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Summary. A result, referred to as the generalized partial correspondence princi-
ple, is proved for noninertial viscoelastic boundary value problems. This states that
if are the complementary regions of the boundary of a viscoelastic
medium with a unique Poisson's ratio, on which displacements u,(r, t) and stresses
<7jj(r, t)rij are specified, respectively, then if c B^\t) for all t' < t, the stresses
satisfying this mixed boundary value problem at time t are the stresses for the elastic
problem with the same boundary regions and the same specified stresses while known
functions take the place of the specified displacements. It is noteworthy that B^(t'),
t' < t, is not required to be monotonic increasing.

Similarly, if has the property B\}\t') C Bu(t), t' < t, then the above state-
ment holds but with stresses and displacements interchanged.

In certain cases, it is not necessary to assume that the material has a unique Pois-
son's ratio, though in these cases the statement of the principle is altered and though
somewhat restricted still has a useful range of application.

The principle is applied to obtain certain nontrivial results of possible experimental
interest for the normal contact problem, where the loading history is restricted only
in the manner specified above.

1. Introduction. The original or classical form of the correspondence principle
provided a powerful tool for solving mixed viscoelastic boundary value problems
where the boundary regions are not time-dependent. This principle is discussed,
for example, in [1], where references to the original papers are given. Later [2, 3,
4], extended forms of this principle were given which covered situations where the
boundary regions are increasing or decreasing monotonically. This topic is discussed
in more general terms in [5], which also addresses the situation where the body
occupies an ablating region.
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In this paper, we present a generalization of the correspondence principle which
applies to a far more general range of situations, but does not privide complete infor-
mation on the solution. We will refer to it as the generalized partial correspondence
principle to distinguish it from the principle developed in [2-5], which we refer to
as the extended correspondence principle.

In Sec. 2 we prove the result under the assumption that the material has a unique
Poisson's ratio. In Sec. 3 it is shown that the restriction on Poisson's ratio for the
material is not always necessary. In Sec. 4 an interesting example is worked out.
Some concluding observations are presented in Sec. 5.

2. Material with unique Poisson's ratio. The approach used is a generalization of
that developed in [6]. Temperature variations are ignored, however. Also, a different
notation is adopted. The constitutive and dynamical equations are written in the
form (see Golden and Graham [7])

Oij(r, 0 = 2 f dt'fi(t - t')eij(r,t') + Sij f dt'k(t - t')ekk(r, t'),
J— OO J— oo

olJJ(r, r) = 0, / = 1,2,3, (2.1)

where the summation convention is in force and inertial effects are neglected. The
quantities 07; (r, t) and e,;(r, t) are the stress and strain Cartesian tensor components,
respectively, at position r = (x, y, z) and time t. The strain tensor is related to the
displacements w,(r, 0 by the usual formulas:

2e,7(r, 0 = t) + u7.,(r, t). (2.2)

The kernels of the hereditary integrals in (2.1), namely n(t) and A(0, are related to
the relaxation functions for shear and bulk deformation. We have

n(t) = Gl(0)S(t) + Gl(t)H(t), (2.3)

where G\(t) is the shear relaxation function for the material, H(t) is the Heaviside
step function, and <5(0 is the singular delta function. There is a similar relation
between k(t) + 2ju(t)/3 and the bulk relaxation function. Both A(0 and n(t) are zero
for negative t. If the material has a unique Poisson's ratio v then

Kt) = t#^;M0. (2-4)
If (2.4) is valid, then by defining the pseudodisplacements

Vi(r,t)= ( dt'fi(t - t')Uj{r, t') (2.5)
J — OO

and taking account of (2.2), it is clear that (2.1) has the form of the elastic equations
for a material with shear modulus unity and Poisson's ratio v if the displacements
M,(r, 0 are replaced by w,(r, t).

