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The Generalized Optic Acceleration Cancellation Theory of Catching

Peter McLeod and Nick Reed
Oxford University
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The generalized optic acceleration cancellation (GOAC) theory of catching proposes that the path of a
fielder running to catch a ball is determined by the attempt to satisfy 2 independent constraints. The 1st
is to keep the angle of elevation of gaze to the ball increasing at a decreasing rate. The 2nd is to control
the rate of horizontal rotation necessary to maintain fixation on the ball. Depending on the lateral velocity
of the ball relative to the fielder, this rate may be zero or constant at a negative or positive value. The
authors show that a simulated fielder implementing the GOAC strategy follows a path indistinguishable
from that of real fielders running to catch balls thrown on the same trajectories.
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When people run to catch a ball, their angle of elevation of gaze
(a) as they watch the ball increases at a decreasing rate (Dienes &
McLeod, 1993; McLeod & Dienes, 1993, 1996; McLeod, Reed, &
Dienes, 2001; Michaels & Oudejans, 1992; Oudejans, Michaels,
Bakker, & Davids, 1999)." Chapman (1968) demonstrated math-
ematically that a fielder standing in the plane of flight of a ball on
a parabolic trajectory would intercept it if he or she ran at a
constant speed that kept the acceleration of the tangent of « at zero.
If this were the fielder’s strategy, it would explain the observation
above, for if the acceleration of the tangent of « is zero, a will
increase at a decreasing rate. This strategy can be interpreted as
nulling the acceleration of the rising image of the ball, so it has
become known as the optic acceleration cancellation (OAC) theory
of catching.

McLeod and Dienes (1996) showed that Chapman’s (1968)
mathematical proof, with its unrealistic simplifying assumptions,
was but the tip of a more general strategic iceberg. They demon-
strated that there is no need for the fielder to compute the tangent
of a. Any strategy that allows « to increase but does not let it reach
90° will lead to interception. Keeping the acceleration of the
tangent at zero is just one way of achieving this more general goal.
McLeod and Dienes also showed that the strategy would work for
balls on real-world ballistic trajectories, not just for those on the
parabolic flights analyzed by Chapman, and that interception does
not require fielders to run at constant velocity.

Although allowing « to increase at a decreasing rate guarantees
interception in principle, Tresilian (1995) showed that in practice,
given the limited speed at which people can run, it would be an
ineffective strategy when the fielder was not initially standing in
the plane of the ball’s flight. For effective interception, this method
must be supplemented by a strategy that ensures that the fielder
runs toward the plane of the ball’s flight early in its trajectory.
Chapman (1968) suggested that in addition to nulling the vertical

optic acceleration of the ball, fielders should maintain horizontal
alignment with the ball, but he did not provide empirical evidence
that such a strategy was used. Tresilian (1995) explored a strategy
whereby the fielder added a component to the running path deter-
mined by OAC strategy in proportion to the rate at which the
visual tracking system had to rotate horizontally to fixate the ball,
but he offered no empirical evidence that this strategy was used.
Jacobs, Lawrence, Hong, Giordano, and Giordano (1996) sug-
gested that fielders run laterally to reach the plane of the ball’s
flight before taking the catch and then use OAC strategy to control
their movement backward or forward within the plane. They
reported data from only one catch, so the generality of this strategy
is unclear.

The decision about how to move toward the ball’s flight plane
appears straightforward. If the fielder’s tracking system rotates
horizontally anticlockwise as it follows the ball, the ball is going
to the fielder’s left, so the fielder should move left; if the tracking
system rotates clockwise, the ball is going to the fielder’s right, so
the fielder should move right. This is such a simple, direct, and
reliable cue that it would be natural for it to form part of the
fielder’s interception strategy. OAC theory has successfully ex-
plained how people catch balls coming directly toward them. In the
present study, we propose a generalization of that theory (gener-
alized optic acceleration cancellation, or GOAC, theory) to show
how balls projected to the side are intercepted.

The way we have analyzed the information provided by hori-
zontal rotation of the tracking system as the fielder fixates the ball
is shown in Figure 1. The direction from the fielder’s initial
position (F,) to the ball’s start point (B,,) gives a reference direc-
tion against which the subsequent horizontal direction from fielder
to ball is measured. The ball moves to the fielder’s right (B,), and
the tracking system will rotate to the right before the fielder starts
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! This relation usually breaks down a few hundred milliseconds before
the catch is taken, when the hands start to move toward the ball. Fielders
follow one strategy to get to within reach of the ball and another to move
their hands to the place where they will make the catch. This article is
concerned only with the former strategy—how the fielder gets to the place
where the ball is within arm’s reach.
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Figure 1. & is the horizontal angle through which the fielder rotates to
fixate the ball. F indicates the fielder’s position, and B indicates the ball’s
position.

