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Abstract
We characterize the equilibrium of the all-pay auction with general convex

cost of e¤ort and sequential e¤ort choices. We consider a set of n players
who are arbitrarily partitioned into a group of players who choose their e¤orts
�early�and a group of players who choose �late�. Only the player with the
lowest cost of e¤ort has a positive payo¤ in any equilibrium. This payo¤
depends on his own timing vis-a-vis the timing of others. We also show that
the choice of timing can be endogenized, in which case the strongest player
typically chooses �late�, whereas all other players are indi¤erent with respect
to their choice of timing. In the most prominent equilibrium the player with
the lowest cost of e¤ort wins the auction at zero aggregate cost.
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1 Introduction

The analytics of the all-pay auction with complete information with simulta-
neous choices of e¤orts by several contestants and without noise is well un-
derstood. Hillman and Riley (1989) were �rst to characterize an equilibrium,
and Baye, Kovenock and de Vries (1996) provide a complete characterization
of the set of equilibria for the case in which contestants have linear cost of
expending e¤ort. It is clear from the analysis in Kaplan, Luski and Wettstein
(2003) that the solution concept of the case with linear cost carries over to
cases in which contestants have non-linear cost of expending e¤ort. Other
analyses contributing to the solution of the all-pay auction with complete in-
formation are Hillman and Samet (1987) who, among other aspects, consider
the problem of entry fees or minimum contest e¤orts, and Baye, Kovenock
and de Vries (2005) who work out the complete analytic solution for all-
pay auctions with two players and various cost of e¤ort functions, in which a
player�s total cost of e¤ort may generally depend on the own e¤ort expended,
on the e¤ort that is expended by the rival player, and on the outcome of the
contest. All these analyses consider simultaneous e¤ort choices.1

Simultaneity of e¤ort choices cannot be taken for granted for situations
in which all-pay auctions take place. Particularly when the con�ict has some
asymmetry properties, sequential e¤ort choices may emerge naturally from
the institutional environment, or even endogenously. Leininger (1991) mod-
els a patent race between incumbent and entrant, who value the patent dif-
ferently, as a sequential all-pay auction with possibly repeated bidding un-
der complete information. Other recent contributions discussing sequential
choices in di¤erent contexts are Konrad (2002) and Jost and Kräkel (2005).
Dixit (1987) discussed the desirability of commitment and Stackelberg leader-
ship by one of the players in a contest, focussing on the bene�ts of exogenous
commitment/timing. He considers contest success functions that yield equi-
libria in pure strategies. Dixit also discusses the case of multiple players in
this framework, assuming a contest success function for which the contest
equilibrium is in pure strategies. Wärneryd (2000) analyses delegation as a
possible commitment device in this context.
Sequentiality can also emerge endogenously in strategic games. This

1For an analysis of Nash equilibrium in contests with a very wide class of contest success
functions see Cornes and Hartley (2005).

1



has been considered in oligopoly games with two players by Deneckere and
Kovenock (1992), Hamilton and Slutsky (1990) and others. Deneckere, Kovenock
and Lee (1992) addressed this question in a pricing game that is structurally
similar to an all-pay auction. Baik and Shogren (1992), Leininger (1993)
and Baik (2005) consider frameworks in which sequential choices of e¤ort
can emerge in contests between two players. Suppose there are two points in
time at which contest e¤ort can be expended. One point is called e(arly), the
other is called l(ate). In a stage prior to e, contestants can choose whether to
make their contest e¤ort choices at e or at l. As turns out from this analysis,
endogenous sequentiality may emerge and may improve the payo¤s of both
players. If the e¤ort choices at e are irreversibly made, the �weaker�player
has an incentive to choose e and the �stronger�player has an incentive to
choose l. In the end, both contestants are better o¤.
We analyse in this paper how the result on endogenous timing generalizes

to sets of many contestants in contests in which the prize is allocated as in
an all-pay auction with complete information and without noise. Like Dixit
(1987) we allow for more than two players, but add a group structure to
the set of players, consider endogenous sequencing, and an all-pay contest
with complete information and without noise, which yields equilibrium out-
comes in mixed strategies. Sequencing emerges endogenously in our n-player
framework, as in the two-player framework by Baik and Shogren (1992) and
Leininger (1993). Moreover, the consequences of sequencing are more pro-
nounced in our framework due to the contest success function with complete
information and no noise in our framework. We �nd a whole set of equilibria
which can be Pareto ranked. The Pareto dominant equilibrium typically has
zero dissipation of rents.

