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In extreme value statistics, the peaks-over-threshold method is widely used. The method is based on the
generalized Pareto distribution characterizing probabilities of exceedances over high thresholds in Rd . We
present a generalization of this concept in the space of continuous functions. We call this the generalized
Pareto process. Differently from earlier papers, our definition is not based on a distribution function but on
functional properties, and does not need a reference to a related max-stable process.

As an application, we use the theory to simulate wind fields connected to disastrous storms on the basis of
observed extreme but not disastrous storms. We also establish the peaks-over-threshold approach in function
space.

Keywords: domain of attraction; extreme value theory; functional regular variation; generalized Pareto
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1. Introduction

Let C(S) be the space of continuous real functions on S, equipped with the supremum norm,
where S is a compact subset of Rd . A stochastic process X in C(S) is in the domain of attraction
of some max-stable process Y if there are continuous functions an(s) positive and bn(s) on S

such that the processes {
max

1≤i≤n

Xi(s) − bn(s)

an(s)

}
s∈S

with X,X1, . . . ,Xn independent and identically distributed (i.i.d.), converge in distribution to Y

in C(S). Necessary and sufficient conditions are: uniform convergence of the marginal distribu-
tions and a convergence of measures (in fact a form of regular variation):

lim
t→∞ tP

(
TtX(·) ∈ A

) = ν(A), (1.1)

where:

• TtX(s) = (1 + γ (s)
X(s)−bt (s)

at (s)
)
1/γ (s)
+ for all s ∈ S (with the notation x+ = max(0, x) for any

real x),
• ν is a homogeneous measure of order −1 on C+(S) := {f ∈ C(S): f ≥ 0} and,
• A is any Borel subset of C+(S) satisfying inf{sups∈S f (s): f ∈ A} > 0 and ν(∂A) = 0.
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Cf. de Haan and Lin [4] and de Haan and Ferreira [3], Section 9.5. Although in these references
only the case C = [0,1] has been worked out, all arguments are valid for any compact subset
of Rd (as remarked in these references). The functions at (s) and bt (s) are chosen in such a way
that the marginal distributions are in standard form,

lim
t→∞ tP

(
X(s) − bt (s)

at (s)
> x

)
= (

1 + γ (s)x
)−1/γ (s)

, 1 + γ (s)x > 0,

for all x ∈ R and s ∈ S. Here γ is a continuous function. In particular, one may take bt (s) :=
inf{x: P(X(s) ≤ x) ≥ 1 − 1/t}. This is how we choose bt (s) from now on. One possible choice
of at (s) is at (s) := γ (s)(b2t (s) − bt (s))/(2γ (s) − 1).

From (1.1), it follows that

P((1 + γ (·)(X(·) − bt (·))/at (·))1/γ (·)
+ ∈ A)

P (sups∈S((X(s) − bt (s))/at (s)) > 0)

converges, as t → ∞, and so does

P

((
1 + γ (·)X(·) − bt (·)

at (·)
)1/γ (·)

+
∈ A

∣∣∣ sup
s∈S

X(s) − bt (s)

at (s)
> 0

)
.

The limit constitutes a probability distribution on C+(S).
This reasoning is similar to how one obtains the generalized Pareto distributions in R

(Pickands [11]; Balkema and de Haan [1]) and in Rd (Rootzén and Tajvidi [13]; Falk, Hüsler
and Reiss [8]). It leads to what we call generalized Pareto processes.

The paper is organized as follows. The Pareto processes will be dealt with in Section 2. As
in the finite-dimensional context, it is convenient to study first generalized Pareto processes in a
standardized form. This is done in Section 2.1. The general process is discussed in Section 2.3.
In Section 2.2, a discrete version of our approach is discussed leading to simple multivariate
Pareto random vectors. The domain of attraction is discussed in Section 3. In Section 4, we show
that by using the stability property of generalized Pareto processes one can create extreme storm
fields starting from independent and identically observations of storm fields. We also establish
the peaks-over-threshold approach in function space.

In the following, operations like w1 + w2 or w1 ∧ w2 with w1,w2 ∈ C(S) mean, respectively,
{w1(s) + w2(s)}s∈S and {w1(s) ∧ w2(s)}s∈S . Then, with abuse of notation, operations like w +
x or w ∧ x with w ∈ C(S) and x ∈ R mean, respectively, {w(s) + x}s∈S and {w(s) ∧ x}s∈S .
Similarly for products and powers. Then, for example, we shall simply write (1 + γ X−bt

at
)1/γ

for {(1 + γ (s)
X(s)−bt (s)

at (s)
)1/γ (s)}s∈S , with X = {X(s)}s∈S , at = {at (s)}s∈S , bt = {bt (s)}s∈S and

γ = {γ (s)}s∈S .
Denote the class of Borel subsets of a metric space by B(·).
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2. Pareto processes

2.1. The simple Pareto process

Again, let C+(S) be the space of non-negative real continuous functions on S, with S some
compact subset of Rd .