to move. 9, is the horizontal angle between the direction from
the fielder to the initial position of the ball and the direction
from the fielder to the vertical projection of the ball to the
ground. By the time the ball reaches B, the fielder has moved
to F5. 85 is the horizontal angle between a line from the fielder
parallel to the original direction from the fielder at F, to the ball
at B, and a line from the fielder to the vertical projection of the
ball at B; to the ground. Thus, §, is the time integral of the
fielder’s rotation by time 7. In our analysis of the fielder’s
running paths, we refer to the initial direction of rotation
(whether clockwise or anticlockwise) as positive. If 8, is posi-
tive, the fielder is laterally behind the ball; if it is zero, he or she
is in line with it; if it is negative, he or she is ahead of it. dé/dt
is the instantaneous speed at which the fielder’s tracking system
is rotating to maintain fixation on the ball, and its sign is the
direction—if positive, rotation is in the same direction as the
initial movement; if negative, it is in the opposite direction.

Figure 2 shows typical patterns of 6 and dé/dt during a catch for
various relations between the fielder’s lateral velocity (i.e., in a
direction at right angles to the initial direction from fielder to ball)
and the ball’s. As an example (illustrated in bird’s eye view at the
top of the figure), we have considered a ball projected at 30 m from
a fielder, which would land 10 m to the right of the fielder’s initial
position 3 s later. We assume that the fielder is stationary, watch-
ing the ball, for 0.5 s before starting to run. During this time, the
ball will get laterally ahead of the fielder, and & will increase. If,
once the fielder starts moving, his or her lateral velocity is less than
the ball’s, 8 and ddé/dt will increase throughout the flight as the
fielder falls farther behind the ball. Figure 2e shows how they
change when the fielder’s (constant) lateral velocity is sufficiently
less than the ball’s that it will fall just beyond the reach of the
fielder’s outstretched hand. If the fielder’s lateral velocity exceeds
the ball’s, 6 will become negative as the fielder gets ahead of the
ball. Figure 2a shows & and dé/dt for a fielder whose (constant)
lateral velocity is sufficiently greater than the ball’s that it is just
out of arm’s reach behind him or her as it falls.

If the fielder is to intercept the ball, his or her lateral velocity
averaged across the flight should be roughly equal to the ball’s
(terminal arm movements can compensate for a minor mismatch).
Figures 2b—2d show the pattern of & and dé/dt that will accompany
some representative examples in which the fielder arrives at the

interception point at the same time as the ball. If the fielder were
to accelerate past the ball and then slow down as he or she
approached the plane of the ball’s flight (i.e., Jacobs et al.’s, 1996,
strategy) the pattern would look like Figure 2b if the acceleration
and deceleration were constant and symmetrical. If the fielder were
to accelerate at a constant rate until he or she achieved lateral
alignment with the ball and then slow down and run at the same
speed as the ball (i.e., Chapman’s, 1968, strategy), it would look
like Figure 2c. If the fielder accelerated continuously through the
flight at a constant rate such that he or she arrived at the intercep-
tion point at the same time as the ball, § would increase at an
approximately constant rate throughout the flight (Figure 2d). This
pattern may seem counterintuitive. Because the lateral distance
between fielder and ball decreases once the fielder starts to run,
one might expect dd/dt to be negative toward the end of the flight.
However, as the ball is getting nearer to the fielder in depth faster
than the lateral distance between them is reducing, & increases
throughout the flight despite the fact that the fielder is catching up
with the ball laterally and will intercept it.

The lateral relation between fielder and ball is different for each
of the successful strategies in Figures 2b—2d. What they have in
common is that & does not accelerate—dd/dt is constant for the
latter part of the flight. In contrast, if the fielder is going to miss the
ball because he or she is running either too slowly or too fast, &
accelerates.

For efficient interception, fielders must run so that « increases
(see McLeod & Dienes, 1996). But there is no lateral strategy that
must be adopted. Any of the strategies in Figures 2b, 2c¢, or 2d will
help fielders intercept the ball, as they will move them toward the
ball’s flight plane at a speed that brings them to the interception
point at the same time as the ball. Different strategies may well be
adopted for different catches. If there is plenty of time to make the
catch, fielders might try to get ahead of the ball and then slow
down as they approach the interception point, possibly reaching
the plane of the ball’s flight before they take the catch. But when
they have to run faster to make the catch, they might approach the
plane of the ball’s flight from the side, only reaching the plane at
the moment that they take the catch. We have analyzed lateral
movement in two different catching tasks. In the first the catches
were easy, and the fielders were under little time pressure to take
the catch. In the second the catches were harder, and the fielders
had to move as quickly as they could to take some of them.

An alternative to the OAC approach to interception is the linear
optic trajectory (LOT) theory (McBeath, Shaffer, & Kaiser, 1995).
The claim is that the fielder achieves interception by running so
that an optic trajectory defined by the ratio of vertical and hori-
zontal angles from fielder to ball remains linear. Thus, unlike in
OAC theory, the fielder does not actively control the angles
between himself or herself and the ball. He or she controls the
optic trajectory, and, in consequence, the vertical and horizontal
angles change. We describe the differences between LOT and
GOAC theory in detail later, but here we summarize why an
alternative to LOT theory is needed and what form it needs to take.

