 <  4p e. Only 

the central portion (|c| <  2pr ) of the simulation domain is plotted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



time-integration of reconnection electric field at the X line. The newly generated flux, 

the reconnected flux, and the total flux within the formed magnetic island as a function 

of time will be plotted later.

Figures 5.2 and 5.3 show contours of the reconnection electric field E y and the 

current density Jy in the x - z  plane, respectively. In Figure 5.2, the electric field 

is normalized by Eo =  B 0vthe• The solid contours correspond to positive values, 

and the dotted lines correspond to negative values. The increment of E y between 

two neighboring contour lines is 0.0025 E 0. Note that the electric field is zero at the 

simulation boundaries c =  ±±pe, because the value of the vector potential .4,, at these 

boundaries is fixed. The contours in Figure 5.2 show that the electric field near the O 

line is negative and decreases from t =  lO fij1 to t = 70Q"1, and it becomes positive 

at t =  110 and ISOfi” 1. At t =  lOOflj1 the electric field is negative again. In Figure 

5.3, the current density is normalized by J0 =  -Vcet'the- The increment of Jy between 

two neighboring contours is 2 J0. The value corresponding to the outermost contour line 

in each plot is J0 and the maximum value of J  in Figure 5.3e is J max — 11-5 J0. The 

contours in Figure 5.3 show that the current density near the O line increases during 

t = 10 -  HOH"1 and slightly decreases during t = 110 -  15012“ l . During the period 

t — 150 -  230f>"1, the current density at the O line increases again. The enhancement of 

current density near the O line is mainly due to the increase of particle number density, 

or the compression of plasma near the O line. The plasma number density near the O 

line is enhanced to ~  3 N C. The current density in the whole domain remains positive 

throughout the entire process in our simulation.

Figures 5.2b -  5.2d and 5.36 -  5.3d show that at t =  3 0 .5 0 ,70S2” 1, there exists a 

large region around the magnetic O line where E u < 0, Jy > 0 and hence E • J < 0. In 

this dynamo region with E • J < 0, the particle energy is converted to magnetic energy.
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Figure 5.2 Contours of the reconnection electric field E y in the x — z 
plane for the case shown in Figure 5.1. The increment of E y between two 

neighboring contour lines is 0.0025 /To, where E 0 = BoVthe-
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In the region very close to the O line, B ~  0, the term d / d t { B 2/2 ilq) is negligible and 

hence V • S ~  - E  • J > 0 .  The positive divergence of S indicates that the magnetic 

flux is emerging outward from the 0  line. In our opinion, the divergence of the Poynting 

flux is associated with the plasma reaction to the strong compression near O line. The 

dynamo process near the 0  line is not allowed in the resistive MHD model. We will 

discuss this point in Section 5.3.

5.2 Power-law for time scales

We run two other cases with ion-electron mass ratio m j/m e =  10 and 100, 

respectively. The other physical parameters are the same as in the case shown above: 

L x =  L z — 8pe and a =  0.25pe. The numerical set up is also the same except we run 

these two cases from t =  0 to t =  120ft"1. Figure 5.4 shows the time evolution of the 

newly generated magnetic flux, the reconnected magnetic flux and the total magnetic 

flux in the magnetic island. The case with ion-electron mass ratio of 1836 is denoted by 

the solid lines. The cases with mass ratio of 10 and 100 are denoted, respectively, by 

dashed and dotted lines.

We obtain the generated flux by calculating the difference between the maximum 

value of Ay  and the initial value of A y on the x  axis, which is equivalent to the time 

integral of —E y at the O line. The reconnected magnetic flux is obtained by calculating 

the difference between the minimum of A y on the x  axis and the initial value of A y 

on the x  axis, which is the time integral of + E y at the X line. The total trapped 

magnetic flux in the magnetic island is then the sum of the generated magnetic flux and 

reconnected magnetic flux. It is seen from Figure 5.4 that the newly generated magnetic 

flux can reach a value of ~  B 0pe. The generated flux, the reconnected flux and the
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Figure 5.4 The evolution of the newly generated magnetic flux, the 
reconnected magnetic flux and the total magnetic flux in the magnetic 

island for the cases with ion-electron mass ratio m i / m e =  10, 100 and 
1836, respectively.
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total trapped flux grow rapidly to reach their first maxima and then oscillate. A slow 

secular growth is superposed on the oscillations. The cases with different mass ratio 

are qualitatively the same except that the case with a smaller mass ratio has a shorter 

evolution time scale.

We have simulated several cases by reducing L x to 4pe or enlarging L x to 32Pe. 