Theorem 2.1. Let W be a stochastic process in C+(S) and ω0 a positive constant. The following
three statements are equivalent:

1. (Peaks-over-threshold):
(a) The expectation E(W(s)/ supu∈S W(u)) is positive for all s ∈ S,
(b) P(sups∈S W(s)/ω0 > x) = x−1, for x > 1 (standard Pareto distribution),
(c)

P

(
ω0W

sups∈S W(s)
∈ B

∣∣∣ sup
s∈S

W(s) > r

)
= P

(
ω0W

sups∈S W(s)
∈ B

)
(2.1)

for all r > ω0 and B ∈ B(C̄+
ω0

(S)) with

C̄+
ω0

(S) :=
{
f ∈ C+(S): sup

s∈S

f (s) = ω0

}
. (2.2)

2. (Random functions):
(a) P(sups∈S W(s) > ω0) = 1,
(b) E(W(s)/ supu∈S W(u)) > 0 for all s ∈ S,
(c)

P(W ∈ rA) = r−1P(W ∈ A) (2.3)

for all r > 1 and A ∈ B(C+
ω0

(S)), where rA means the set {rf,f ∈ A}, and

C+
ω0

(S) :=
{
f ∈ C+(S): sup

s∈S

f (s) ≥ ω0

}
. (2.4)

3. (Constructive approach) W(s) = YV (s), for all s ∈ S, for some Y and V = {V (s)}s∈S

satisfying:
(a) V ∈ C+(S) is a stochastic process satisfying sups∈S V (s) = ω0 a.s., and EV (s) > 0

for all s ∈ S,
(b) Y is a standard Pareto random variable, P(Y ≤ y) = 1 − 1/y, y > 1,
(c) Y and V are independent.

Definition 2.1. The process W characterized in Theorem 2.1, with threshold parameter ω0, is
called simple Pareto process. The probability measure in (2.1), that is,

ρ(B) = P

(
ω0W

sups∈S W(s)
∈ B

)
for B ∈ B

(
C̄+

ω0
(S)

)
(2.5)

is called the spectral measure.



1720 A. Ferreira and L. de Haan

Some easy consequences of Theorem 2.1(3) are the following. The process W is stationary if
and only if V is stationary. Independence at any two points s1, s2 ∈ S, that is, W(s1) and W(s2)

being independent, is not possible. Complete dependence is equivalent to V ≡ ω0 a.s. We shall
come back to some of these issues.

Proof of Theorem 2.1. We start by proving that 1 implies 3. By compactness and continuity,
sups∈S W(s) < ∞ a.s. Take:

Y = sups∈S W(s)

ω0
and V = ω0W

sups∈S W(s)
.

Then (a), (b) and (c) are straightforward.
Next, we prove that 3 implies 2. Let

Ar,B =
{
f ∈ C+(S): sup

s∈S

f (s)/ω0 > r,
ω0f

sups∈S f (s)
∈ B

}
= rA1,B

for all r > 1 and B ∈ B(C̄+
ω0

(S)). Then,

P(W ∈ Ar,B) = P

(
sup
s∈S

W(s)/ω0 > r,
ω0W

sups∈S W(s)
∈ B

)

= P(Y > r,V ∈ B) = P(Y > r)P (V ∈ B)

= 1

r
P

(
sup
s∈S

W(s)/ω0 > 1,
ω0W

sups∈S W(s)
∈ B

)

= 1

r
P (W ∈ A1,B)

using in particular the independence of Y and V and P(sups∈S W(s)/ω0 > 1) = 1. Since
P(rA) = r−1P(A) holds for any of the above sets, it must also hold for all Borel sets in the
statement.

Finally, check that 2 implies 1. For any r > 1, by (c) and (a),

P

(
sups∈S W(s)

ω0
> r

)
= 1

r
P

(
sups∈S W(s)

ω0
> 1

)
= 1

r
.

Also for any B ∈ B(C̄+
ω0

(S)),

P

(
sup
s∈S

W(s)/ω0 > r,
ω0W

sups∈S W(s)
∈ B

)
= 1

r
P

(
sup
s∈S

W(s)/ω0 > 1,
ω0W

sups∈S W(s)
∈ B

)

= 1

r
P

(
ω0W

sups∈S W(s)
∈ B

)

since sups∈S W(s) > ω0 holds a.s. That is, it follows that sups∈S W(s)/ω0 is univariate Pareto
distributed and, sups∈S W(s) and W/ sups∈S W(s) are independent. �
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The following properties are direct consequences:

Corollary 2.1. For any simple Pareto process W , the random variable ω−1
0 sups∈S W(s) has

standard Pareto distribution.

Corollary 2.2. W ∈ C+(S) is a simple Pareto process if and only if any of the two equivalent
statements hold:

1. (a) E(W(s)/ supu∈S W(u)) > 0 for all s ∈ S,
(b) P(sups∈S W(s)/ω0 > x) = x−1, for x > 1,
(c)

P
(
W ∈ rA

∣∣ sup
s∈S

W(s) > rω0

)
= P(W ∈ A) (2.6)

for all r > 1 and A ∈ B(C+
ω0

(S)).
2. (a) E(W(s)/ supu∈S W(u)) > 0 for all s ∈ S,

(b)

P

(
sup
s∈S

W(s)

ω0
> r,

ω0W

sups∈S W(s)
∈ B

)
= ρ(B)

r
(2.7)

for all r > 1 and B ∈ B(C̄+
ω0

(S)).

From (2.6), we see that the probability distribution of W serves in fact as the exponent measure
in max-stable processes (cf. de Haan and Ferreira [3], Section 9.3). Characterization 2 suggests
ways for testing and modeling Pareto processes.

We proceed to express the distribution function of W in terms of the probability distribution
of V from Theorem 2.1(3) and Definition 2.1.

Let w,W ∈ C+(S). The notation W ≤ w will mean W(s) ≤ w(s) for all s ∈ S. Similarly for
W > w and W � w. Clearly, the latter two are not the same.

Take for the conditional expectation,

E
(
g(V )|V ∈ B

) = 1

ρ(B)

∫
B

g(v)dρ(v), B ∈ B
(
C̄+

ω0
(S)

)
,

defined in the usual sense and whenever ρ(B) = P(V ∈ B) > 0, with g a real functional (e.g.,
see Billingsley [2], Section 34).