First, the data cited in favor of LOT theory consistently deviate
from the predictions of that theory (McLeod et al., 2001; McLeod,
Reed, & Dienes, 2002). If the fielder maintains a linear optic
trajectory, then the horizontal angle between the fielder and the
ball will increase in constant proportion to the vertical angle.
Although the vertical angle between fielder and ball rises during
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Figure 2. How & and dé/dt change as the fielder runs to catch a ball that will fall at the intercept point. (a) The
fielder runs too fast and overshoots the interception point. (e) The fielder runs too slowly and fails to reach the
interception point in time. (b), (c), and (d) The fielder follows different running patterns but in each case reaches

the interception point at the same time as the ball.

all catches and the horizontal angle rises in many catches, they do
not always do so in constant proportion. This suggests that a theory
in which control of changes of the vertical and horizontal angles
are uncoupled could give a better fit to the data than one in which
they are linked. Second, LOT theory offers no natural explanation
of how fielders move in the appropriate direction to catch a ball
coming directly toward them. Because the horizontal angle be-
tween fielder and ball remains at zero throughout such a catch,
changes in vertical and horizontal angle cannot be matched. Again,
allowing independent strategies for controlling change of vertical
and horizontal angles might lead to a more parsimonious theory
(i.e., one that explains how balls are caught whether they are going
directly toward the fielder or to one side). Third, because LOT

theory requires changes in vertical and horizontal angle to be
coupled and because it is known empirically that the vertical angle
always increases throughout the flight, the horizontal angle must
always increase throughout the fight. That is, the fielder must
approach the plane of the ball’s flight from the side. There is no
possibility of the fielder moving into the flight plane before the
catch is taken no matter how much time there is to take the catch
or how close the fielder is initially to the plane of the ball’s flight.
A theory that decouples control of vertical and horizontal angles
would allow for different strategies for different catches. For
example, fielders might move into the plane of the ball’s flight
before they take a catch when they have plenty of time to get there
but not when they can only just get there in time.
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In this study, we show that GOAC theory, which decouples the
control of the horizontal and vertical angles between fielder and
ball, delivers on all three promises. It offers a better fit to the
empirical data than LOT theory, it offers a natural explanation of
how people catch balls headed directly toward them as well as to
the side, and it explains why people use different strategies to catch
balls on different trajectories, sometimes reaching the plane of the
ball’s flight before taking the catch and sometimes not. It also
offers an account of individual differences in catching style.

Experiment 1

Method

Subjects. The subjects were 5 male cricketers ranging in age from 24
to 52 years. They were competent but not highly skilled fielders.

The catching task. Tennis balls were projected with a launch angle of
63° above the horizontal from a ball-throwing machine at ground level. If
not caught, the ball would land 13.9 m away from the machine after 2.9 s.
Fielders started at random from one of four positions. These represented
various combinations of distance laterally and in depth that they had to
move to catch the ball—3 m to the left and 4 m back, 3 m to the right and
2 m back, 4 m to the right and 4 m forward, and 5 m to the left and 2 m
forward. Each fielder took a catch from each of the four start positions in
turn and then repeated this sequence 10 times. This task was undemanding
for experienced cricketers. The fielders had enough time to cover a rela-
tively short distance, and all fielders caught all balls. All fielders took all
catches two handed, the natural way for a cricketer to catch the ball.

Measuring the fielder’s position and the ball’s trajectory.  The position
of the fielder was recorded on a video camera mounted 14.5 m above the
ground and 5.9 m behind the ball projection machine. The position of a
fielder standing at a matrix of points 2 m apart laterally and in depth
covering the area in which the fielders ran was recorded. We applied a
curve-fitting program to these known positions to generate a polynomial
mapping function to invert the trapezoidal representation on the video film
back to positions on the ground. We determined the fielders’ positions at
40-ms intervals by applying this mapping function to their positions on the
video image.

The position of the ball throughout each flight was computed using the
method described by Brancazio (1985) and Dienes and McLeod (1993).
The duration of the flight and the distance the ball traveled were taken from
the film. These figures, combined with an estimate of the drag on a tennis
ball at the velocities achieved in the experiment (taken from Daish, 1972),
were used to get a best fit for initial velocity. These were used to calculate
the position of the ball throughout the flight. The positions of ball and
fielder were then used to calculate & at 40-ms intervals.

This experiment is a reanalysis of Experiment 2 of McLeod et al. (2001)
to determine the fielders’ behavior in terms of 8.> Details of the fielders’
running paths and the values of « experienced by the fielders are given in
the Results section of that article. All fielders for all catches experienced «
increasing at a decreasing rate as they ran. Fuller details of the method used
for computing the fielder’s position from the video film and for determin-
ing the accuracy of the calculation of the ball’s position are given in the
Method section of that article.