The generation of new magnetic flux is also observed during the formation o f O lines in 

these cases. In the case with L x = 32pe, two magnetic islands are formed.

Plotted in Figure 5.5 are the various time scales as a function of the ion-electron 

mass ratio: (a) Tmax is the time when the total magnetic flux reaches its first maximum; 

and (b) Tosc is the period of the first oscillation of the total flux corresponding to the 

time from its first maximum to the second maximum. In Figure 5.5, diamonds are used 

to denote Tmax and the solid line is their linear regression. It is found that the slope of 

the solid line is 0.37, which means Tmax^e  ^  ( m i / m e)0 37. Crosses and the dotted 

line are for Tosc, and r oscfte oc (m ;/m e )0'4S. The dependence of the time scales on the 

mass ratio indicates that the interaction between electrons and ions is very important in 

the reconnection process.

The mass ratio dependence shows that the process has a hybrid time scale even 

though the system size is o f electron gyroradius scale. The power-law of the ion-electron 

mass ratio may be very useful in future particle simulation studies. For a system with a 

size larger than the ion gyroradius, particle simulation with a large mass ratio requires a 

large amount o f computer time. In that case, we can simulate the system with small mass 

ratios, find the power index, and then rescale the results to the system with a realistic 

mass ratio.

Note that the oscillatory behavior is observed in the previous full particle simulation 

[Hewett et al., 1988], one-species panicle simulation [Cai et al., 1994; and the result
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Figure 5.5 The ion-electron mass ratio dependence of (a) T max, the 

time when the total magnetic flux reaches its first maximum, and (b) Tosc, 
the period of the first oscillation of the total flux.
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presented in Chapter 2] and laboratory experiment [Yamada et al., 1991]. It appears that 

the overcompressed plasma near the 0  line in the early stage of reconnection causes the 

later damped oscillations. Hewett et al. [1988] emphasized that the oscillatory behavior 

does not exist in cases with a small ion-to-electron mass ratio (< 200) in which ions, 

pulled by an ambipolar electric field, can follow electron flow before the electron flow 

reverses. However, the oscillatory behavior is also observed in our simulations with 

a small mass ratio as shown in Figure 5.4 and in our one-species particle simulation 

presented in Chapter 2, in which electrons are considered as a neutralized background. 

A large reconnection rate may smear out the oscillations in the cases with m i / m e < 200 

in Hewett et al. [1988] and in the cases with a counter-helicity in Yamada et al. [1991].

5.3 Discussion and summary

In the resistive MHD model, the Ohm’s law is written as E +• v x B =  77J. Near 

the 0  line, the Lorentz force v x B nearly vanishes, and the electric field E and J are 

in the same direction. The dynamo process, which requires E • J < 0, is not allowed in 

the region near the O line.

However, it is not surprising to observe a dynamo process with E • J < 0 near the 

O line in a collisionless plasma. As has been shown in the last chapter, the presence of 

the inertia term and the pressure tensor terms makes it possible to have E • J < 0 along 

the O line or X line.

In a strictly two-dimensional system, the conservation of canonical momentum in 

the y-direction, Py = m evy — eAy> however, will impose a limit o f the generation of 

the magnetic flux near an O line, A A  ~  m Pvyj t  ~  B Qpe, which is consistent with the 

result shown in Figure 5.4.
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However, if electrons can be supplied from the third dimension and hence the 

electrons play a role as a neutralized background, the reconnection process is mainly 

determined by the ion dynamics. Therefore, the newly generated magnetic flux can be 

as large as B 0pi, where Pi is the ion gyroradius. We have carried out simulations with 

only the ion species and found the generated flux near 0  line is indeed ~  B 0pi.

In summary, we found a new dynamo process for magnetic reconnection in a 

current sheet with electron gyroradius scale. The main results are:

(1) a new magnetic flux of the order ~  B Qpe is generated near the magnetic O line.

(2) This process is associated with the compression of particles during magnetic 

reconnection.

(3) The presence of the inertia term m edvlje)/ d t  and the off-diagonal pressure 

terms make the dynamo process possible, in which E • J <  0 along the O line. In 

classical MHD models, E • J < 0 is not allowed in the region near the 0  line.

(4) The characteristic time to reach maximum flux in the magnetic island has a 

power-law dependence on the ion-electron mass ratio, Tmax oc ( m i / m e)0^TQ j l .

82

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



CHAPTER 6 

Summary and future studies

In this chapter, we first comment on the usefulness of panicle simulation in the 

study of space plasmas. The main results of the present study are then presented. 

Possible topics for future studies in collisionless reconnection are suggested.

