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Abstract. Survival models with univariate frailty may be used when there is
no information on covariates that are important to explain the failure time.
The lack of information may be with respect to covariates that were not ob-
served or even covariates which for some reason we can not measure, for
instance, environmental or genetic factors. In this paper, we extend the gen-
eralized time-dependent logistic model proposed by Mackenzie (The Statis-
tician 45 (1996) 21–34), by including a frailty term in the modeling. The
proposed methodology uses the Laplace transform to find the survival func-
tion unconditional on the individual frailty. A simulation study examines the
bias, the mean squared errors and the coverage probabilities. Estimation is
based on maximum likelihood. A real example on lung cancer illustrates the
applicability of the methodology, which is compared to the modeling without
frailty via selection criteria to determine which model best fits the data.

1 Introduction

To express the distribution of an nonnegative random variable, T , which, in gen-
eral, represents the random behavior of lifetime of individuals (or components)
in some population, several mathematically equivalent functions that uniquely de-
termine the distribution can be considered, namely the cumulative distribution,
density, survival and hazard functions. The hazard function is particularly useful
because of its interpretation as the way in which the instantaneous probability of
failure of an individual changes with time. The seminal paper by Cox (1972) on
hazard modeling opened a new era of statistical methodology for studying time-
to-event data. His model advocates that the ratio of the failure rates of any two
individuals are proportional. A strong assumption that may not be in accordance
with several practical real situations. This fact has been determinant in the develop-
ing of several types of non-proportional hazard models. Among them we mention
the accelerated failure model (Prentice, 1978), the hybrid hazard model (Etezadi-
Amoli and Ciampi, 1987) and the extended hybrid hazard models (Louzada-Neto,
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1997, 1999). In this paper, we focus on a parametric family of non-proportional
hazard model, the so called generalized time-dependent logistic (GTDL) model
(Mackenzie, 1996), which was proposed as a parametric competitor for the pro-
portional hazard model.

Another possible peculiarity of the survival modeling mentioned above is re-
lated to the usual assumption made in analyzing the treatment effect, or hazard
factors, in which individuals are conditionally independents given the observed
covariates. When the data arise from multiple events or repeated events for the
same individual, the assumption of independence can be questioned. Motivated
by situations where there is possible dependence between individuals or groups
of individuals Clayton (1978) and Oakes (1982) considered the first model for
multivariate frailty. The frailty model is characterized by using a random effect,
that is, a random variable which is not observed, or that represents information
that is not or cannot be observed, but which affects the time of failure. When we
only have one information for an individual, the random effect is introduced into
the hazard function in order to control unobserved heterogeneity of units under
study. For some studies with univariate frailty models interested readers can re-
fer to Tomazella et al. (2008), which considered the Cox’s model with frailty and
under a Bayesian perspective considering reference prior distributions, Aalen and
Tretli (1999), which applied the compound-Poisson distribution to data from tes-
ticular cancer and Henderson and Oman (1999), which studied the consequence of
ignoring the frailty in the fitting.

In this paper, we envisage a scenario where we have only one observation per
individual. Our main purpose is to extend the GTDL model introducing a frailty
term. Our methodology uses the population (or unconditional) survival function.
The Laplace transform of the frailty density is instrumental to obtain such a func-
tion.

The paper is organized as follows. Section 2 presents the GTDL and GTDL
frailty models, as well as the construction of the likelihood for the model and the
respective estimation procedure. A simulation study which examines the bias, the
mean squared errors and the coverage probabilities is presented in Section 3. In
Section 4, a real example on lung cancer illustrates the applicability of the method-
ology, which is compared to the modeling without frailty via selection criteria to
determine which model best fits the data. Some final comments are in the Sec-
tion 5.

2 Model formulation

In this section, we introduce the GTDL regression model and its frailty version,
presenting the hazard, the survival, the probability density functions and the par-
ticular case when the GTDL model and GTDL with fralty model become a long
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duration model (Ibrahim et al., 2001), that is, a model which considers that a pro-
portion of the population is cured or not susceptible to the event of interest. Also,
we present the inferential approach.

2.1 GTDL regression model

The GTDL regression model, which is a non-proportional hazard model, is defined
by the hazard function, given by

h(t |λ,α,β) = λ
exp(αt + x′β)

1 + exp(αt + x′β)
, (2.1)

where λ > 0 is a scalar, α is a measure of the time effect, β ′ = (β1, . . . , βk) is
a vector of k unknown parameters measuring the influence of the k covariates
x′ = (x1, . . . ,xk) and, t represents the univariate survival times of the units.