Consider the viscoelastic boundary value problem

Ui(r,t) = di(r,t), r e B'ur,(t),
a ij(r, t)nj(r) = c,(r, t), re
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where B\j\t) and B^\t) are disjoint regions of the boundary B of the medium such
that

B = B<P(t)UB«\t) (2.7)
and where di{v, t) and c,-(r, t) are specified functions. Now let B^(t') C B(al\t) for all
t' < t. Otherwise, the history of B^\t') is arbitrary. It need not be monotonic, for
example. This implies that B\j\t) is contained in all B^(t'), t' < t, so that

Vi(T,t)= f dt'n{t-t')di{r,t'), r eB^(t),
J — CO

(2.8)

is known, since if r is in the region B[}\t) it follows that it is in all regions B\}\t'),
t' < t. Therefore, the viscoelastic problem can be reduced to an elastic problem with
the Vj(r, t) playing the part of displacements, where on the boundary region B^'\t),
Vj(r, t) is given by (2.8) and on B^(t), er,7(r, t)rij is given by the second equation of
(2.6). The dependence on fi(t) comes in only through the boundary value of v,(r,t)
given by (2.8). Thus, 07/(r, t) and v,-(r, t) at any point in the medium are given by the
elastic solution for shear modulus unity and Poisson's ratio v, and boundary values
specified as above. Therefore o,j{r, t) is known everywhere, if the elastic problem can
be solved for the boundary regions B\}\t), B^\t). In particular, if the dj{r, t') vanish
for all t' < t, the stresses at time t are given by the corresponding elastic stresses and
can at most depend on v. This situation occurs in the case of certain crack problems.

The pseudodisplacements Vj(r, t) are also known. However, in general, the dis-
placements cannot be deduced without a further assumption on B\}\t'), namely that
it is stationary or monotonically decreasing for all t' < t. This latter assumption
brings us back to the extended correspondence principle as enunciated in the some-
what special case considered in [6]. In the more general case considered here, nothing
can be said about the displacements.

Similarly, if B\j\t') C B\}\t), the displacements are given in terms of the specified
displacements t/,(r, t), r e B\}\t), and the known functions

<?,(r, t) = [' dt'y(t - t')Oij{r, t')nj(r); r € £<'>, (2.9)
J — OO

where y(t) is the inverse of fi(t) in the sense that

[ dt'y(t - t')n(t') = [ dt'n(t - t')y(t') = S(t). (2.10)
Jo Jo

It is related to the shear creep function of the medium by an equation similar to (2.3).
The statement prior to (2.9) may be demonstrated by transferring the hereditary
integral on to the stresses in (2.1) to obtain

v
\Qij{r, t) = Eij{r, t) + y—^Ckkir, t)du, (2.11)

which has the elastic form in terms of the pseudostresses

Qu(r't)=[ dt'y(t - t')au(r, t'). (2.12)
J — CO
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If the specified stresses on B^(t) are always zero then the qi(r,t) are zero and the
displacements are given by the elastic formula, which can depend at most on Poisson's
ratio v. This is the case for certain contact problems.

The considerations of this section generalize readily to a nonisotropic material for
which all the relaxation functions are proportional to each other, and to linearized
nonisothermal theories. Also, nonvanishing body force fields may be incorporated.

3. Materials with two relaxation functions. The assumption that the material has
a unique Poisson's ratio is not always necessary. It is difficult to give a general
characterization of the class of problems for which the assumption is redundant.
However, in this section we will isolate one problem class of this kind, in the sense
that a restricted statement of the principle is possible in such cases.

The viscoelastic Papkovich-Neuber representation was given by Gurtin and Stern-
berg [8], We write it in the form (xi, Xi, x^ = x, y, z)

if dt'n(t-t')Ui(r, t') = f dt'K(t - - Xj<l)jfi{r,t) - <t>0,i{r.t). (3.1)
J — oo J — oo

where </>,, i = 0,1,2, 3, are harmonic functions and K(t) is defined by the fact that its
Fourier transform

/OO

dtK(t)e~'wl (3.2)
-oo

is given by

ic(co) = 3 — 40(a)), 0(a)) =—-—- , (3.3)
2 (A(«) +//(«))

where is the complex modulus for shear and A(co) + 2/i(a>)/3 is the bulk complex
modulus. Thus 0(a)) is a generalized Poisson's ratio of the material. The function
K(t) has the causal property that it vanishes for t < 0 [9]. This applies also to the
inverse transform of 0(co), namely u(t).