2 Equilibrium

A prize of given size V = 1 is allocated among a set N of players i = 1; :::n in
an all-pay auction with complete information. Let x = (x1; x2; :::xn) denote
the vector of players�e¤orts. Each player chooses his e¤ort irreversibly at a
particular point of time. The players in a subset E � N choose their e¤orts
simultaneously at a point e(arly) and players from set L = N � E choose
their e¤orts at point l(ate), where l occurs after e, such that players who are
in set L can observe the e¤ort choices made by the players who are in set E.
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Players are risk neutral. A player�s payo¤ is

�i(x) = pi(x)� Ci(xi). (1)

Here the cost Ci(xi) of expending a given e¤ort xi is a function of this e¤ort,
and we will assume throughout that Ci(0) = 0, C 0i(xi) > 0, and C

00
i (xi) � 0.

The standard cases with linear cost, Ci(xi) = cixi, and with quadratic cost,
Ci(xi) = ci(xi)

2 are special cases. We assume that players are asymmetric
and can be sorted according to their e¤ort cost. Without loss of generality
we consider them numbered such that, for two players i and j with i < j,
it holds that C 0i( x) < C 0j(x) for all x 2 (0; K]. This global asymmetry
rules out a number of equilibria that may occur if some players are identical.
Note that, according to this sorting assumption, player 1 has the lowest cost
for expending a given e¤ort, player 2 has the second lowest cost, etc. The
sorting of players in N according to their cost of e¤ort also induces a similar
sorting of players in E and in L, and we re-number the players in E and L
according to their cost functions as e(1); e(2); :::; e(#E) with Ce(i)(x) < Ce(j)(x)
and l(1); l(2); :::; l(#L) with Cl(i)(x) < Cl(j)(x) for all i < j for all x > 0.
The probability that player i wins the prize is denoted as pi; and is a

function of x, as follows. Denote �x � maxk2Nfxkg. If xi = �x > xj for all
j 2 N � fig, then pi = 1 and pj = 0 for all j 6= i. If there are several
players who have chosen the same, highest e¤ort, �x, we assume the following
tie-breaking rule. Let M be the set of players who choose �x. If M � E,
or M � L, then each i 2 M wins the prize with the same probability
equal to 1=#M , where #M is the cardinality of M . If M \ E 6= ? and
M \L 6= ? then the allocation of the prize among the players in M depends
on their cost of e¤ort. If Ci(�x) � 1 for all i 2M \L, then pi = 1=#(M \E)
for i 2M \E and zero for all other players. Denote (M \L)+(�x) the subset
of (M \L) with players for which Ci(�x) < 1 holds. If (M \L)+(�x) 6= ?, then
pi = 1=#(M \ L)+(�x) for i 2 (M \ L)+(�x) and pi = 0 for all other players.
Strategies are de�ned as follows. For a player i 2 E, a pure strategy

is an e¤ort choice xi and the strategy set of player i is the set of feasible
e¤orts [0; K], with K being a �nite number that is su¢ ciently large to be
never binding.2 We also de�ne a mixed strategy Fi for player i 2 E as an
element of the set of probability distributions over the e¤ort levels from the
set [0; K]. A player i 2 L observes the e¤ort choices of all players j 2 E. We

2For instance, it will be su¢ cient to de�ne K as the solution of C1(K) = 1.
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denote the vector of these e¤ort choices by all players from E as xE: As it
turns out only �xE, the maximal component of xE, is payo¤ relevant for the
game in period l. Hence we can denote a pure strategy of player i 2 L as
a function xi(�xE) : [0; K] ! [0; K], and a mixed strategy of this player as a
function Fi(�xE) : [0; K]! �[0;K] , where �[0;K] denotes the set of probability
distributions over the e¤ort levels from the set [0; K].