Results and Discussion

Figure 3 shows how & changed from the time the ball appeared
to the time at which fielders made a two-handed movement toward
the ball (typically about 0.5 s before they caught the ball). The data
are averaged across the 40 catches for each fielder, as they pro-
duced similar patterns from each starting position. & initially
increased (see Figure 1). When the fielders started to run, the
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Figure 3. How 6 changed in Experiment 1. Individual data are given for
5 fielders (s1 through s5 = Subjects 1 through 5).

increase in 6 slowed and then followed one of two patterns. For 3
of the fielders, & returned to zero. For the other 2, 6 became
increasingly negative. Although there was some trial-to-trial vari-
ability, the consistency of these strategies for each fielder and the
consistency of the differences between them are shown in Figure
4. This shows the value of § at the time that a hand movement was
made toward the ball for all 40 catches for each of the 5 fielders.
Three of the subjects (the upper three in Figure 3) showed sym-
metrical distributions centered on zero. The other 2 showed a
negative terminal & for most catches.

The fielders who reduced & to zero accelerated until they
achieved lateral alignment with the ball and then matched their
lateral speed to that of the ball so that there was no further lateral
movement of the ball relative to themselves. This is the strategy
suggested by Chapman (1968). Negative 8 occurs when fielders
accelerate until they get laterally ahead of the ball and then slow
down as they approach the plane of the ball’s flight (Figure 2b).
This was the strategy adopted by the baseball fielder analyzed by
Jacobs et al. (1996).%

Analysis of the speed of the fielders as they took the catches
supports the idea that fielders were using two different strategies.
We measured the lateral velocity of the fielder (i.e., in a direction
at right angles to the direction from fielder to ball) in the last 200
ms before they took the catch and compared this with the average
throughout the catch. The average lateral speed throughout all
catches across the 5 fielders was 1.23 ms™'. This did not differ
significantly among fielders. The terminal speed for Fielders 1-3
averaged 0.99 ms~!, and for Fielders 4 and 5 it averaged 0.49
ms~'. The terminal velocity of Fielders 4 and 5 was reliably less
than that of Fielders 1-3 (p < .05 for all comparisons, Mann—
Whitney U test). As suggested by the analysis of 8, Fielders 4 and
5 ran faster initially, getting ahead of the ball, and then slowed
down as they reached the plane of the ball’s flight, whereas

2 McLeod et al. (2001) analyzed the fielders’ movements in terms of the
horizontal angle B8 defined by the LOT theory of catching (McBeath et al.,
1995). We discuss the difference between B and & as measures of the
horizontal relation between fielder and ball in detail later in the article.

3 Figure 2 in Jacobs et al. (1996) shows the ball moving an impossible
distance and the fielder running at an improbable speed. The scales in their
Figures 2A and 2B should be in feet and feet per second, not meters and
meters per second (T. Jacobs, personal communication, 2002).
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Figure 4. The terminal value of & for each catch for each fielder in
Experiment 1 (s1 through s5 = Subjects 1 through 5).

Fielders 1-3 were closer to matching the lateral speed of the ball
as they took the catch.

One might argue that the fielders learned where the ball would
fall, ran to that position, and waited for the ball. If the fielders were
doing this, their terminal speed would become less as they learned
the task. We tested this by comparing the fielders’ running speed
in the 200 ms before they caught the ball in the first 12 and the last
12 of their 40 catches. The mean speed across the 5 subjects was
1.45 ms~' (SD = 0.73) for the first 12 catches and 1.62 ms™'
(SD = 0.84) for the last 12. The difference between the first and
last 12 catches was not statistically significant for any individual
fielder. Fielders were not learning where the ball would fall,
running there, and waiting for it.

Experiment 2

The catches in Experiment 1 were easy. In Experiment 2, the
fielders had less time to take the catch. The aim of the analysis was
to see how & changed as the fielders ran to take these harder
catches.

Method

Subjects. These were 5 male cricket players and 1 female soccer
goalkeeper. Their ages ranged from 18 to 51 years. All were of no more
than enthusiastic amateur skill level at ball games.

Catching task. Fifty tennis balls were projected to each fielder from a
height of 14.75 m above the ground. The fielders stood at ground level,
starting 13.5 m horizontally from the ball’s projection point. The balls were
projected in a random direction and with a range of initial horizontal and
vertical velocities such that they fell unpredictably within a circle of radius
~10 m around the point where the fielder stood initially. Given the time of
flight (1.4 s to 1.9 s), this gave a range from easy catches, through ones that

the subjects could just catch running as fast as they could, to ones that fell
out of reach. Thus, most catches were considerably harder than those in
Experiment 1. The positions of the fielder and ball were measured in the
same way as in Experiment 1, and from these 6 was computed at 40-ms
intervals. All successful catches (n = 165) were analyzed.