Proposition 2.1. Let w,W ∈ C+(S), with W a simple Pareto process. Let S0 = {s ∈ S: w(s) =
0}, S̄0 = S \ S0 the complement of S0, and B0 = {f ∈ C̄+

ω0
(S): infs∈S̄0

w(s)
f (s)

≥ 1 and f (s) = 0 for
s ∈ S0}. Then

P(W ≤ w) =
⎧⎨
⎩

ρ(B0)

{
1 − E

(
sup
s∈S̄0

V (s)

w(s)

∣∣∣V ∈ B0

)}
, if ρ(B0) > 0,

0, if ρ(B0) = 0.

(2.8)
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Proof.

P(W ≤ w) = P
(
W(s) ≤ w(s) for s ∈ S̄0 and W(s) ≤ w(s) for s ∈ S0

)

= P

(
Y ≤ inf

s∈S̄0

w(s)

V (s)
and V (s) = 0 for s ∈ S0

)

= P

(
Y ≤ inf

s∈S̄0

w(s)

V (s)
and V (s) = 0 for s ∈ S0 and inf

s∈S̄0

w(s)

V (s)
≥ 1

)

+ P

(
Y ≤ inf

s∈S̄0

w(s)

V (s)
and V (s) = 0 for s ∈ S0 and inf

s∈S̄0

w(s)

V (s)
< 1

)

=
∫

B0

P

(
Y ≤ inf

s∈S̄0

w(s)

v(s)

)
dρ(v)

=
∫

B0

1 − sup
s∈S̄0

v(s)

w(s)
dρ(v) = ρ(B0) −

∫
B0

sup
s∈S̄0

v(s)

w(s)
dρ(v)

= ρ(B0)

{
1 − E

(
sup
s∈S̄0

V (s)

w(s)

∣∣∣V ∈ B0

)}
,

where the last but two equality follows by the fact that the second summand in the previous
equality is zero and from the independence of Y and V . �

Corollary 2.3. Under the conditions of Proposition 2.1,

P(W ≤ w) = 1 − E

(
sup
s∈S̄0

V (s)

w(s)

)
if ρ(B0) = 1. (2.9)

The following is obtained in the particular case of w being strictly positive.

Proposition 2.2. Let w,W ∈ C+(S), with w positive and W a simple Pareto process. Then

P(W ≤ w) = E

(
sup
s∈S

V (s)

w(s) ∧ ω0

)
− E

(
sup
s∈S

V (s)

w(s)

)
. (2.10)

Proof. (i) First, consider the case infs∈S w(s) ≥ ω0. Use Theorem 2.1, part 3,

P(W ≤ w) = P(YV ≤ w) = P

(
Y ≤ inf

s∈S

w(s)

V (s)

)
= 1 − E

(
sup
s∈S

V (s)

w(s)

)
(2.11)

hence,

P(W � w) = E

(
sup
s∈S

V (s)

w(s)

)
. (2.12)
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(ii) The probability measure of W on C+
ω0

(S) can be extended to a measure ν on C+(S) while
keeping the homogeneity relation (2.3) as follows: for any Borel set B such that

sup
f ∈B

sup
s∈S

f (s) ≤ ω0 and 0 < ε < inf
f ∈B

sup
s∈S

f (s),

we define

ν(B) := ω0

ε
P

(
W ∈ ω0

ε
B

)
.

This measure (the same as in (1.1)) is homogeneous of order −1:

ν(rB) = r−1ν(B) for all r > 0 and B ∈ B
(
C+(S)

)
.

Then, the probability distribution of W is the restriction of ν to C+
ω0

(S), that is, for B ∈
B(C+(S)),

P(W ∈ B) = ν
{
f ∈ B, sup

s∈S

f (s) > ω0

}
. (2.13)

Hence, by the homogeneity property of ν, (2.13) and (2.12) in that order:

ν{f � w} = ω0

infs∈S w(s)
ν

{
f �

wω0

infs∈S w(s)

}
(2.14)

= ω0

infs∈S w(s)
P

(
W �

wω0

infs∈S w(s)

)
= E

(
sup
s∈S

V (s)

w(s)

)
.

By (2.13), elementary set-measure operations and (2.14) in that order:

P(W � w) = ν{f �w,f � ω0}
= ν{f �w} + ν{f � ω0} − ν{f � w or f � ω0}
= ν{f �w} + ν{f � ω0} − ν{f � w ∧ ω0}

= E

(
sup
s∈S

V (s)

w(s)

)
+ 1 − E

(
sup
s∈S

V (s)

w(s) ∧ ω0

)
.

�

Note that E(sups∈S̄0

V (s)
w(s)∧ω0

|V ∈ B0) = 1, whenever ρ(B0) > 0, which links the results of
Propositions 2.1 and 2.2.

The following formulas might also be useful.

Corollary 2.4. Let w,W ∈ C+(S), with W a simple Pareto process. Then:
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(a) With B1 = {f ∈ C̄+
ω0

(S): sups∈S
w(s)
f (s)

> 1 and infs∈S f (s) > 0},

P(W > w) =
⎧⎨
⎩ρ(B1)E

(
inf
s∈S

V (s)

w(s)

∣∣∣V ∈ B1

)
, if ρ(B1) > 0,

0, if ρ(B1) = 0.
(2.15)

In particular, if P(V > 0) > 0 and sups∈S w(s) > ω0,

P(W > w) = P(V > 0)E

(
inf
s∈S

V (s)

w(s)

∣∣∣V > 0

)
. (2.16)

(b) If w > 0 and sups∈S w(s) > ω0,

P(W > w) = E

(
inf
s∈S

V (s)

w(s)

)
. (2.17)

(c) If E(infs∈S V (s)) > 0, for x ∈ R,

P(W > x|W > ω0) =
{

1, x ≤ ω0,
ω0/x, x > ω0.