The ratio of the hazard function of two individuals, i and j , with i �= j where
i, j = 1, . . . , n, with of different covariates vector is given by

τ(t |xi ,xj ) = h(t |xi )

h(t |xj )
= λ exp(αt + x′

iβ)

1 + exp(αt + x′
iβ)

1 + exp(αt + x′
jβ)

λ exp(αt + x′
jβ)

(2.2)

= 1 + exp(αt + x′
jβ)

1 + exp(αt + x′
iβ)

exp
[
(xi − xj )

′β
]
.

Note that the time effect does not disappear in (2.2) and hence the non-
proportionality becomes evident.

From (2.1), the survival function is given by

S(t |λ,α,β) =
{

1 + exp(αt + x′β)

1 + exp(x′β)

}−λ/α

. (2.3)

The behavior of the hazard function (2.1) takes several forms, according to
the value of α: for α > 0, the hazard function is increasing; for α < 0, the haz-
ard function is decreasing; for α = 0, the hazard function is constant. The sur-
vival function given in (2.3) also has its behavior determined by the value of α.
For α > 0, S(0|λ,α,β) = 1 and S(∞|λ,α,β) = limt−→∞ S(t |λ,α,β) = 0, in
other words, the survival function is proper, and for α < 0, S(0|λ,α,β) = 1 and
S(∞|λ,α,β) �= 0, so we have that the survival function is improper, for exam-
ple, when α < 0 we have a model for cure rate or long duraction, and the cure
fraction, p, is given by

p = (
1 + exp

(
x′β

))λ/α
.

The advantage of the GTDL model regarding the Cox model is that the ratio of
the hazard function of two individuals changes over time and, the GTDL model
can assume a behavior of a long duration model. Moreover, the GTDL arises from
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the need for removing an inconvenient constraint on the hazard function imposed
by the TDL (Time-Dependent Logistic) model given by 0 < hTDL(t |α,β, x) ≤ 1,
for all t > 0. This fact led to the incorporation of the parameter λ > 0 into the
hazard function and the consequent removal of β0 from the model.

The evolution of the TDL model to the GTDL model is the inclusion of the
parameter λ in the TDL model with the objective that the hazard function is not
limited in the interval (0,1). Mackenzie (2002) justifies the removal of the pa-
rameter β0 due to the inclusion of λ, because the role of the parameters are inter-
changeable, so only one parameter is needed in the model. Louzada-Neto et al.
(2010) presented a Bayesian approach for the GTDL model and Mackenzie (1997)
used this model when the data set presents recurrent events.

2.2 GTDL frailty model

From the GTDL model given in the equation (2.1), the hazard function of the ith
individual with the frailty term vi multiplicative is given by

hi(t |α,β, λ, vi) = vi

λ exp(αt + x′
iβ)

1 + exp(αt + x′
iβ)

, (2.4)

interpreted as the conditional hazard function of the ith individual given vi . The
conditional survival function is given by

Si(t |α,β, λ, vi) =
(

1 + exp(αt + x′
iβ)

1 + exp(x′
iβ)

)−λvi/α

. (2.5)

Note that, if we build the likelihood function using the hazard and survival func-
tions given in (2.4) and (2.5), respectively, would have a likelihood function with
more parameters to be estimated than observations. Moreover, we assume that the
frailty vi is a random variable independent and identically distributed with density
function gamma(1/θ,1/θ) (see Wienke, 2011). This parametrization is considered
to obtain E(vi) = 1 and Var(vi) = θ . The unconditional survival function is given
by

S(t) =
∫ ∞

0
S(t |α,β, λ, vi)f (vi) dvi,

where f (vi) is the probability density function of the gamma. Giving a function
f (x), the Laplace transforming considers a function of real argument s is defined
as

Q(s) =
∫ ∞

0
e−sxf (x) dx. (2.6)

The reason why the Laplace transform is very useful in this situation is because
it has the same shape as the unconditional survival function. In the equation (2.6),
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suppose f (x) is the density function of the frailty variable V and s is the cumulated
hazard function H(t). Then we obtain,

S(t) =
∫ ∞

0
e−H(t)vf (v) dv = Q

(
H(t)

)
.