Green and Zerna [10] consider for elastic materials a particular class of problems
characterized by the fact that the shearing stress vanishes at all points in a plane,
taken to be the z = 0 plane. We will translate their observations so that they apply to
a viscoelastic material. This class of problems can be solved by choosing <f>\ = 02 = 0
and putting

d(f>(r,t)
03 = (-)" dz ' (3.4)

00 = (~) f dt1 K\(t - t')4>{r, t'),
J —OO

where <j)(r, t) is a harmonic function and K\(t) is defined by

K\{a>) = l(k(co) - 1) = 1 - 10(aj). (3.5)
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The displacements are related to <j>(r, t) by

2vx(r,t)=2 f dt'fi{t - t')ux(r,t')
J —OO-OO

- z' dxdz
(3.6)

{r,t) + J dt'K\(t - t')^{r,t'),

2v>{'',)=+/_! d',K<{' - '"'f <r- '">•

where K2{t) is defined by

/c2(cu) = j(l+£(«)) = 2(1-£(«)). (3.7)

We also give the stress components axz, ayz, and azz:

d3(f> d34> <93</> d2(f>
°xz = ZlM)^' °yz = Z~d^' °zz = ZW ~ W ( }

These are independent of the material constants. The remaining components do
depend on Poisson's ratio, however, in the elastic case and therefore will have hered-
itary integrals as in (3.6). We assume that all quantities vanish at infinity and that
the boundary regions of interest are in the plane z — 0. The tangential stresses are
all zero on the plane z = 0. Thus, they are specified everywhere, and B\}\t') and

are empty for all t'. We drop the superscript on and B^(t').
Consider the case where Bu(t) C Bu{t'), t' < t. On the boundary z = 0, the last

equation of (3.6) on Bu(t) can be written as

/'J —c
dt'l(t-t')uz(r,t') = -^(r,t), reBu(t), (3.9)

where l(t) is defined by the requirement that its Fourier transform is given by

= « (3.10)
1 + k((o) 1 - u(a>)

It is causal in the sense that l(t) = 0 for t < 0 by virtue of the argument given in [9].
The point is that if Bu(t) is contained in Bu(t'), t' < t, then the hereditary integral

on the left of (3.9) is given in terms of dj(r, t'), t' < t, on Bu(t). The stress boundary
condition is

(Tzz{T,t) =-~(r,t) = cz{r,t), r € Ba{t). (3.11)

We solve the problem by finding the harmonic function obeying these boundary
conditions. This is also the solution to the elastic problem with the same specified
stress and with (///(1 - v)) times the normal displacement given by the integral on
the left of (3.9), where n is the elastic shear modulus and u is the elastic Poisson's
ratio. The three stresses in (3.8) will be given by the elastic form of the solution
for these boundary quantities, since (3.8) is independent of the material parameters.
This does not apply to the other stresses, nor to the quantities vx(r, t) etc., as given by
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(3.6). The other stresses contain hereditary integrals over <j>(r, t'), t' < t. However,
<j>{r, t') at times earlier than t is not necessarily known. The argument above relies
on special circumstances prevailing at time t. Therefore, the stresses axx, ayy, axy
are not necessarily calculable, by virtue of this principle. The same applies to the
quantities on the left of (3.6). But even if these were known, it would not necessarily
be possible to deduce the displacements, since once again the functions vx(r, t') may
not be known for V < t.

If the specified displacement is zero on Bu(t) then, on this region, the left-hand
side of (3.9) is zero. It follows that the stresses axz, ayz, ozz are identical in form to
these for the corresponding elastic problem. These circumstances apply in the case
of mode I crack problems.

In the case of plane problems, a more general result may be obtained, which
we briefly note. In this case, the Papkovich-Neuber relations are replaced by the
Kolosov-Muskhelishvili equations, which, for crack or half-plane problems, may
be written in terms of one complex potential. The equations giving the stresses in
terms of this potential do not depend explicitly on the material parameters. If, in
the displacement equation, all the dependence on the material parameters can be
grouped to form one hereditary integral over the displacement, in the statement of
the boundary conditions, then the argument outlined above for the three-dimensional
case goes through and all the stresses are given by the elastic form in terms of the
known boundary quantities. This is always possible for crack problems (even in the
presence of mode II shear stresses on the crack face) provided that the displacement
difference, or the gap, across the axis containing the crack is used, rather than the
displacement itself. A nontrivial instance of the generalized partial correspondence
principle for a crack problem (mode I) has been given in [11]. See also [12], which
incorporates mode II shear stresses on the crack face.