Proposition 1 For any given sets L and E there exists a unique subgame
perfect equilibrium of the (sequential) all-pay auction. Equilibrium pay-o¤s
are given by:

�j = 0 for all j = 2; :::n, and (2)

�1 =

8>><>>:
1 if L = f1g

1� C1(�xl(2)) if 1 2 L and #L > 1
�
with �xl(2) the solution
of Cl(2)(�xl(2)) = 1

1� C1(�x2) if 1 2 E with �x2 the solution of C2(�x2) = 1
(3)

Proof. Consider �rst stage l. Denote �xE = maxe(i)2Efxe(i)g . Recall
that e(i) are the players of set E ordered along ascending cost functions. Let
L+(�xE) be the set of players k 2 L for which Ck(�xE) < 1, and L�(�xE) the
set of the players k 2 L for which Ck(�xE) � 1.
Consider the following candidate equilibrium of the subgame at stage l.

(i) All players k 2 L�(�xE) choose xk(xE) = 0. (ii) For players k 2 L+(�xE),
if #L+(xE) = 1 then xk(xE) = �xE. If #L+(xE) > 1, then xk(xE) = 0 for all
k 2 L with k =2 fl(1); l(2)g,

Fl(1)(xE) =

8<:
0 for x 2 [0; �xE)

Cl(2)(x) for x 2 [�xE; �xl(2) ]
1 for x > �xl(2)

(4)

and

Fl(2)(xE) =

8<:
1� Cl(1)(�xl(2)) + Cl(1)(�xE) for x 2 [0; �xE]
1� Cl(1)(�xl(2)) + Cl(1)(x) for x 2 (�xE; �xl(2) ]

1 for x > �xl(2) .
(5)

To con�rm that this constitutes an equilibrium we show that these strate-
gies are mutually optimal replies. (i) For given �xE, xk = 0 uniquely maxi-
mizes the payo¤ of players k 2 L�(�xE), independent of the choices of other
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players in L. (ii) Consider k 2 L+(xE) with k =2 fl(1); l(2)g. The payo¤ in
the candidate equilibrium is �k(0) = 0 and, given (4), �k(xk) < 0 for any
xk > 0. Thus xk = 0 is the unique best reply. Consider next l(1). The payo¤
of this player given the candidate equilibrium strategies of other players is
�l(1)(0) = 0, �l(1)(x) = �Cl(1)(x) for x 2 (0; �xE) and

�l(1) = Fl(2)(x) � 1� Cl(1)(x) (6)

for xl(1) � �xE. This payo¤ is equal to 1 � Cl(1)(�xl(2)) > 0 for all xl(1) 2 [�xE;
�xl(2) ], because of (5), and smaller than this for all x outside this interval.
Consider �nally the payo¤ of l(2). This payo¤ is �l(2) = 0 for xl(2) = 0,
�l(2)(x) = �Cl(2)(x) for x 2 (0; �xE), and

�l(2) = Fl(1)(x) � 1� Cl(2)(x) (7)

for xl(2) > �xE. This payo¤ (7) is equal to zero for all xl(2) 2 (�xE; �xl(2) ] ,
because of (4), and negative for all x outside this interval. Accordingly, any
x 2 f0g [ (�xE; �xl(2) ] is an optimal reply for l(2).
Note that the equilibrium in the subgame among players from set L is

the equilibrium of a simultaneous all-pay auction with a minimum bid of
�xE. The uniqueness of this equilibrium can be shown following the line of
arguments in Baye, Kovenock and de Vries (1996).
Consider now stage e. De�ne maxl(i)2Lf�xl(i)g � �xL. An implication of the

subgame equilibrium is that a player from the set E who made the highest bid
�xE among all players from this group wins the prize if and only if �xE > �xL.
Intuitively, in the characterization of the equilibrium strategies of players
from the set L, this �xL plays a similar role for players from the set E when
they choose their e¤orts, as �xE does in the subgame when players from the
set L make their choices. Note, that �xL, unlike �xE, is not determined by
the actual e¤ort choices of players, but is uniquely determined by the cost
structure of the players in L. Hence, somewhat surprisingly, the game among
players at stage e, too, has the structure of a simultaneous all-pay auction
with a minimum bid, which now is given by �xL. �xL results from foreseeing
the optimal behaviour of players moving at l. Uniqueness of this equilibrium
then again follows from Baye, Kovenock and de Vries (1996) for any set E
and any �xL.
Let E+(�xL) be the set of players k in E for which Ck(�xL) < 1, and E�(�xL)