The Laplace transform of the gamma(1/θ,1/θ), considering s a real argument,
is given by

Q(s) =
(

1/θ

1/θ + s

)1/θ

= (1 + θs)−1/θ . (2.7)

Substituting s = H(t) in the equation (2.7), we obtain the unconditional survival
function, given by

S(t |α,β, λ, θ) =
[
1 + λθ

α
log

(
1 + exp(αt + x′β)

1 + exp(x′β)

)]−1/θ

, (2.8)

and the correspondent hazard function is given by

h(t |α,β, λ, θ) = λ exp
(
αt + x′β

)
[1 + λθ

α
log(

1+exp(αt+x′β)
1+exp(x′β)

)](1 + exp(αt + x′β))
. (2.9)

The hazard function given in (2.9) takes unimodal form. The cure fraction, p,
of the survival function given in (2.8), is given by

p =
[
1 + λθ

α
ln

(
1

1 + exp(x′β)

)]−1/α

,

that is regulated by a regression model using covariates that may or may not be
different from those used in the regression model of the hazard.

2.3 Inference

Let T be a random variable representing the failure time of the unit i. The like-
lihood function for the censored data is constructed from the equations (2.8) and
(2.9) and is given by

L(α,β, λ, θ |dados) =
n∏

i=1

[
h(ti;λ,α,β, θ)

]δi
[
S(ti;λ,α,β, θ)

]

=
n∏

i=1

[
λ exp(αt + x′β)

1 + exp(αt + x′β)

]δi

(2.10)

×
n∏

i=1

[
1 + λθ

α
log

(
1 + exp(αt + x′β)

1 + exp(x′β)

)]−(1/θ+δi )

,

where δi is a indicator variable of censoring, assuming 1 for observed failure and 0
for censoring.
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Denoting l(α,β, λ, θ |data) = log(L(α,β, λ, θ |data)), we obtain

l(α,β, λ, θ |data) = log(λ)

n∑
i=1

δi +
n∑

i=1

δi

(
x′β + αti

)

−
n∑

i=1

δi log
(
1 + exp

(
αt + x′β

))
(2.11)

−
n∑

i=1

(δi + 1/θ)

{
log

[
1 + θλ

α
log

(
1 + exp(αt + x′β)

1 + exp(x′β)

)]}
.

The maximum likelihood estimates (MLEs) are obtained by direct maximiza-
tion of equation (2.10). The asymptotic confidence intervals are obtained by con-
sidering the maximum likelihood estimates and the inverse of the observed infor-
mation matrix.

Model comparison between GTDL and GTDL frailty models is made by con-
sidering the Akaike information criterion (AIC) (Akaike, 1974) and Bayesian
information criterion (BIC) (Schwarz, 1978). For the GTDL frailty model the
AIC and BIC criteria are given, respectively, by −2l(α̂, β̂, λ̂, θ̂ |dados) + 2q and
−2l(α̂, β̂, λ̂, θ̂ |dados) + q log(n), where (α̂, β̂, λ̂, θ̂ ) denotes the MLE, q is the
number of parameters in the model and n is the size sample.

3 Simulation study

The simulation study main concern is to assess the bias and mean squared error
(MSE) of the MLEs as well as the coverage probabilities of the asymptotic confi-
dence intervals for the parameters of the GTDL frailty model.

We generated 1000 samples for each sample size (n = 50,100,300 and 500).
The parameters were fixed at α = 0.10, β = −3.00, λ = 0.50 and θ = 0.50. A
dummy covariate was generate from a Bernoulli distribution with success proba-
bility equal to 0.50. The censored times were generated from an exponential dis-
tribution with parameter equals to 110 for 10% of censoring and equal to 27 for
30% of censoring. For each sample, we obtain the MLEs, calculate their bias and
MSEs, and the asymptotic 95% confidence intervals. We check if the value of the
true parameter was contained in the confidence interval and withheld the number
of times this occurs. Thus, the coverage probability was found as the quotient be-
tween the number of intervals containing the true parameter value and the total
number of intervals constructed, here equals to 1000.

The bias and MSEs are presented in the Table 1. The bias and MSEs decrease
tending to zero when the sample size increases.