This experiment is a reanalysis of Experiment 1 of McLeod et al. (2001)
to examine fielders’ behavior in terms of & (see Footnote 2). Further details
of the method, the fielders’ running paths, and the values of « they
experienced can be found in that article. All fielders for all catches
experienced « increasing at a decreasing rate as they ran.

Results and Discussion

The upper part of Figure 5 shows how & changed throughout the
catch. The functions end at the time that the fielder initiated a
two-handed movement toward the ball, typically about 0.5 s before
the catch was taken. The data are grouped according to how far the
fielders ran laterally to make the catch, independent of how far
they ran in depth. The lower function is averaged across 9 catches
for which the fielder had to move less than 2.1 m laterally, the
middle function is averaged across 136 catches for which the
fielder had to move between 2.1 and 4.2 m, and the upper function
is averaged across 20 catches for which the fielder had to move
more than 4.2 m.

When the fielder made a relatively small lateral movement, &
remained at a constant value close to zero. This is similar to the
pattern produced by 3 of the fielders for the catches in Experiment
1. If they had to run further, & increased as they ran, and the further
they had to run the more 6 increased. We performed a linear
regression of 6 against time between 0.4 s (by which time fielders
had usually started to run) and 1.32 s (when they typically started
to make a hand movement toward the ball). Figure 6 shows the
slopes of the linear regressions for the 165 catches. There was a
continuous distribution of slopes from —11 deg/s™' to +21 deg/
s~!. The median value of 7 for the linear component of the
regression across all flights was .91. This suggests that fielders
tried to keep the rate of change of 6 constant as they ran. We test
this interpretation in the simulation described later.

The lower part of Figure 5 shows the fielders’ lateral velocity
grouped across catches in the same way as in the upper part of
Figure 5. One can see that the fielders’ lateral movement was
initially similar in all cases, with an acceleration in the correct
direction. Then the fielders who were going to move less than
2.1 m laterally decelerated gently for the rest of the catch, those
running 2.1-4.2 m continued to accelerate gently, and those run-
ning more than 4.2 m accelerated more rapidly. In the upper part
of the figure, one can see what the fielders achieved by these
running patterns. In each case, the initial rate of increase of &
decreased. The result of the fielder’s running was to bring the
increase in & under control and prevent it accelerating, as it would
do if the fielder’s speed was inappropriate for achieving intercep-
tion (see Figures 2a and 2e).

One might argue that fielders do not follow a continuous servo
strategy based on the information they get from watching the ball
as they run (as both the GOAC and LOT theories assume) but
make a prediction of where the ball will fall from their initial
observation of the trajectory and run to the interception point. The
data in the lower part of Figure 5 make such a theory implausible.
The fielders were always moving when they took the catch. If they
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Figure 5. Upper panel: 6 as a function of the lateral distance (x) that the
fielder ran. Lower panel: The fielders’ lateral velocity as a function of the
lateral distance (X) run.

knew where the ball was going to fall, they would presumably go
there and wait for it.

Summary

The experiments show that the fielders used all three intercep-
tion strategies illustrated in Figures 2b—2d. What these strategies
have in common is that the fielder did not allow & to accelerate. On
different ball trajectories, this is achieved by keeping dé/dt zero or
constant with a negative or positive value. There were also sys-
tematic differences in strategy among different fielders. In con-
trast, in all the catches reported in both experiments, « increased at
a decreasing rate. So, in contrast to the claim of LOT theory, the
vertical and horizontal angles between fielder and ball do not
change in the same way during the course of the catches or in the
same way for different fielders.

General Discussion
Using the Rate of Horizontal Rotation to Aid Interception

A direct cue to fielders that they are not in the right place to take
the catch is that there is a horizontal component to the rotation of
the tracking system as they follow the ball. It is unlikely that J, the
angle through which they have rotated, would be available to the
fielders, but they would know whether they were rotating. So the
rate of rotation, dd/dt, is likely to contribute to the fielder’s
interception strategy rather than 6.

Any strategy that uses the rate of horizontal rotation of the
tracking system as a cue will move the fielder toward the plane of
the ball’s flight throughout the flight and so increase the range of
trajectories that can be intercepted compared with the pure OAC

strategy, which uses da/dt alone. The lower part of Figure 2 shows
the relation between dé/dt and the lateral velocities of fielder and
ball. If the fielder’s lateral velocity is less than the ball’s, dé/dt
becomes increasingly positive throughout the catch (as shown in
Figure 2e); if the fielder’s lateral velocity is greater than the ball’s,
ddl/dt becomes increasingly negative throughout the catch (as
shown in Figure 2a). So a servo that took the rate of horizontal
rotation of the tracking system as its input and produced lateral
acceleration of the fielder as its output could aid interception by
moving the fielder’s lateral velocity toward that of the ball. In
general, if the fielder is moving laterally more slowly than the ball,
dé/dr will be positive, so the fielder will accelerate; if he or she is
moving faster than the ball, dé/dt will be negative, so he or she will
decelerate. Moving into the plane of the ball’s flight does not
guarantee interception, as the fielder may reach it at a position
where the ball is out of reach overhead. A strategy based on « is
also required to make sure that the fielder moves to the place on
the ball’s flight plane where it is at catching height.