(2.18)

(d) If E(infs∈S V (s)) > 0, for x ∈ R and for each s ∈ S,

P
(
W(s) > x|W(s) > ω0

) =
{

1, x ≤ ω0,
ω0/x, x > ω0.

(2.19)

Proof. For (2.15), similarly to the proof of Proposition 2.1,

P(W > w) = P

(
Y ≥ sup

s∈S

w(s)

V (s)
and inf

s∈S
V (s) > 0

)

=
∫

B1

inf
s∈S

v(s)

w(s)
dρ(v) = ρ(B1)E

(
inf
s∈S

V (s)

w(s)

∣∣∣V ∈ B1

)
.

For (2.17),

P(W > w) = P(YV > w) = P

(
Y > sup

s∈S

w(s)

V (s)

)
= E

(
inf
s∈S

V (s)

w(s)

)
,

using Y standard Pareto and independent of V .
For (c) note that

P(W > w0) = P
(
Y inf

s∈S
V (s) > ω0

)
= E min

(
1,

infs∈S V (s)

ω0

)

= 1

ω0
E inf

s∈S
V (s) > 0.
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Then (2.18) follows from (2.17).
For (d) note that, if x > ω0,

P
(
W(s) > x

) = P
(
YV (s) > x

) = E min

(
1,

V (s)

x

)
(2.20)

= x−1EV (s) > 0. �

Relation (2.19) indicates that one-dimensional marginals, conditional on the process being
larger than ω0, behave like Pareto; a similar observation has been done by Rootzén and Tajvidi
[13] in the context of lower-dimensional distributions.

Let s1, s2 ∈ S and x > ω0. From (2.20),

P
(
W(si) > x

) = E(V (si))

x
> 0, i = 1,2,

and, similarly

P
(
W(s1) > x,W(s2) > x

) = E(V (s1) ∧ V (s2))

x
.

Hence the statement P(W(s1) > c,W(s2) > c) = P(W(s1) > c)P (W(s2) > c) for all c > ω0 is
equivalent to the statement E(V (s1) ∧ V (s2)) = c−1E(V (s1))E(V (s2)) for all c > ω0, which is
impossible. That is, independence in the Pareto process between any two points is impossible.

For later use, we define next max-stable processes and give a well-known property.

Definition 2.2. A process η = {η(s)}s∈R ∈ C(R) with non-degenerate marginals is called max-
stable if, for η1, η2, . . . , i.i.d. copies of η, there are real continuous functions cn = {cn(s)}s∈R > 0
and dn = {dn(s)}s∈R such that,

max
1≤i≤n

ηi − dn

cn

d= η for all n = 1,2, . . . .

The process is called simple if its marginal distributions are standard Fréchet, and then it will be
denoted by η̄.

Proposition 2.3 (Penrose [10], Theorem 5). All simple max-stable processes can be generated
in the following way. Consider a Poisson point process on (0,∞] with mean measure r−2 dr .
Let {Zi}∞i=1 be a realization of this point process. Further consider i.i.d. stochastic processes
V1,V2, . . . in C+(R) with EV1(s) = 1 for all s ∈ R and E sups∈R V (s) < ∞. Then

η̄ =d max
i=1,2,...

ZiVi . (2.21)

Conversely, each process with this representation is simple max-stable (and one can take V such
that sups∈R V (s) = c a.s. with c > 0).

Note that η̄ depends on infinitely many processes Vi whereas W depends on just one of those
processes (Theorem 2.1(3)).
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2.2. The finite-dimensional setting

The theory of simple Pareto random vectors (r.v.) can be obtained from the results of Theo-
rem 2.1, by taking a discrete set for S, S = {s1, . . . , sd} say. Consequently, consider for this
section the r.v. (W1, . . . ,Wd) = (W(s1), . . . ,W(sd)).

Definition 2.3. The r.v. (W1, . . . ,Wd) ∈ Rd+ with threshold parameter ω0 is called simple Pareto.
The probability measure

ρ(B) = P

(
ω0(W1, . . . ,Wd)

maxi=1,...,d Wi

∈ B

)
(2.22)

for B ∈ B({(w1, . . . ,wd) ∈ Rd+: max(w1, . . . ,wd) = ω0}) is again called the spectral measure.

It follows again that for having all marginals Pareto, one would need max(V (s1), . . . , V (sn)) =
ω0, for all s1, . . . , sn ∈ S and all n = 1, . . . , d , which corresponds to V ≡ ω0 a.s., that is, the
complete dependence case.

Nonetheless, we see that it is possible that some finite-dimensional marginals of a Pareto
process have a Pareto distribution. For example, consider a situation where the maximum of the
process occurs a.s. at some fixed locations in S, s1, . . . , sd say. Then (W(s1), . . . ,W(sd)) is a d-
dimensional simple Pareto r.v. with threshold parameter ω0. Moreover, any (W(s′

1), . . . ,W(s′
D))

where {s1, . . . , sd} ⊂ {s′
1, . . . , s

′
D} is a D-dimensional simple Pareto r.v. with the same threshold

parameter ω0.
One can give formulas for distribution functions, following similar reasoning as before. The

statement corresponding to Proposition 2.1 is

P(W1 ≤ w1, . . . ,Wd ≤ wd) =
⎧⎨
⎩

ρ(B0)

{
1 − E

(
max
i∈Ī0

Vi

wi

∣∣∣B0

)}
, if ρ(B0) > 0,

0, if ρ(B0) = 0,
(2.23)

where I0 = {1 ≤ i ≤ d: wi = 0}, Ī0 = {1 ≤ i ≤ d: wi �= 0} and B0 = {(V1, . . . , Vd): Vi = 0 for
i ∈ I0 and mini∈Ī0

wi

Vi
≥ 1}.