Figure 1 shows the empirical coverage probabilities according to each sample
size and the different censoring percentages. In the figure, the two black horizontal
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Table 1 Bias and MSE of the MLEs for 0% / 10% / 30% of censoring

Bias MSE

Size Censoring α β θ λ α β θ λ

n = 50 0 −0.007 0.048 1.57 0.051 0.005 0.495 13.444 0.129
10 −0.016 0.055 1.731 0.066 0.011 0.625 15.882 0.133
30 −0.047 0.338 2.218 0.046 0.401 1.524 21.440 0.143

n = 100 0 −0.006 0.058 0.396 0.029 0.002 0.223 2.350 0.061
10 −0.004 0.032 0.650 0.029 0.002 0.261 4.414 0.066
30 −0.008 0.050 0.850 0.035 0.003 0.308 6.500 0.070

n = 300 0 −0.001 0.013 0.064 0.004 0.000 0.070 0.064 0.018
10 −0.001 0.003 0.080 0.015 0.000 0.079 0.090 0.018
30 −0.002 0.020 0.109 0.006 0.000 0.101 0.245 0.023

n = 500 0 0.000 −0.002 0.027 0.006 0.000 0.046 0.032 0.012
10 0.000 0.005 0.059 0.007 0.000 0.046 0.05 0.011
30 0.000 0.006 0.071 0.006 0.000 0.053 0.084 0.014

lines represent the lower and upper limits of 95% confidence interval of the nom-
inal coverage probability. The empirical coverages are closer to the nominal ones
for increasing sample sizes, but the empirical coverage probability for θ is higher
than expected.

Now we turn our interest to discover the behavior of the GTDL model and the
GTDL model with fragility when an important covariate is ignored in the esti-
mation procedure by performing a simulation study with different sample sizes.
Lifetimes were generated from the GTDL model assuming α = 0.1, β1 = −3,
β2 = −1 and λ = 0.5, with two covariates were considered, X1 was generated
from a binomial distribution with p = 0.5 and X2 was generated from a stan-
dard normal distribution. We then fitted both models using only one covariate at a
time. The idea is to verify if the models are be able to capture information from
an important covariate with is purposely left out of the model fit. The procedure
was repeated 1000 times for each set up. The mean of the MLEs are presented
in Table 2. Clearly the estimates obtained via the GTDL model with fragility are
closer to the true parameter values. We were expecting such result since the GTDL
model with frailty aims to capture information from important covariate that were
not observed.

4 Lung cancer data

In this section, we illustrated our model applied to a real data set. The dataset con-
sisting of a population-based prospective study of incident cases of lung cancer
diagnosed in Northern Ireland in one year (Wilkinson, 1995). The study was con-
ducted between 01/10/1991 and 30/09/1992. For the analysis, we included only
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Figure 1 Probability of coverage of the 95% confidence intervals for α, β , θ and λ.

Table 2 Mean of the MLEs of the GTDL with frailty/GTDL

n θ α β λ

with X1
50 0.095/− − − 0.061/0.077 −2.514/−2.692 0.466/0.519

100 0.095/− − − 0.054/0.068 −2.470/−2.649 0.468/0.513
300 0.073/− − − 0.054/0.064 −2.484/−2.613 0.461/0.493
500 0.077/− − − 0.051/0.061 −2.470/−2.607 0.457/0.489

with X2
50 0.056/− − − 0.046/0.051 −0.967/−1.004 0.221/0.232

100 0.044/− − − 0.034/0.038 −0.951/−0.997 0.222/0.231
300 0.013/− − − 0.030/0.032 −0.912/−0.925 0.212/0.217
500 0.077/− − − 0.030/0.033 −0.950/−0.958 0.214/0.234
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Table 3 Information of the covariates

Covariate Type Representation

Age (in years) Continuous β1
Sex Binary β2
Treatment group Categorical β3, β4, β5 and β6
WHO status Categorical β7, β8, β9 and β10
Cell type Categorical β11, β12 and β13
Sodium level Categorical β14
Albumen level Categorical β15
Metastases Categorical β16 and β17
Smoking Categorical β18 and β19

individuals who had information on all covariates, and therefore, we analyzed the
lifetimes of 751 patients (in months). The observed covariates, type and represen-
tation are presented in Table 3 according to the dummying structuring.

The cumulative log-hazard plot in Figures 2 indicates non-proportionality for
the covariates: treatment, WHO status, cell type, metastasis and smoking, where
H(t) was estimated by using the usual Nelson–Aalen–Breslow estimator.

Besides the covariates in Table 3, other factors related to lung cancer lifetime
are certain chemical agents, dietary factors, chronic obstructive pulmonary disease,
genetic factors and family history of lung cancer (Instituto Nacional do Câncer
José Alencar Gomes da Silva, 2014). All these factors were not measured, moti-
vating for the use of the proposed GTDL frailty model in order to capture the in-
fluence of such factors. Table 4 presents the MLEs, their standard deviation (SD)
and 95% confidence intervals (CI) based on the fitting of the GTDL model and the
GTDL frailty model. The natural consequence of not considering the presence of
the frailty is the underestimation of the SD and consequently the underestimation
of the correspondent CI width. Note that the parameter that measure the hetero-
geneity (θ ) is significant. Further note that the covariate parameters β4 and β5
related to the type of treatment, β11 and β13 related to the cell type, β16 related to
the presence of metastases, and β18 and β19 related to the use of tobacco are not
significant.