The GOAC Theory of Interception

This is a development of the proposal originally made by
Chapman (1968) and elaborated by Tresilian (1995) that intercep-
tion is achieved by a combination of control of the rate of change
of the vertical rotation of gaze to the ball and the use of a cue,
based on the rate of change of the horizontal rotation of gaze, that
moves the fielder toward the ball’s flight plane throughout the
catch.

GOAC theory starts from the observation, self-evident to any-
one who has ever caught a ball (and now with empirical backing;
Oudejans et al., 1999), that fielders look at the ball as they move
to take a catch. It is based on the assumption that the signals
generated by tracking the ball are the basis of the fielder’s inter-
ception strategy. Vertical rotation of the tracking system generates
a signal based on da/dt. This is the input to a servo mechanism that
moves the fielder so that « increases at a decreasing rate. Hori-
zontal rotation of the tracking system produces a signal based on
do/dt. This is the input to a servo mechanism that moves the fielder
so that dé/dt is constant (or zero). (If the ball comes directly toward
the fielder, dé/dt is zero throughout the flight, so the fielder will
not move sideways.)

25
20

15

10
5

0
-5

Slope of linear fit (deg/s)

-10

-15

Figure 6. The slope of the linear regression of & against time between
0.40 s and 1.32 s for the individual catches in Experiment 2.
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The way that these two constraints control the path taken by the
fielder is shown in Figure 7. The fielder should run forward and to
the right to catch the ball. The upper part of the figure shows how
the fielder moves so that « increases at a decreasing rate. (Empir-
ically, the decreasing rate is such that tana increases at a constant
rate.) The constraint that « should increase to a specific value at
the next time interval requires the fielder to move to somewhere on
a circle centered on the vertical projection to the ground from the
position that the ball will reach at that time. The circle is the locus
of points from which the angle of elevation from fielder to ball has
the required value of a. A segment of this circle is shown for the
time interval that will end with the ball at position B,. The fielder
at position F, must reach this circle by the time the ball reaches B,.
The second constraint, that & should change at a constant rate,
requires the fielder to be somewhere on a line from which & will
have the correct value given the position of the ball at the end of
the time interval. This is shown in the lower part of the figure, a
bird’s eye view of fielder and ball, for the time interval that will
end with the ball in position B,. The fielder at position F; must
reach this line by the time the ball gets to B,.

To satisty both constraints, the fielder moves to the position
where the line and circle intersect. Thus, the fielder does not
explicitly choose a direction or a speed at which to run. These

Ball launch
position

Intercept point
Angle of elevation

Positions
of gaze (a) describing
correct o
F
B F0,1 F2 :
Ball launch g

position

—— Intercept point
Angle of rotation
of gaze (8)

Positions
describing
correct &

Figure 7. Upper panel: The arc that the fielder at F; must reach by the
time the ball has reached B, to satisfy the constraint that « increases at a
specific decreasing rate. Lower panel: The line that the fielder at F; must
reach by the time the ball has reached B, to satisfy the constraint that &
changes at a constant rate. F indicates the fielder’s position, and B indicates
the ball’s position.

emerge as a consequence of moving in a way that satisfies the
constraints on the rates of change of « and 6. This view of the
fielder’s strategy as local constraint satisfaction rather than a
calculation of where the ball will fall accords with the subjective
sensation of running to catch a ball. One does not know where the
ball will land, but one does know that one will be able to intercept
the ball (or not). This reflects the knowledge that one has been able
to move to a position where the constraints on da/dt and dé/dt have
been satisfied (or not).

The LOT Theory of Catching

The main alternative to the OAC approach to interception has
been LOT theory, proposed by McBeath et al. (1995; McBeath,
Shaffer, & Kaiser, 1996; Shaffer & McBeath, 2002; Shaffer,
McBeath, Roy, & Krauchunas, 2003). According to this theory, the
fielder has access to a projection surface on which the image of the
ball follows a trajectory with a direction defined by the ratio a/f3.
a is the angle of elevation of gaze, as in GOAC theory; S is the
horizontal angle between a line from the fielder to the place where
the ball started its trajectory and a line from the fielder to the point
where the vertical projection from the ball meets the ground (see
Figure 8). The claim is that if the fielder runs in a way that keeps
this trajectory linear (i.e., the ratio o/f3 remains constant*), he or
she will intercept the ball—hence, linear optic trajectory theory.

The Relation Between o and 3

LOT theory analyzes the lateral relation between ball and fielder
in terms of 3; GOAC theory analyzes it in terms of 8. 3 can be
divided into two parts by a line through the fielder parallel to the
initial orientation from fielder to ball. & is a subpart of B (see
Figure 9). The remaining part of 3 we refer to as 3,. B = & + ;.