The statement corresponding to Proposition 2.2, with wi > 0 for all i = 1, . . . , d , is

P(W1 ≤ w1, . . . ,Wd ≤ wd) = E

(
max

1≤i≤d

Vi

wi ∧ ω0

)
− E

(
max

1≤i≤d

Vi

wi

)
, (2.24)

which corresponds to formula (2) in Definition 2.1 from Rootzén and Tajvidi [13].
Note that Rootzén and Tajvidi’s formula, (2) in Definition 2.1, only holds for a vector (x, y)

– for simplicity, we take bivariate vectors in the following discussion – larger than the vector of
the lower endpoints of the marginal distributions. The following example illustrates this fact.

Apply Rootzén and Tajvidi’s formula with G(x,y) = e−((x+1)−1+(y+1)−1), for x > −1 and
y > −1, that is, the r.v. constructed from two independent unit Fréchet random variables shifted
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by −1. Then, their formula for the Pareto r.v. shifted by (1,1) is,

H(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1

2

(
1

x ∧ 0
− 1

y ∧ 0
− 1

x
− 1

y

)

(x > 0 and y ≥ 1) or (y > 0 and x ≥ 1),

0, 0 < x ≤ 1,0 < y ≤ 1.

(2.25)

Now note that this does not properly accommodate the positive mass that exists on the axis.
Our alternative approach leads, in this case, to the following distribution function. Consider

the bivariate Pareto r.v. (YB,Y (1 − B)), with B Bernoulli (1/2). Then, by direct calculations or
by applying (2.23) one obtains the distribution function

P
(
YB ≤ x,Y (1 − B) ≤ y

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
2 − 1

x
− 1

y

)
, if x ≥ 1, y ≥ 1,

1

2

(
1 − 1

x

)
, if x ≥ 1,0 ≤ y < 1,

1

2

(
1 − 1

y

)
, if y ≥ 1,0 ≤ x < 1,

0, otherwise.

(2.26)

Regard that (2.25) and (2.26) are the same except when x = 0 or y = 0.
Another remark on Rootzén and Tajvidi [13]: their Theorem 2.2(ii) is not completely correct.

It is not sufficient to require condition (6) of the same paper for x, y > 0. A counter example is
given by

P(X > x or Y > y) = ( 1
2 e−2(x∨0) + 1

2 e−2(y∨0)
)1/2

, x ∨ y ≥ 0,

and zero elsewhere. This distribution satisfies (6) for x, y > 0 but not for all (x, y) and it is not a
generalized Pareto distribution.

2.3. The generalized Pareto process

The more general processes with continuous extreme value index function γ = {γ (s)}s∈S , loca-
tion and scale functions μ = {μ(s)}s∈S and σ = {σ(s)}s∈S is defined as follows.

Definition 2.4. Let W be a simple Pareto process, μ,σ,γ ∈ C(S) with σ > 0. The generalized
Pareto process Wμ,σ,γ ∈ C(S) is defined by,

Wμ,σ,γ = μ + σ
Wγ − 1

γ
(2.27)

with all operations taken componentwise (recall the convention explained in the end of Section 1).

The result corresponding to Corollary 2.1 is the following.
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Corollary 2.5. The random variable sups∈S{(1 + γ (s)
Wμ,σ,γ (s)−μ(s)

σ (s)
)1/γ (s)}ω−1

0 has standard
Pareto distribution.

The process satisfies the following stability property.

Proposition 2.4. For any generalized Pareto process Wμ,σ,γ ,

P

((
1 + γ

Wμ,σ,γ − μ

σ

)1/γ

∈ rA

)
= r−1P

((
1 + γ

Wμ,σ,γ − μ

σ

)1/γ

∈ A

)
(2.28)

for all r > 1 and A ∈ B(C+
ω0

(S)). Moreover, there exist normalizing functions u(r) and s(r) such
that

P

((
1 + γ

Wμ,σ,γ − u(r)

s(r)

)1/γ

∈ A

∣∣∣ sup
s∈S

(
1 + γ

Wμ,σ,γ − u(r)

s(r)

)1/γ

> ω0

)

(2.29)

= P

((
1 + γ

Wμ,σ,γ − μ

σ

)1/γ

∈ A

)

for all r > 1 and A ∈ B(C+
ω0

(S)).

Conversely, if (2.29) holds and sups∈S{(1 + γ (s)
Wμ,σ,γ (s)−μ(s)

σ (s)
)1/γ (s)}ω−1

0 has a standard
Pareto distribution, then (2.28) holds.

Proof. Relation (2.28) is direct from Definition 2.4 and (2.3). Then, with u(r) = μ + σ(rγ −
1)/γ and s(r) = σrγ , relation (2.29) is easily shown to be true by (2.28) and Corollary 2.5.

Conversely, for all r > 1 and A ∈ B(C+
ω0

(S)),

P((1 + γ (Wμ,σ,γ − u(r))/s(r))1/γ ∈ A)

P (sups∈S(1 + γ (Wμ,σ,γ − u(r))/s(r))1/γ ω−1
0 > 1)

= P((1 + γ (Wμ,σ,γ − μ)/σ)1/γ ∈ rA)

r−1

= P

((
1 + γ

Wμ,σ,γ − μ

σ

)1/γ

∈ A

)

by (2.29) and sups∈S{(1 + γ (s)
Wμ,σ,γ (s)−μ(s)

σ (s)
)1/γ (s)}ω−1

0 being standard Pareto distributed. �

The result corresponding to Proposition 2.2 on distribution functions is now, for w > 0:

P(Wμ,σ,γ ≤ w) = E

{
sup
s∈S

V (s)

((
1 + γ (s)

w(s) − μ(s)

σ (s)

)1/γ (s)

∧ ω0

)−1}

− E

{
sup
s∈S

V (s)

(
1 + γ (s)

w(s) − μ(s)

σ (s)

)−1/γ (s)}
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for 1 + γ (w − μ)/σ ∈ C+(S).