Table 3 also shows the AIC and BIC model comparison criteria for the two
fitted models together with the value of the log-likelihood values calculated on the
MSEs. Both criteria indicate evidence in favor to the GTDL frailty model.

5 Final comments

In this paper, we consider an extension of GTDL model, the GTDL frailty model,
finding its hazard, survival and density functions. The simulation study shows that
the MLEs are unbiased, the MSEs decrease with the increasing of the sample size
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Figure 2 Cumulative log-hazard plots for the covariates: treatment in (a), WHO status in (b), cell
type in (c), metastases in (d) and smoking in (e).
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Table 4 Results of fitting the GTDL frailty and GTDL models

GTDL Frailty Model GTDL Model

Parameters MLE SD CI (95%) MLE SD CI (95%)

θ 0.598 0.128 (0.347; 0.849)
α 0.139 0.029 (0.082; 0.195) 0.016 0.013 (−0.011; 0.043)
β3 1.718 0.452 (0.833; 2.604) 1.087 0.327 (0.446; 1.728)
β4 −0.145 0.499 (−1.122; 0.832) −0.172 0.385 (−0.927; 0.583)
β5 0.756 0.428 (−0.083; 1.595) 0.328 0.301 (−0.261; 0.918)
β6 1.185 0.441 (0.320; 2.049) 0.781 0.320 (0.153; 1.409)
β7 −4.119 0.566 (−5.228; −3.010) −3.142 0.373 (−3.873; −2.412)
β8 −3.979 0.537 (−5.032; −2.927) −2.984 0.340 (−3.650; −2.318)
β9 −3.207 0.517 (−4.221; −2.193) −2.517 0.334 (−3.170; −1.864)
β10 −2.117 0.571 (−3.236; −0.997) −1.790 0.357 (−2.489; −1.091)
β11 −0.180 0.187 (−0.546; 0.185) −0.233 0.131 (−0.489; 0.023)
β12 1.094 0.345 (0.418; 1.770) 0.797 0.248 (0.311; 1.282)
β13 0.024 0.226 (−0.419; 0.467) 0.129 0.169 (−0.202; 0.461)
β14 −0.463 0.154 (−0.764; −0.161) −0.366 0.110 (−0.581; −0.151)
β15 −0.767 0.167 (−1.094; −0.442) −0.524 0.115 (−0.749; −0.299)
β16 −0.311 0.231 (−0.7626; 0.141) −0.289 0.164 (−0.610; 0.032)
β17 0.638 0.191 (0.264; 1.012) 0.520 0.136 (0.253; 0.787)
β18 −0.137 0.266 (−0.659; 0.384) −0.236 0.187 (−0.602; 0.131)
β19 0.079 0.154 (−0.223; 0.381) 0.132 0.110 (−0.083; 0.347)
λ 1.413 0.392 (0.645; 2.181) 1.082 0.233 (0.6256; 01.538)

log like −1596.52 −1613.19
AIC 3233.04 3264.39
BIC 3325.49 3390.22

and that for samples of reasonable size the coverage probabilities are close to the
nominal. The application on the real data shows that the GTDL frailty model fitted
better than the model without the frailty term. The fact that θ is significant indicates
that not factors observed have influence on the lifetimes.

We can conclude that the use of the model without frailty can lead to wrong
interpretations. The parameter α, which measure the effect of the time in the GTDL
frailty model, is significant and positive, then we have the effect of increasing the
individual hazard function, anticipating the occurrence of failure, which does not
happen in the model without frailty.

Although model comparison between GTDL and GTDL frailty models made by
considering the AIC and the BIC, a hypothesis test could be useful to decide be-
tween the models. However, the asymptotic distribution of the test statistic should
be carefully addressed since the hypothesis in this case is on the boundary of the
parameter space. This matter should be investigated further (see Wienke, 2011).

In this paper, GTDL models with frailty are used to capture information from
important covariates that are missing, however, at least in principle, it can be
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adapted for recurrent event data in order to describe the dependence among the
individual lifetimes, as well as for lifetime data in presence of long-term survivals.
Such extension is however not within the scope of this paper.
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