the set of players k in E for which Ck(�xL) > 1. Note that Ck(�xL) = 1 for
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k 2 E is ruled out by Ck(�xL) = 1 for some k 2 L and the fact that all players
in N di¤er in their cost functions. We consider the following candidate
equilibrium for e¤ort choices among players from the set E. (i) All players
k 2 E�(�xL) choose xk = 0. (ii) If #E+(�xL) = 1, then this player k 2 E+(�xL)
chooses xk = �xL. (iii) If #E+(�xL) > 1, then all players e(k) 2 E+(�xL) with
k > 2 choose xe(k) = 0, player k = e(1) chooses a mixed strategy that is
described by the cumulative distribution function

Fe(1) =

8<:
0 for x 2 [0; �xL)

Ce(2)(x) for x 2 [�xL; �xe(2) ]
1 for x > �xe(2)

(8)

and player k = e(2) chooses a mixed strategy that is described by the cumu-
lative distribution function

Fe(2) =

8<:
1� Ce(1)(�xe(2)) + Ce(1)(�xL) for x 2 [0; �xL]
1� Ce(1)(�xe(2)) + Ce(1)(x) for x 2 (�xL; �xe(2) ]

1 for x > �xe(2)

(9)

We show that this constitutes equilibrium strategies by showing that the
candidate equilibrium strategies are mutually optimal replies given the equi-
librium of the subgame among players in L. A key aspect of the subgame
equilibrium is that players from L will overbid any e¤ort x made in stage e
that is smaller than �xL. (i) Consider k 2 E�(�xL). A choice of xk = 0 yields
�k(0) = 0. E¤ort levels 0 < xe(i) < �xL yield a payo¤ �k = �Ck(xk) < 0

and e¤ort levels xk � �xL have cost Ck(xk) that exceed the value of the prize
for k 2 E�(�xL), leading to a negative payo¤, even if k wins the prize with
this e¤ort choice. Note that this also holds for the possible e¤ort choice
case xk = �xL: by the de�nition of �xL as the solution to Cl(1)(�xL) = 1, the
de�nition of E�(�xL) and the strict monotonicity of cost functions of all play-
ers in N , strict inequality Ce(i)(�xL) > 1 must hold for all e(i) 2 E�(�xL).
Accordingly, xk = 0 is the unique optimal reply for k 2 E�(�xL). (ii) Con-
sider k 2 E+(�xL). If #E+(�xL) = 1, the only player in this set has to be
player 1, i.e., the player with the lowest cost among all players in N . More-
over, #E+(�xL) = 1 implies that the player with the second lowest cost is
in the set L, i.e., 2 = l(1) 2 L. Therefore, �xL = �x2. Player 1�s payo¤ is
�1(�x2) = 1 � C1(�x2) > 0 if x1 = �x2. Player 1�s payo¤ from x1 < �x2 is equal
to �C1(x1) � 0, and �1(x1) = 1 � C1(x1) < 1 � C1(�x2) for x1 > �x2. Ac-
cordingly, x1 = �x2 is the optimal reply. (iii) Consider #E+(�xL) > 1. The
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payo¤ of player k 2 E+(�xL) with k =2 fe(1); e(2)g is �k(0) = 0 for xk = 0,
�k(xk) = �Ck(xk) < 0 for all 0 < xk < �xL, and, given (8), �k(xk) < 0 also for
all xk � �xL. Hence xl(k) = 0 is the optimal play. Note that #E+(�xL) > 1 im-
plies that e(1) = 1 and e(2) = 2. Player 2�s payo¤ is equal to p2(x) �1�C2(x2).
Using the candidate equilibrium strategies of all other players in E and the
properties of the unique equilibrium of the subgame, �2(0) = 0 for x2 = 0,
�2(x2) = �C2(x2) < 0 for 0 < x2 < �xL, �2(x2) = 0 for x2 2 [�xL; �x2], and
�2(x2) = 1� C2(x2) < 0 for x2 > �x2. Accordingly, any bid from the support
f0g [ (�xL; �x2] is an optimal reply for player 2. Finally, player 1�s payo¤ is
�1(x) = p1(x)�1�C1(x1). Given the candidate equilibrium strategies of other
players k 2 E and the e¤ort choices in the subgame perfect equilibrium this
payo¤ is equal to 1�C1(�x2) > 0 for all x1 2 [�xL; �x2] and smaller for all other
x1. Accordingly, any bid from the interval [�xL; �x2] is an optimal reply for
player 1. Hence, the mixed strategies Fl(1) and Fl(2) are best replies to each
other.
In the candidate equilibrium, �k = 0 for all k 6= 1. Consider �1. If 1 2 L,