3. Domain of attraction

Let us start with the characterization of the domain of attraction of a max-stable process. This
result will lead directly to a characterization of the domain of attraction of a generalized Pareto
process. The following is a slight variation and extension of Theorem 9.5.1 of de Haan and
Ferreira [3].

Denote by η̄ = {η̄(s)}s∈S any simple max-stable process in C+(S) (cf. Definition 2.2). Any
max-stable process η = {η(s)}s∈S in C(S) can be represented by η = (η̄γ − 1)/γ , for some η̄

and continuous function γ = {γ (s)}s∈S . For simplicity, we always take here

C+
1 (S) =

{
f ∈ C+(S): sup

s∈S

f (s) ≥ 1
}

that is, w.l.g. consider the constant ω0 introduced in Section 2 equal to 1. For X a random element
of C(S), suppose the marginal distribution functions Fs(x) = P(X(s) ≤ x) are continuous in x,
for all s ∈ S.

Theorem 3.1. Suppose X,X1,X2, . . . are i.i.d. random elements of C(S). The following state-
ments are equivalent.

1. There exists a max-stable stochastic process η ∈ C(S) with continuous index function γ ,
and an > 0 and bn in C(S) such that

{
max

1≤i≤n

Xi(s) − bn(s)

an(s)

}
s∈S

→d
{
η(s)

}
s∈S

(3.1)

in C(S) (→d denotes weak convergence or convergence in distribution). The normalizing
functions are w.l.g. chosen in such a way that − logP(η(s) ≤ x) = (1 + γ (s)x)−1/γ (s) for
all x with 1 + γ (s)x > 0, s ∈ S.

2. There exist continuous functions γ , at > 0 and bt such that

lim
t→∞ tP

(
X(s) − bt (s)

at (s)
> x

)
= (

1 + γ (s)x
)−1/γ (s)

, 1 + γ (s)x > 0, (3.2)

uniformly for s ∈ S and, for the normalized process

TtX =
(

1 + γ
X − bt

at

)1/γ

+

we have

lim
t→∞

P(sups∈S TtX(s) > x)

P (sups∈S TtX(s) > 1)
= 1

x
for all x > 1 (3.3)
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and

lim
t→∞P

(
TtX

sups∈S TtX(s)
∈ B

∣∣∣ sup
s∈S

TtX(s) > 1

)
= ρ(B) (3.4)

for each B ∈ B(C̄+
1 (S)) with ρ(∂B) = 0, with ρ some probability measure on C̄+

1 (S).

The following shows that the same conditions are valid for the domain of attraction of a gen-
eralized Pareto process.

Theorem 3.2. 1. The conditions of Theorem 3.1 imply

lim
t→∞P

(
TtX ∈ A

∣∣∣ sup
s∈S

TtX(s) > 1
)

= P(W ∈ A)

with A ∈ B(C+
1 (S)), P(∂A) = 0 and W some simple Pareto process.

2. Conversely suppose that there exists a function b̃u = {b̃u(s)}s∈S , that is continuous in s for
each u and increasing in u, and with the property that P(X(s) > b̃u(s) for some s ∈ S) → 0 as
u → ∞, and a continuous function (in s), ãu = {ãu(s)}s∈S > 0 such that, for some probability
measure P̃ on B(C(S)),

lim
u→∞P

(
X − b̃u

ãu

∈ A

∣∣∣X(s) − b̃u(s) > 0 for some s ∈ S

)
= P̃ (A)

for all A ∈ B(C(S)) and P̃ (∂A) = 0. Then the results of Theorem 3.1 hold.

Proof. Statement 1 follows directly from Theorem 3.1.
We prove statement 2:
By the conditions on b̃u, we can determine q = q(t) such that P(X(s) > b̃q(t)(s) for some s ∈

S) = 1/t . Then with bt (s) = b̃q(t)(s) and at (s) = ãq(t)(s),

lim
t→∞ tP

(
X − bt

at

∈ C and X(s) > bt (s) for some s ∈ S

)
= P̃ (C)

for all C ∈ B(C(S)) and P̃ (∂C) = 0. In particular, if inf{sups∈S f (s): f ∈ C} > 0 we have

lim
t→∞ tP

(
X − bt

at

∈ C

)
= P̃ (C). (3.5)

We proceed as usual in extreme value theory. Fix for the moment s ∈ S. It follows that for
x > 0

lim
t→∞ tP

(
X(s) > bt (s) + xat (s)

) = P̃
{
f : f (s) > x

}
.

Let Us be the inverse function of 1/P (X(s) > x) and V (s) be the inverse function of
1/P̃ {f : f (s) > x}. Then

lim
t→∞

Utx(s) − bt (s)

at (s)
= Vx(s) for x > 0.
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It follows (Lemma 10.4.2, p. 340, in de Haan and Ferreira [3]) that for some real γ (s) and all
x > 0

lim
t→∞

btx(s) − bt (s)

at (s)
= xγ (s) − 1

γ (s)
and lim

t→∞
atx(s)

at (s)
= xγ (s). (3.6)

Since the limit process has continuous paths, the function γ must be continuous on S.
Now replace t in (3.5) by ct where c > 0. Then

lim
t→∞ tP

(
bt (s) − btc(s)

atc(s)
+ at (s)

atc(s)

X − bt

at

∈ C

)
= 1

c
P̃ (C)

hence, by (3.6)

lim
t→∞ tP

((
1 + γ

X − bt

at

)1/γ

∈ c(1 + γC)1/γ

)
= 1

c
P̃ (C)

and by (3.5)

lim
t→∞ tP

((
1 + γ

X − bt

at

)1/γ

∈ (1 + γC)1/γ

)
= P̃ (C).