The observation that led McBeath and his colleagues to propose
LOT theory was that when fielders ran to catch the ball,
increased in roughly equal proportion to «. An increase in 3 as
fielders run is also consistent with one of the lateral control
strategies of GOAC theory. If the fielder approaches the ball’s
flight plane from the side, 6 will increase throughout the catch (see
Figure 2d). Figure 10 shows that as the catch progresses, 8; will
also increase as a geometric consequence of the fielder getting
closer to the plane of the ball’s flight. Because & and 3, are
increasing, there will be an increase in (3 throughout the flight.
Thus, we would expect the observation that 3 increases as the
fielder runs if the fielder is trying to control lateral movement of
the ball relative to himself or herself, as suggested by GOAC
theory.

The close relation between 3 and 6 may make the two theories
seem similar, simply disagreeing over which angle is the more
appropriate way to represent the lateral relation between ball and
fielder. In fact, GOAC and LOT are fundamentally different the-
ories of how interception is achieved. According to GOAC theory,
the fielder tracks the ball, producing signals based on da/dt and
doldt. These act as the input to servo mechanisms that control the
movement of the fielder, who tries to achieve a particular pattern
of change for the two angles. The fielder achieves interception

4 And « increases (see Dannemiller, Babler, & Babler, 1996).
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Figure 8. 'The lateral angle 3 as defined by linear optic trajectory theory
(McBeath et al., 1995).

through active control of the rate of change of vertical and hori-
zontal angles between fielder and ball. According to LOT theory,
in contrast, the fielder achieves interception by running so that the
optic trajectory is linear. There is no active control of the vertical
and lateral angle between fielder and ball. They are controlled
indirectly as a consequence of keeping the optic trajectory linear.

A Comparison of LOT and GOAC Theories of
Interception

To compare these two theories of interception, we calculated the
position of two simulated fielders watching the flight of balls that
had been caught by real fielders in Experiment 2. One fielder
moved along the path predicted by GOAC theory, and the other
moved along the path predicted by LOT theory. We then compared
these paths with those of the real fielders.

The simulated fielders were moved to the same positions as the
real fielder for the first 600 ms after the ball appeared in order to
give them the same initial experience of each ball flight as the real
fielder. After this they were moved at 40-ms intervals to the
position predicted by the two theories. The simulated fielder fol-
lowing GOAC theory was first moved to a position such that «
increased at the average decreasing rate experienced by the real
fielder over the first 600 ms after ball launch. (The decreasing rate
was chosen by keeping d(tana)/dt constant at its average value
over the first 600 ms.) This placed the fielder somewhere on a
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Ball launch site
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Fielder

Figure 9. The relation between f3 in linear optic trajectory theory and &
in generalized optic acceleration cancellation theory.

Ball launch site

Fielder

Figure 10. The increase in 3, that occurs if the fielder approaches the
ball’s flight path from the side.

circle centered on the vertical projection of the ball to the ground
(as in the upper part of Figure 7). The fielder’s position on the
circle was selected such that 6 changed at the average rate expe-
rienced by the real fielder between 0.48 s and 0.68 s. The simulated
fielder following LOT theory was first moved so that he experi-
enced the value of a experienced by the real fielder. As with the
GOAC fielder, this placed him somewhere on a circle centered on
the vertical projection of the ball to the ground. The position on the
circle was selected such the change in 8 for that step matched the
change in «. That is, he moved so that the ratio «/f3 remained
constant throughout the catch. The distance the simulated fielder
could move in each time step was limited to a maximum speed of
7 ms~ ! and a maximum acceleration of 4 ms~ 2. These approxi-
mate the limits of real fielders observed in the experiments. The
eyeheight of the simulated fielder was 170 cm.

Figure 11 shows the paths of the simulated and real fielders for
a representative set of catches where the fielders ran in a range of
directions. The arrow marks the position that the real fielder had
reached at the point where the simulated fielders took over. One
can see that both models give a good approximation of the paths of
the real fielders. We compared the performance of the two models
(i.e., how close the simulated fielder was to the path of the real
fielder watching the same ball trajectory) between 600 ms after the
ball was launched and the time at which the real fielder made a
synchronous movement of the hands to catch the ball (the point at
which we assume that other mechanisms take control of intercep-
tive behavior). The mean difference between the position of the
simulated fielder following the constraints of GOAC theory and
real fielders across the 165 catches was 19.0 cm. This was not
reliably different from the positional error in estimating the posi-
tion of the fielder (15.9 cm; z = —0.47, p = .64). (The method of
measuring the error in our estimates of the fielder’s position was to
film a fielder following a known path and then measure the
deviation between that path on the ground and the estimate of it
calculated from the video. The main source of error is the vertical
movement of the fielder’s head as he or she runs, which appears
partly as a lateral displacement of the fielder in the video. The
method is described in detail in McLeod et al., 2001.) The mean
error of the fielder following LOT theory was 22.4 cm. This was
reliably worse than the fielder following GOAC theory, #(164) =
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Figure 11. The paths followed by simulated and real fielders, viewed
from above, for 10 catches for which the fielder ran in different directions.
The real fielder always started at (0, 4). We have spread the running paths
out from this point to make them easier to see. They end at the point where
the fielder made a two-handed movement to catch the ball. GOAC =
generalized optic acceleration cancellation; LOT = linear optic trajectory.