Now consider the case where Ba(t) C Ba(t') for all t' < t. If one writes down the
above equations in terms of the harmonic functions,

X(r.t)= ['
J — o

dt' k(t - t')(f)(r, t'), (3.12)

where k(t) is the inverse of l(t) in the sense that they are related by an equation
similar to (2.10). Then (3.9) and (3.11) in particular become

fJ —(

d
uz{r,t) = -—x(r,t), r e Bu(t)

d2 (3-13)dt' k(t - t')cz(r, t') = - —jx(r, t), re Ba(t)

where the left-hand side of the second relation is known. The solution is a harmonic
function obeying these boundary conditions and is the same as the elastic solution
with these boundary conditions. The quantity x(r- 0 is given at time t and not
necessarily at earlier times. However, if we operate on each equation of (3.6) with
y(t) in a convolution sense to obtain diaplacements on the left-hand side, and also
replace t) by its expression in terms of ^(r, t), it is clear that the displacements
will in general depend on hereditary integrals over x(r, t) and thus are not necessarily
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known. The exception is uz(r, t) for r in the plane z = 0. Outside the region Bu(t)
(where it is known anyway) it will still be given by the first equation of (3.13) and
therefore by the elastic form in terms of the given boundary quantities, namely those
on the left of (3.13). If cz(r,t') is zero for all t' < t then the hereditary integral
playing the part of the specified stress is zero and uz(r,t), r e Ba(t), will be given
by precisely the elastic form for the same specified displacement on Bu(t) and zero
stress on Ba(t). This situation would prevail in the case of contact problems. An
observation by Ting [13] is related to this result.

Equation (3.1) can be generalized to apply to aging viscoelastic materials (see
[14]). Furthermore, the above arguments do not rely in an essential way on the
convolution form of the hereditary integrals. Fourier transforms are used merely for
convenient definition of various functions. It follows that the results of this paper
may be adapted to the case of aging materials (see [7]).

4. Example: a contact problem. We now present an example to illustrate the utility
of the partial correspondence principles given above. We shall work in terms of
circular cylindrical coordinates (p, 6, z). A smooth rigid spherical indentor of radius
R is pressed into an isotropic and homogeneous viscoelastic half-space occupying
the region z > 0 by a normal time-dependent load. Body force and temperature
fields are absent and all field quantities are functions of (p, z, /) and independent of
6. Provided the radius of the contact area remains small compared to that of the
sphere, the boundary conditions may be written in the form

uz(p, 0, t) = D(t) - p2/(2R), 0 < p < a(t),
azz(p,0,t)=0, p > a(t), (4.1)
<jpZ{p,0,t)= ogz{p,0,t) = 0, p> 0,

and the conditions at infinity are

Ojj(p, z,t)-+ 0 as (p2 + z2) —> oo, all (i,j). (4.2)

Here D(t) specifies the time-dependent depth of penetration of the tip of the indentor
into the half-space while a(t) is the radius of the circular area of contact.

First we consider the case when a(t') > a(t), t' < t. In the notation of previous
sections this corresponds to the circumstance that B^(t') C B^\t), t' < /; B^\t) =
B, i = 1,2; c,(r, t) = 0, i = 1,2, 3, and d-${r, t) = D(t) - p2/(2R). By combining (4. la)
with (3.9) we find that for this problem

/
l^dt'Ht-t')D(t')-^ = -j£(p,0,t), 0 <p<a(t), (4.3)

where
r OO

le= dt'l(t'), (4.4)
Jo

while, by using (4.1b), Eq. (3.11) becomes

0 = -^-(p,0j), p > a(t). (4.5)
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Using the fact that (3.8) is independent of material properties and the elastic solution
of the contact problem governed by (4.3), (4.5) (see Sneddon [15]), we find that for
the viscoelastic problem under consideration

azz{p,0,t) = ^(a2(t) -p2)l/2, 0 <p<a(t), (4.6)

where a(t) is related to the history of indentation by

u:dt'l(t - t')D(t') = = De(t). (4.7)

It follows from (4.6) that the total load acting in the indentor is
0/

Wit) = 3^a\t) = We(t). (4.8)

Here and later "e" is used to indicate elastic quantities. Further, by considering the
particular circumstance that a{t") = a(t), t' < t" < t, and leaving a(t"), t" < t',
unaltered we conclude that

azz{p, 0, t) < ozz(p, 0, t'), W{t)<W(t'), t' <t, (4.9)

because to achieve such a sudden reduction in contact area at t' a decrease in applied
load will be required if a(t') < a(t), while if a(t') = a(t) the results (4.6), (4.8)
apply at time t' and (4.9) is an equality. Thus the applied loads achieve a minimum
simultaneously with the contact area.