then xk = 0 for all k 2 E. Hence, �xE = 0: If L = f1g, then 1 wins with no
e¤ort and has payo¤ �1 = 1. If #L > 1, then �1 = 1 � C1(�xl(2)). If 1 2 E,
it has been shown that x1 = �x2 is within player 1�s equilibrium support and
yields �1 = 1� C1(�x2). This concludes the proof.
Proposition 1 shows, that - given our tie-breaking rule - for any partition

of players into the sets E and L, there is a unique subgame perfect equilib-
rium. Since the number of di¤erent partitions of n players into two sets is 2n,
we have characterized 2n possible equilibrium con�gurations. Note however
that these result in only n di¤erent equilibrium payo¤ vectors (�1; 0; ::; 0),
where �1 can assume the values 1 and 1�C1(�xi); i = 2; ::; n. Adding another
player (n+ 1) would double the number of feasible partitions (as this player
could "join" any previous partition in either E or L), but add only one fur-
ther equilibrium payo¤vector � = (1�C1(�xn+1); 0; :::; 0) with a new positive
payo¤ for player 1. If the new player would not be the one with the highest
cost of e¤ort (and hence change our labelling of players), it would still be true
that the number of di¤erent equilibrium payo¤s for player 1 only increases
by one to (n + 1). Moreover, n of those are identical to the previous ones
unless the new player happens to be the -new- strongest one with the lowest
cost of e¤ort. In this latter case all n feasible equilibrium payo¤s for player
1, which are smaller than 1, can be di¤erent from the previous feasible equi-
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librium values with only n players. With just 2 players the equilibrium pay-
o¤s for three player partitions (E1; L1) = (f1g; f2g); (E2; L2) = (f1; 2g; f;g)
and (E3; L3) = (f;g; f1; 2g) are identically equal to (1� C1(�x2); 0), whereas
(E4; L4) = (f2g; f1g) yields the payo¤s (1,0).
Proposition 1 also shows that the equilibrium of the generalized Stack-

elberg equilibrium has similar properties as the solution with two players.
Only the player with the strongest cost advantage has a positive payo¤, and
this payo¤ is larger if this player chooses his e¤ort last. An interesting aspect
is that the all-pay auction that takes place at stage l and the competition it
involves for those players, does not bene�t the players who choose at stage
e compared to the situation in which there is only one player who chooses
late. The reason is that �xL, the minimal bid for a player in E in order to
win, does not depend on actual behavior of players in the competition at
L, but their potential limit behavior in rational play. This largest possible
rational counter bid, however, is determined by exogenous data, namely the
cost parameters of the players moving at L. Also similar to the two-player
case, the player with the lowest cost is best o¤ if he moves later than all
other players. For all other players, timing does not a¤ect their payo¤. They
all cannot expect to gain something from participating in the contest and
from making positive bids. These results do not depend in an essential way
on our choice of tie-breaking rule. This rule was chosen in order to arrive at
strict subgame perfect equilibria. Choice of other tie-breaking rules; i.e. the
probably more "�obvious"�one, which stipulates the winning probability of
a player from M as always equal to 1

#M
regardless of his membership in E

or L, would only produce "�equilibria. Moreover, these "�equilibria would
all lie in "�neighborhoods of our strict equilibria.