3.34, p < .001. We also compared how far the simulated fielder
was from the real fielder at the time that the real fielder made a
two-handed movement toward the ball. The terminal error of the
simulated fielder following GOAC theory was 24.4 cm (SD =
15.5); the terminal error of the simulated fielder following LOT
theory was 34.3 cm (SD = 19.7). The terminal error of the LOT
prediction was reliably greater than that of the GOAC prediction,
1(164) = 6.6, p < .001.

The fielder following GOAC theory was consistently closer to
the path of the real fielder than the fielder following LOT theory.
However, it is clear that the path of the fielder following LOT
theory was often a reasonable approximation to the path of the real
fielder. In our view, this is not because the fielder was attempting
to keep the optic trajectory linear. The fielder’s strategy has two
components. The first is to allow « to increase. The second is to
prevent 6 accelerating. If the fielder has to run quite fast to catch
the ball, this is achieved by allowing a constant rate of increase in
8. The consequence is that the fielder approaches the ball’s flight
plane from the side and 3 increases. Thus, @ and 3 will both
increase, and the ratio o/ may remain roughly constant as the
fielder runs. This result is a geometric consequence of the fielder
following the GOAC strategy, not a consequence of trying to keep
the optic trajectory linear.

Different Strategies for Different Catches

In the catching task reported by McLeod et al. (2001; the task
reanalyzed as Experiment 1 in this article), a increased at a
decreasing rate throughout every catch. Thus, according to LOT
theory, B must increase at a decreasing rate because the fielder
runs in a way that keeps the ratio /3 constant. But this did not
happen. Initially, 8 always increased (as it must do before the
fielder starts to move), but then for some catches it decreased, for
some it remained roughly constant, and for others it increased,

sometimes slowly, sometimes more rapidly. If one analyzes the
fielders’ strategy in terms of §, this can be understood. For those
catches for which the fielder moves laterally ahead of the ball
(those for which 6 is negative toward the end of the flight), B will
decrease. For those catches for which the fielder moves in lateral
alignment with the ball (those for which & is zero toward the end
of the flight), B will increase slowly because of the increase in 3,
as the fielder approaches the plane of the ball’s flight. For those
catches for which the fielder catches up laterally with the ball
throughout the flight, allowing 6 to increase, 8 will increase more
rapidly as both B, and & will be increasing as the fielder ap-
proaches the ball. The inconsistency of 8 occurs because fielders
use different strategies for the control of lateral movement depend-
ing on the lateral speed of the ball relative to themselves, how long
they wait before starting to run, and, possibly, their personal
preferences. LOT theory, in which « and B are always linked,
cannot explain this. GOAC theory, in which changes in « and 6 are
controlled independently, can.

Although fielders in real ball games are often moving as they
take a catch, they sometimes go to the place where the ball will fall
and wait for it. This observation has been used as evidence against
LOT theory (Chodosh, Lifson & Tabin, 1995), as LOT theory
predicts that fielders will always run through the point where the
catch is taken at the moment the ball arrives. GOAC theory has an
explanation for why fielders will sometimes be moving and some-
times be stationary when they take a catch. Use of the « strategy
will typically lead to the fielder moving through the point where
the catch is taken. But there is no such constraint on the & strategy.
If the fielder has time, he or she can move into the plane of the
ball’s flight and stop. Thus, if a fielder is close to the correct
distance in depth to take the catch but has to move laterally, then
the strategy may take the fielder to the place where the catch can
be taken before the ball arrives, and the fielder will be stationary
when the catch is taken.

Summary

The GOAC theory of catching proposes that the path taken by a
fielder running to catch the ball is determined by the attempt to
satisfy two independent constraints. The first is to keep the angle
of elevation of gaze as the ball is tracked increasing at a decreasing
rate; the second is to control the rate of horizontal rotation neces-
sary to maintain fixation on the ball. Depending on the lateral
velocity of the ball relative to the fielder, the latter may be done by
keeping the rate of rotation zero or constant at a negative or
positive value. If the fielder can run fast enough to satisfy these
constraints, he or she will catch the ball.

GOAC theory provides a good fit to empirical data on the paths
that people follow when running to catch a ball. It explains how
people catch balls headed directly toward them as well as to the
side. It also explains why people use different strategies to catch
balls on different trajectories, reaching the plane of the ball’s flight
before taking the catch if they do not have to move quickly
sideways to catch the ball but only reaching the plane of the ball’s
flight as they take the catch if they have to move fast laterally to
take the catch. The different strategies for controlling lateral move-
ment offer a basis for individual differences in catching style.
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