Write P(A) = P̃ ((Aγ − 1)/γ ). Then

lim
t→∞ tP (TtX ∈ A) = P(A)

with P(cA) = c−1P(A), for all c > 0 and A ∈ B(C(S)) such that inf{sups∈S f (s): f ∈ A} > 1
and P(∂A) = 0. The rest is like the proof of the equivalence between (2b) and (2c) of Theo-
rem 9.5.1 in de Haan and Ferreira [3]. �

Example 3.1. Any max-stable process is in the domain of attraction of a generalized Pareto
process, with ρ given by the probability measure of V from (2.21).

Example 3.2. Any Pareto process with spectral measure ρ is in the domain of attraction of a
max-stable process where the underlying process V (cf. representation (2.21)) has probability
measure ρ.

Example 3.3. The finite-dimensional distributions of the moving maximum processes obtained
in de Haan and Pereira [6] can be applied to obtain the finite-dimensional distributions of the
corresponding Pareto process.

Example 3.4 (Regular variation (de Haan and Lin [4], Hult and Lindskog [9])). A stochastic
process X in C(S) is regularly varying if and only if there exists an α > 0 and a probability
measure ρ such that,

P(sups∈S X(s) > tx,X/ sups∈S X(s) ∈ ·)
P (sups∈S X(s) > t)

→d x−αρ(·), x > 0, t → ∞, (3.7)
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on {f ∈ C(S): sups∈S f (s) = 1}. Hence, a regularly varying process such that (3.2) holds for
the marginals, satisfies the conditions of Theorem 3.1, in particular with γ = 1/α, bt = t and
at = t/α; note that the index function is constant.

On the other hand, the normalized process TtX, with TtX satisfying (3.3)–(3.4), is regularly
varying with α = 1 and spectral measure ρ on C̄+

1 (S).

Remark 3.1. As seen in Section 2.2, our analysis is also valid in the finite-dimensional set-up.
The main difference from Rootzén and Tajvidi [13] is that their analysis is entirely based on
distribution functions whereas ours is more structural. Here are some remarks on their domain of
attraction results.

Let F̄ = 1 − F with F some d-variate distribution function, x = (x1, x2, . . . , xd) ∈ Rd , and
u(·) = (u1(·), u2(·), . . . , ud(·)) and σ the normalizing functions considered in Rootzén and Taj-
vidi [13] (see, e.g., their definition of Xu). By using σ (xt)/σ (t) → (x

γ1
1 , x

γ2
2 , . . . , x

γd

d ) and

(u(xt) − u(t))/σ (t) → (
x

γ1
1 −1
γ1

,
x

γ2
2 −1
γ2

, . . . ,
x

γd
d −1
γd

), t → ∞, for some reals γ1, γ2, . . . , γd (cf.

proof of Theorem 2.1(ii) in Rootzén and Tajvidi [13]) and by

F̄ ∗(x) := F̄
(
u1(x1), u2(x2), . . . , ud(xd)

)
,

one simplifies their relation (19) to

t F̄ ∗(tx) → − logG

(
x

γ1
1 − 1

γ1
,
x

γ2
2 − 1

γ2
, . . . ,

x
γd

d − 1

γd

)
,

and one simplifies their relation (6) to

P
(
X∗ ≤ tx|X∗ � t1

) = P
(
X∗ ≤ x

)

for t ≥ 1. Hence, one can take u(t) := ( tγ1 −1
γ1

, tγ2−1
γ2

, . . . , tγd −1
γd

) in Theorem 2.2 of that paper.

4. View towards application and simulation

4.1. Towards application

Suppose the domain of attraction condition (1.1) holds. Define B = {f ∈ C+(S): sups∈S f (s) >

1}. Let A be a Borel set in C+(S). Then applying (1.1) twice we get

lim
t→∞P(TtX ∈ A|TtX ∈ B) = ν(A ∩ B)

ν(B)
= P(W ∈ A)

with W a simple Pareto process. This is the content of Theorem 3.2(1) and it gives the basis
to the peaks-over-threshold method in function space, as it gives a limit probability distribution
on B .
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A similar reasoning holds with B replaced by a different set B ′ as long as inf{sups∈S f (s): f ∈
B ′} > 0. Consider in particular B ′ = {f ∈ C+(S): maxi=1,...,p Ttf (si) ≥ 1}, for some integer p.
Then

lim
t→∞P

(
TtX ∈ A|TtX ∈ B ′) = ν(A ∩ B ′)

ν(B ′)
= P(W ∈ A ∩ B ′)

P (W ∈ B ′)
, (4.1)

which is a generalized Pareto distribution.
Now, we proceed as in the peaks-over-threshold method for scalar observations: let k = k(n)

be a sequence of integers with limn→∞ k(n) = ∞ and limn→∞ k(n)/n = 0, as n → ∞. Suppose
that we have n independent observations of the process X in the domain of attraction. Select those
observations satisfying X(si) > bn/k(si), for some i = 1,2, . . . , p. The probability distribution
of those selected observations is approximately the right-hand side of (4.1), that is, generalized
Pareto. This seems a useful applicable form of the peaks-over-threshold method in this frame-
work as it suggests estimating the spectral measure using observations that exceed a threshold at
some discrete points in the space only.