3 Endogenous timing

LetN continue to be the set of players, but consider a game that is �enlarged�
by a decision stage 1 that occurs prior to stage e. In stage 1 each player k 2 N
chooses whether to choose e¤ort at stage e or at stage l, and may randomize,
in which case qk 2 [0; 1] denotes the probability by which k chooses e and
(1 � qk) the probability by which k chooses l. Once all players have chosen
their qk, the actual timing tk 2 fe; lg of each player k�s e¤ort choice is
determined and observed by all players. Let t = (t1; :::tn) denote the vector
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describing this set of actual timing, which emerges as a draw from Q that
denotes the joint probability distribution over (independent) timing choices.
Note that a given t sorts the players into sets E(t) and L(t) which con-

stitute a partition of N , and that there is a one-to-one mapping between
feasible t and feasible partitions of N into two sets E and L.
At stage e, the history of the game is described by (Q and ) t. If tk = e,

then player k must choose his e¤ort xk 2 [0; K], and this choice can be
a function of this history. He may choose to randomize and choose e¤ort
as a draw from a cumulative distribution function Fk as a function which
generally can be a function of the history at stage e. Players with tk 6= e

cannot take any action at this point. At the end of stage e, all players k with
tk = e have chosen their actions, and their actual e¤orts xk are observed by
all players. The vector xE describes these actual e¤orts.
The history of the game at stage l is characterized by (Q,FE,) t and xE,

(where FE denotes the joint distribution function from which actual e¤ort
choices xE have been drawn independently.) Players k with tk = l must
choose an e¤ort level xk 2 [0; K] and may choose e¤ort as a function of the
history. They may also randomize and choose according to a cumulative
distribution function Fk. Players k with tk 6= l cannot assume any action at
this point.
At the end of stage l the prize is awarded to the player who expended the

highest e¤ort, and the same tie-breaking rule as in section 2 is used if several
players expended the same highest amount of e¤ort.
Note that because of uniqueness of equilibrium at stage l given xE (and

t), it is irrelevant, which distributions Q resp. FE have generated these
realizations. I.e. a player cannot condition his behavior at l on Q resp. FE
given the realizations xE and t, which are observed by all players. The same
argument then applies for players at stage e: given t and given the knowledge,
that players at l cannot condition behavior on Q and their choices of FE, a
player at e cannot condition his strategy choice on Q as t already determines
the unique subgame perfect equilibrium in the continuation game (see the
proof of Proposition 1).
The following Proposition characterizes subgame-perfect equilibrium in

the game with endogenous timing of e¤ort decisions.

Proposition 2 i) q1 = 0 is an almost strictly dominant strategy for
player 1; i.e. it is the unique best reply to any choice of (q2; :::; qn)
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by players 2 to n, for which q2 > 0. For any (q2; :::; qn) with q2 = 0 any
choice of q1 2 [0; 1] is a best reply for player 1.

ii) Let q1 = 0; then any choice of timing strategies from [0; 1] by play-
ers 2,...,n is (part of) a subgame perfect equilibrium in the game with
endogenous timing of e¤ort decisions.

Proof. Note �rst that, by the one-to-one mapping between t and E(t)
and L(t), Q induces a probability distribution over partitions (E;L) of N .
Note further that the equilibrium that is characterized in the proof of Propo-
sition 1 for any given partition and with payo¤s as in Proposition 1 for this
partition, is the subgame perfect equilibrium of the continuation game of the
�enlarged�game for which this partition emerges at the end of stage 1. And
only t (or, equivalently, the partition that is described by t) constitutes the
payo¤-relevant history.
Hence players anticipate that the equilibrium that is characterized in