6.1 Importance of particle simulation in magnetic reconnection

In the magnetohydrodynamic (MHD) model, the governing equations are related 

to the basic conservation laws. MHD model is powerful in describing large scale 

phenomena. However, the coupling between different regions in space environments 

is critically dependent on the micro-processes that take place in their interfaces. The 

interfaces usually can be described as MHD shocks or discontinuities. The application 

of the same conservation laws leads to the Rankine-Hugoniot jump conditions for 

the shocks and discontinuities. However, the conservation laws in MHD model cannot 

answer fundamental questions on micro-processes in the interface regions, which include 

the diffusion region o f magnetic reconnection.

One approach to study the micro-physics o f critical structures and magnetic 

reconnection is to employ the set of Maxwell-Vlasov equations. The application of 

Maxwell-Vlasov equations to linearized problems has been very successful. However, 

it is very tedious to solve the Maxwell-Vlasov equations in general cases. Even for 

one-dimensional problems, there are three additional dimensions in velocity space.
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On the other hand, particle simulation provides a powerful tool to study the micro

physics in collisionless plasmas. Particle simulations have been successful in the study 

of the structure and heating mechanisms of fast shocks [e.g., Leroy et al., 1982; Lee et 

al., 1988], rotational discontinuities [e.g., Swift and Lee, 1983] and slow shocks [e.g., 

Swift, 1983; Lin and Lee, 1991, 1994].

The evolution of shocks or discontinuities is basically a one-dimensional problem 

in real space and electrons can be treated as a fluid. However, magnetic reconnection 

is a two-dimensional problem and electrons cannot be treated as a fluid because the 

breakdown of frozen-in condition involves mainly the electron dynamics. Through 

particle simulations, we find in this thesis (1) the importance of both electron and ion 

presure tensor terms in the generalized Ohm’s law, and (2) a new dynamo process which 

is not allowed in resistive magnetofluids.

6.2 Main results in this thesis

In this thesis, we use particle simulation to examine the generalized Ohm’s law 

near neutral lines in collisionless magnetic reconnection. The main results are briefly 

described below.

6.2.1 Off-diagonal pressure terms and the breakdown of frozen-in condition

In a particle simulation with one active species, it is found that a weakly anisotropic 

and skewed velocity distribution is formed near the magnetic X line, leading to the 

presence of off-diagonal elements of plasma pressure tensor. The gradients of the off- 

diagonal pressure terms transport plasma momentum away from the X line to balance 

the reconnection electric field, leading to the breakdown of the frozen-in condition.
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In a full particle simulation in which both ions and electrons are treated as particles, 

the electron off-diagonal pressure terms play a dominant role in balancing the electric 

field Ey  for electrons at both the magnetic X line and 0  line. The deceleration or 

acceleration of ion bulk velocities in the direction of reconnection electric field (E y) 

results mainly from the momentum transport due to the off-diagonal elements of ion 

pressure tensor; the reconnection electric field plays an insignificant role in the force 

balance for ions. Both the ion and electron off-diagonal pressure terms can be dominant 

terms in the generalized Ohm’s law near neutral lines. The neglect of ion pressure 

terms in the conventional generalized Ohm’s law (1.7) cannot be justified for cases with

Ti/Te  > 1.

In a calculation based on a linear kinetic theory, we also found that the electron 

Landau resonance in the linear tearing instability can also be described in terms of the
(e)off-diagonal electron pressure tensor term P i y .

6.2.2 Origin of the off-diagonal pressure terms

The generation of the off-diagonal pressure terms is associated with the thermal 

dispersion of particle motions and the response of particle distribution function in the 

electric and magnetic fields near the neutral lines. The acceleration of particles due to 

E y and the rotation of velocity due to B z reinforce each other in the generation of Pxy. 

On the other hand, the rotation due to B x tends to reduce the skewing of distribution 

function in the vy -  vz space generated by the acceleration due to E y . Therefore, Pzy is 

usually smaller than P x y
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6.2.3 The spatial scaling for Pxy

The scale length o f Pxy is determined from our simulation data and the result is 

compared with the Dungey scale length, Lp =  (miEy/e/32)1/ 3. For the case with one 

active species, the scale length Lpxy of the off-diagonal pressure term Pxy is found to 

be Lpxy ~  1.8Lp.  In a full particle simulation, the scale length Lpxy for the electron 

pressure tensor term Pxey is found to be Lpxy ~  4.4Lp = iA(meEy/ e p 2)1/3.