4.2. Towards simulation

‘Deltares’ is an advisory organization of the Dutch government concerning (among others) the
safety of the coastal defenses against severe wind storms. One studies the impact of severe storms
on the coast, storms that are so severe that they have never been observed. In order to see how
these storms look like, it is planned to simulate wind fields on and around the North Sea using
certain climate models. These climate models simulate independent and identically distributed
(i.i.d.) wind fields similar to the ones that could be observed (but that are only partially observed).
Since the model runs during a limited time, some of the wind fields will be connected with storms
of a certain severity but we do not expect to see really disastrous storms that could endanger the
coastal defenses. The question put forward by Deltares is: can we get an idea how the really
disastrous wind fields look like on the basis of the ‘observed’ wind fields? We want to show that
this can be done using the generalized Pareto process.

Consider a continuous stochastic processes {X(s)}s∈S where S is a compact subset of Rd .
Suppose that the probability distribution of the process is in the domain of attraction of some
max-stable process, that is, there exist functions an > 0 and bn such that the sequence of i.i.d.
processes {

max
1≤i≤n

Xi(s) − bn(s)

an(s)

}
s∈S

converges to a continuous process, say η, in distribution in C(S). Then η is a max-stable process.
Define

TtX(s) :=
(

1 + γ (s)
X(s) − bt (s)

at (s)

)1/γ (s)

+
,

RTtX := sup
s∈S

TtX(s).
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Then

T ←
t f (s) := at (s)

(f (s))γ (s) − 1

γ (s)
+ bt (s) for f ∈ C+(S).

As before, suppress the s from now on. Then, with t0 some large constant,

P

(
T ←

t t0TtX − btt0

att0

∈ A

∣∣∣RTtX > 1

)

= P

{
at

att0

[t0(1 + γ (X − bt )/at )
1/γ ]γ − 1

γ
− btt0 − bt

att0

∈ A

∣∣∣RTtX > 1

}

= P

{
at t

γ

0

att0

1 + γ (X − bt )/at − t
−γ

0

γ
− btt0 − bt

att0

∈ A

∣∣∣RTtX > 1

}
(4.2)

= P

{
at t

γ

0

att0

(
X − bt

at

− t
−γ

0

[
btt0 − bt

at

− t
γ

0 − 1

γ

])
∈ A

∣∣∣RTtX > 1

}

= P

{
X − bt

at

∈ att0 t
−γ

0

at

A + t
−γ

0

(
btt0 − bt

at

− t
γ

0 − 1

γ

)∣∣∣RTtX > 1

}
.

Since,

att0(s)t
−γ (s)

0

at (s)
→ 1 and

btt0(s) − bt (s)

at (s)
− t

γ (s)

0 − 1

γ (s)
→ 0

uniformly for s ∈ S, the limit of this probability, as t → ∞, is the same as the limit of

P

(
X − bt

at

∈ A

∣∣∣RTtX > 1

)
, (4.3)

which is generalized Pareto by Theorem 3.2(1).
In this subsection, we are not so much interested in estimating the joint limit distribution

(which is the peaks-over-threshold method) but in the fact that the two conditional distributions
(4.2) and (4.3) are approximately the same.

Suppose, for example, that we have observed wind fields over a certain area during some time.
Then we are likely to find some rather heavy storms, that is, ones that satisfy X � bn. These
are the moderately heavy storms. However, we want to know how the storm field of a really
heavy storm (i.e., X � bN with N > n) looks like. That is exactly what relation (4.2) does. Take
a moderately heavy storm X and transform it to T ←

n
N
n
TnX. This results in the storm field of a

really heavy storm by relation (4.2).
Notice then what we do here is similar to prediction or kriging, not estimating a distribution

function.
The reasoning above also holds with estimated functions of γ , a and b, on the basis of kth

upper order statistics and taking t = n/k.
Under the above framework, we propose the following simulation method:
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(1) Let X1,X2, . . . ,Xn be i.i.d. and let the underlying distribution satisfy the conditions
above, namely that the probability distribution is in the domain of attraction of some max-
stable process.

(2) Estimate the functions γ , a and b (de Haan and Lin [5], Einmahl and Lin [7]); denote
the estimators by γ̂ , â and b̂. Note that this procedure provides us with a number k that
reflects the threshold for estimating the parameters.

(3) Select from the normalized processes

T̂n/kXi :=
(

1 + γ̂
Xi − b̂n/k

ân/k

)1/γ̂

+
, i = 1, . . . , n,

those that satisfy Xi(s) > b̂n/k(s) for some s ∈ S, that is, for which R̂Tn/kXi
> 1.

(4) Multiply these processes by a (large) factor t0; this brings the processes to a higher level
without changing the distribution essentially.

(5) Finally undo the normalization, that is, in the end we obtain the processes

T̂ ←
n/kt0T̂n/kXi for those Xi for which R̂Tn/kXi

> 1.

These processes are peaks-over-threshold processes with respect to a much higher thresh-
old (namely btt0 ) than the processes Xi for which R̂Tn/kXi

> 1 (with threshold bt ).

Remark 4.1. Note that an alternative procedure under the maximum domain of attraction con-
dition would be, first to estimate the spectral measure and then to simulate a generalized Pareto
process from there. But the estimation of the spectral measure is more difficult (de Haan and
Lin [4]) although this procedure is less restrictive on the number of observations that can be
simulated.

4.3. Simulations

We exemplify the lifting procedure with the process X(s) = Z(s)γ (s), with γ (s) = 1− s(1− s)2,
s ∈ [0,1], and Z is the moving maximum process with standard Gaussian density. The Z process
can be easily simulated in the R-package due to Ribatet [12]. Figure 1 is represented by the 11 out
of 20 realizations, normalized for which R̂Tn/kXi

> 1, and lifted ones T̂ ←
n/kt0T̂n/kXi with t0 = 10.
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Figure 1. (Left): the realizations T̂n/kXi , for which R̂Tn/kXi
> 1, obtained from the moving maximum

process with standard Gaussian density; (right) the lifted realizations T̂ ←
n/k

t0T̂n/kXi with t0 = 10.
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