In the particular circumstance that a(t'), -oo <t'<t, is constant or monotonic the
normal surface displacement outside the contact area may be calculated by inverting
(see Sneddon [15])

dt' l{t - t')uz(p, 0, t')L
rfc(fl2(0-O. p<a{t),

H r , / x , , (4-10)I h {(2a2(t) - p2) sin ^sUlJ + ^/p2 - a2(t)j , p > a(t).
We now apply an argument similar to that developed after (4.9) to show that

De(t) = min -i / dt" l(t' - t")D(t"). (4.11)
<'<< le J-oo

If a(t') > a(t), consider a sudden decrease in contact area to a{t) at this time, as
defined before (4.9). Such a decrease will entail a reduction in the indentation.
Furthermore, after this decrease, it follows from (4.7) that

| [' dt" l(t' - t")D(t") = De(t') = De{t).
'e J-oo

(4.12)

Also, /(f) can be written as the sum of a singular and a slowly varying term, in
the same manner as p(t), given by (1.3). The phenomenon of relaxation leads us
to conclude that the slowly varying part is nonpositive. It follows, on using these
observations in (4.12), that Da(t') > De(t), where Da(t') is the indentation after the
sudden decrease in contact area. Thus D(t') > Da(t') > De(t). If a(t') = a(t) the
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same argument goes through, omitting the portions related to the sudden decrease in
contact area. Thus

D(t')>De(t), -00 <t'<t. (4.13)
We deduce that

]- [' dt" l(t'
'e J-00

t")[D(t")-De{t)]>0 (4.14)

since operating with /(/' - t") cannot cause a change of sign. This is clear in the
case of a material with unique Poisson's ratio, since l(t) reduces to p(t)/(l - v) and
/u(t) certainly has this property. If it did not, then we see from (2.1) that a given
shear stress could correspond to a history of shear strain of the opposite sign. More
generally, we can argue on the basis of the generalized Boussinesq equation relating
surface displacement and stress (see [17]) which contains a hereditary integral over
displacement with l(t - t') as the kernel. If l(t - t') could cause a change of sign,
then a positive surface pressure could be associated with a history of negative surface
displacement. Equation (4.11) follows from (4.14). This result will be used later.

Next consider the case when a(t') < a(t), t' < t. This corresponds to the cir-
cumstances that D t' < t; = B, i - 1,2; and c, and d3 are
constrained as in the previous case. By combining (4.1a,b) with (3.13) we find that

D(t) - p2/(2R) = -9L(p,0,t), 0 < p < a(t),

%x (4"15)

The displacement uz(p, 0, t), is the same as in the elastic case by virtue of the argu-
ment after (3.13). We therefore have (Sneddon [15])

«*(/>. °.0 = ^ |(2«2(0 - P2) sin-1 + \!P2 -«2(oJ - P > a(t), (4.16)
where a(t) is related to D(t) by

0(0 = R = DM' (417)

fJ — (

At the same time
rt 4

dt' k(t - t')<rzz(p,0,t') = —(a2(t) - p2)l/2, 0<p<a(t). (4.18)
> 7lK

Strictly (4.6) and (4.16) are manifestations of the generalized partial correspondence
principle. Equations (4.7) and (4.17) are further relations which follow from known
results in the elastic case and the formal analogy between (4.3), (4.5), (4.15), and the
corresponding elastic problem. As before, consideration of the case when a(t") =
fl(0> t' < < U with a(t"), t" < t, unaltered implies that

uz(p,0,t) > uz(p,0,t'), D(t)>D(t'), t'<t, (4.19)

so that indentation is maximum at the same time as contact area.
Integration of (4.18) yields

keJ-0 dt' k{t - t')W(t') = We(t), (4.20)
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where kele = 1 and We(t) is given by (4.8). In the particular case when a(t'), -oo <
t' < t, is constant or monotone increasing, (4.20) is true for all time and may be
inverted to express W (/) in terms of the history of We(t). Using essentially a similar
argument to that yielding (4.11), one may show that

We(t) = max-i- [ dt" k(t'
t kg J_ oo

(4.21)

provided a{t') < a{t), -oo <t'<t.
The forms of the above equations appropriate to a material with a unique Poisson's

ratio v may be obtained by replacing l(t) by n{t)/{ \ - v) as noted earlier, and k(t)
by (1 - v)y(t). We now confine the discussion to materials of this kind.