6.2.4 A new dynamo process

A dynamo process is found to operate near the magnetic 0  line, leading to the 

generation of new magnetic flux. The generation of new flux is associated with plasma 

compression in the magnetic island. The generated new flux is estimated to be ~  B 0pe 

for simulations with an initial current sheet of electron gyroradius scale. This dynamo 

process cannot exist in a resistive magnetofluid. The plasma inertia and momentum 

transport due to the off-diagonal elements of plasma pressure tensor can lead to E • J < 0 

near the magnetic O-line, which makes the dynamo process possible.

6.3 Future Studies

Possible topics for future studies are listed below. They include (a) the effect of 

an initial guide field, (b) magnetic reconnection in a thick current sheet, and (c) the 

existence of steady-state reconnection in a collisionless plasma.
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6.3.1 Inclusion of an initial guide magnetic field

In the dayside magnetopause, usually there exists a finite guide magnetic field 

{By #  0). In order to address the magnetic reconnection in the dayside magnetopause, 

it is necessary to extend particle simulation by including an initial guide component of 

magnetic field. In the presence of a finite B y, the electrons or ions are magnetized (in 

the traditional sense) in the diffusion region. Therefore, the origin of the off-diagonal 

pressure terms is different from that in the B y = 0 case [Dungey, 1988; Cai et al., 1994]. 

It is worthwhile to study the generation of off-diagonal pressure terms in the presence of a 

finite By  by using particle trajectory calculations and particle simulations. A preliminary 

particle simulation result indicates that plasma pressure is weakly non-gyrotropic, and 

hence the off-diagonal pressure terms play an important role in balancing reconnection 

electric field even if a strong guiding component is applied.

6.3.2 Magnetic reconnection in a current sheet with ion length scale

In full particle simulations presented in this thesis, the initial current sheet thickness 

is on the order of. electron gyroradius. In real system, for example, in the dayside 

magnetopause, however, the current sheet thickness is on the order of ion gyroradius. It 

is unlikely to simulate a real system by using a real ion-electron mass ratio. The power- 

law dependence of the ion-electron mass ratio may be very useful in future particle 

simulation studies. For a system with a size of ion gyroradius, particle simulation with a 

large mass ratio requires a large amount of computer time. In that case, we can simulate 

the system with small mass ratios, find the power index, and then rescale the results to 

the system with a realistic mass ratio.
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In addition, the ion-electron mass ratio scaling can also be used as a measure of 

the interaction between ions and electrons in collisionless plasmas. The mass-ratio 

dependence presented in Chapter 5 shows that the process has a hybrid time scale even 

though the system size is of electron gyroradius scale. This indicates that the interaction 

between electrons and ions plays a very important role in the reconnection process.

6.3.3 Steady-state magnetic reconnection

Most steady-state magnetic reconnection models are constructed in the framework 

of MHD formulation. MHD simulations indicate that a different resistivity model would 

result in a different type o f reconnection. For example, in a simulation with locally 

enhanced resistivity, one can obtain a Petschek steady-state reconnection model [Yan 

et al., 1993]. However, in a simulation with a uniform resistivity, the Petschek fast 

reconnection evolves first to the Sweet-Parker reconnection, and then a time-dependent 

multiple X line reconnection [Lee and Fu, 1986; Yan et al., 1993].

It is very important to examine whether a steady-state magnetic reconnection 

can exist in collisionless plasmas. Magnetic reconnection in a collisionless plasma is 

different from that in a resistive magnetofluid at least in the following aspects.

(1) There are an ion diffusion region and an electron diffusion region in a 

collisionless plasma with the latter being embedded in the former. In the ion diffusion 

region, the electrostatic interaction may play a very important role. Our simulation result 

shown in Chapter 3 indicates that the electrostatic field can be two orders larger than the 

reconnection electric field. The generated B y component may also be important in the 

ion diffusion region.
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(2) In a resistive magnetofluid, the reconnection electric field is directly related 

to the current density in the diffusion region, E ~  77J. In a collisionless plasma, 

however, the current density is not directly related to the reconnection electric field (see 

equation (1.12)) in the electron diffusion region. This difference is highlighted in the 

result presented in this thesis that E • J can be negative at neutral lines in collisionless 

reconnection.

6.4 Conclusion

Magnetic reconnection in space environments cannot be adequately described by the 

resistive MHD formulation. Particle simulations provide a powerful tool in examining 

the micro-processes in collisionless magnetic reconnection. The off-diagonal pressure 

tensor terms are found to be responsible for the breakdown of frozen-in condition in 

collisionless reconnection. In addition, a new dynamo process is found to operate in the 

magnetic O line region, leading to the generation of new magnetic flux.
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