Proposition 1 is played in the continuation games for any partition of N into
E(t) and L(t). We now show that for a player k, k > 1, any qk 2 [0; 1] is an
optimal choice regardless of the chosen ql by players l 2 f1; :::; k � 1; k + 1; :::; ng.
We then show, that qk = 0 in turn is an optimal reply for player 1 to any of
these choices by players 2 to n, and uniquely so, if q2 > 0.
Consider �rst k > 1. Given any joint distribution over (t1; :::; tk�1;

tk+1; :::; tn), any qk leads to a probability distribution over partitions E and
L from which one actual partition results. The payo¤ of player k in the
subgame perfect equilibrium for each of these partitions is �k = 0 by Propo-
sition 1. Accordingly, any qk is an optimal reply to any joint distribution
over (t1; :::; tk�1; tk+1; :::; tn).
Turn now to k = 1. De�ne t�1 � (t2; :::; tn). For a given t�1, let

jmin(t�1) = min[j 2 f2; :::; ng jtj = l ]. Then the payo¤ of player 1 from
choosing q1 given t�1 is (1� q1)(1� C1(�xjmin(t�1)) + q1(1� C1(�x2)) and this
payo¤ is non-increasing in q1 and strictly decreasing if jmin(t�1) 6= 2. Player
1 is always strictly better o¤ by choosing l instead of e, if player 2�s choice
q2 results in the realization of t2 = e. Player 1 is indi¤erent between e and
l if and only if t2 = l. This, however, is ex ante; i.e. before the q�s are
(simultaneously) chosen, only assured, if q2 = 0. As soon as q2 leads with
positive probability to the realization t2 = l, player 1 is ex ante better o¤ by
choosing l with certainty; i.e. q1 = 0.
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The intuition for why other players are essentially indi¤erent about when
to choose their e¤ort is straightforward. They have a payo¤ of zero in the
continuation game that starts with stage e, regardless of the partition of
players between E and L. This makes them indi¤erent regarding their own
choice of timing. This argument does not apply in general for player 1. If this
player chooses his e¤ort late, he essentially competes only with the players
who also choose their e¤ort late, as all players in E who choose their e¤ort
early are induced to choose zero e¤ort in the equilibrium that is characterized
in Proposition 1. However, if player 1 chooses his e¤ort early, he essentially
competes with all other players, either simultaneously, or via the fact that
they can react to his bid and consider whether to make a higher bid. The
advantage of choosing late therefore is that all competitors who choose early
drop out of the competition, and this advantage is bigger if the group of
players who choose early includes the particularly strong players. In the
extreme case in which all players k 6= 1 belong to E and choose early, if
player 1 chooses late, there is no competitor left and player 1 receives the
prize without any e¤ort, whereas, if he chooses early, he competes with the
whole group of other players. This may explain why player 1 has a preference
for moving late. The only case in which this preference is not strict is when
player 2 also chooses late. In this case the show-down between these two
strongest players is inevitable, and player 1 is indi¤erent whether to choose
early and preempt player 2, or whether he enters into a simultaneous all-pay
auction with this second-strongest player. But note that any o¤er of a small
"premium" payment � > 0 for moving early -either by the rules of the game
or by player 1- would select the e¢ cient equilibrium as the unique equilibrium
(for all tie-breaking rules).

4 Conclusions

All-pay auctions with complete information with more than two players have
some interesting properties if one allows for some generalizations that natu-
rally extend the results on the two-player all-pay auction with sequential bids.
We consider partitions of a larger group of players into two subsets. Players
in one subset choose their e¤ort individually and simultaneously, prior to the
individual and simultaneous choices of members of the other group, and we
consider the endogenous formation of such groups and their timing of bids.
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Main results are: the sequential structure of bids favors the strongest player,
particularly if some of his strongest competitors have to make their bids prior
to him. For an appropriate partition of players the prize is e¢ ciently allo-
cated to the strongest bidder, with an aggregate bid cost in this equilibrium
of zero. Moreover, this partition of players into groups can emerge as an
equilibrium outcome if all players choose their timing of bids simultaneously
in a stage prior to the actual bidding stages. Hence, this simple redesign of
the simultaneous multi-player all-pay auction as a Stackelberg game yields
an extremely e¢ cient allocation mechanism for competitions, for which the
simultaneous game involves (partially) wasteful bids or e¤ort choices. In the
prominent equilibrium, in which player 1 is the only one to move late, the
prize is allocated e¢ ciently with no "rent dissipation" at all.
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