Consider a strain-controlled history where the indentation is given by

D(t') = A(d - cos(cot')), for all t', (4.22)

and steady-state conditions are assumed to be established. It is further assumed that

d>\fi(co)\/m. (4-23)
where fi(co) is the shear complex modulus of the material. Equation (4.7) becomes

A{d - (\fi{(o)\/fi{0) cos (cot + <p(cx>))} = De(t), (4.24)

where <p{co) is the loss angle of the viscoelastic material (see [7], for example). At
times /' < t, the left-hand side of (4.24) is equal to the right-hand side of (4.11) and
we deduce that the special times t of minimum contact area are given by

t = (2nn - 4>(a>))/a>, (4.25)

where n is any integer. These times precede the times of minimum indentation by
<p(co)/a>. The minimum value of the contact area may be deduced from (4.7) and

De{t) = A{d-m<o)\im)Y (4-26)
Equations (4.17), (4.19) give that the maximum value of De(t) and of a(t) occurs at
the same time as that of D(t). Also, from (4.22)

t — 2n(n + j)/oj,
De(t) — D(t) — A(d + 1),

where n is any integer. The maximum contact area can be determined from the
second relation.

Finally, consider the stress-controlled case where

W{t') = K(d-cos((ot')), d> 1. (4.28)

Equation (4.20) gives that, at the time of maximum contact area,

Wc(t) = K{d - (/j.(0)/\/x(co)\) cos(a>t - ip(co))), (4.29)

where We(t) is related to a(t) by (4.8). From (4.21) we deduce that the times of
maximum contact area are given by

t = [<p(a>) + 2n{n + j)]/a>, (4.30)
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where n is any integer. These are later than the times of maximum load by <p(a>)/a).
From (4.28) and (4.9) we deduce that the occurrences of minimum load and min-
imum contact area are simultaneous, both at times Inn/ci for any integer n. The
value of the minimum contact area follows from (4.8) and the relation

We(t) = K(d- 1), (4.31)

where t is one of these times.
Equations (4.7), (4.8), (4.17), (4.18), and (4.30) are generalizations of results

demonstrated for periodic loading of a punch on a standard linear solid by Golden
and Graham [16] and Graham and Golden [17]; see also [7], These results can be
generalized without difficulty to the case of a general punch shape.

5. Conclusions. Thus, in a mixed boundary value problem for a viscoelastic mate-
rial with unique Poisson's ratio, where the boundary regions may be different for dif-
ferent components of displacement and stress, if B\l\t) is such that B\j\t') c B\}\t),
i = 1, 2, 3, for all t' < t, then at time t the displacement everywhere is given by the
same form as for the elastic problem with the same boundary regions and the same
specified displacements but where the specified stresses are replaced by hereditary
integrals over these stresses. By virtue of the assumption on B{u'\t), these integrals
are known. If, where the stresses are specified, they vanish for all t' < t then these
hereditary integrals are zero, and the displacements are given by precisely the elastic
form. The most immediate example of this is that of frictionless contact problems.
Note that the assumption on B\}\t) imposes no constraint on the history of this re-
gion except that specified. In particular, it is far more general than the assumption
that B[}\t) is monotonically increasing.

If, on the other hand, we have that at a given time B^(t') C B\j\t), for all t' < t,
then the stresses at time t will be given by the stresses of the elastic problem with
the same boundary regions and the same specified stresses, but where the specified
displacements are replaced by known hereditary integrals of the originally prescribed
displacements. If the displacements are always prescribed to be zero, the stresses
are identically those of the elastic problem. This happens in crack problems. For
example, in cracks under mode I displacement, only the normal displacement is
important and this is zero off the crack face. In fact, a nontrivial instance of the
generalized partial correspondence principle has been demonstrated for such cracks
in [11], In the case of more general crack problems, if they can be phrased so that the
gap on the x-axis (along which the crack is lying) is the effective boundary quantity
rather than displacement itself, then the gap is always zero off the crack face (see
[12]).

There are restricted conditions under which it is not necessary to assume that the
material has a unique Poisson's ratio. A particular problem class of this kind is
discussed in Sec. 3 and an example is worked out in Sec. 4. The problems discussed
in [11, 12, 13, 16, 17] are all members of the class. For these problems, the statement
of the principle is altered and usually restricted to special circumstances. Though
presented for the nonaging case, the general results also apply to aging viscoelastic
materials.
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