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1. Introduction. In a recent paper(:) the author discussed various prop-

erties of the Walsh functions |i^n(x)} and attempted to exhibit the close

analogy between them and the exponentials j exp 2irinx}. This analogy was

seen to stem from the fact that each system is essentially the character

group of a certain compact commutative group, and that it is possible to

set up a reasonably faithful correspondence between the two groups. It is

natural to ask whether the analogy can be extended to the system

{exp 27rfyx}, that is, whether the Walsh functions can be imbedded in a

larger class {^¡,(x)} so as to preserve most of the properties of the exponential

which are desirable and useful in analysis. This question is answered in the

affirmative here, and again group-theoretic considerations play an important

role.

In §2 we construct a topological field % analogous to the reals, and show

that the characters of the additive group F of % are generated by means of

a single character and the multiplication in g. If Xi(*) is this character, and

X an arbitrary character, there is a unique yGF such that x(*) =Xi(5'*)-

The correspondence y<->x is indeed an isomorphism between F and its char-

acter group 3E. It follows that ï may be made into a field isomorphic with g.

The relation 7=3£ may also be deduced from T^GXChar G, where G is the

dyadic group defined in WF(§2), but the analogy with the reals is somewhat

obscured by the direct product decomposition of F, the analogue of which

does not exist for the reals. The relevant facts are that there is a homo-

morphism a of F on G, the kernel of which is isomorphic with Char G, and

that 36 contains a subgroup X' isomorphic with Char G, defined by the cor-

respondence xGChar G—>x'(*)—x(«(x)).

We should remark here that the group F and its character group X have

been discussed briefly by Paley and Wiener(2), without, however, any men-

tion of the field or of the connection with the Walsh functions. It is quite

likely, in view of Paley's work on the Walsh functions(3), that they were

aware of the connection.
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In §3 we define a continuous mapping X of g onto the non-negative reals

and an "inverse" p which is made unique by excluding the elements of a set

S in g as images under u. The set S plays a necessarily exceptional part in

the whole discussion. The generalized Walsh functions are defined by

XÍf*i%)), x£36, 0=:x<=°. Those x£3£ which correspond to yG& under the

isomorphism ¡5=36 are denoted by ip*(x), y=\(y); the others are denoted

by ipyix), y=X(y). Several alternate definitions of the generalized Walsh

functions are derived, and it is shown that they satisfy a functional equation

similar to fix+y) =/(x)/(y). In §4 we prove that they are the only non-

trivial measurable solutions of this functional equation, and in §5 we prove

that the only periodic ^(x) are those for which y is a dyadic rational, and

that no Tp*ix) is periodic.

The last section contains the derivation of an invariant integral on (0, °° ),

corresponding to the formula

+C0

/-t-00 /.-HOfix + a)dx =   I       fix)dx.
-CO J —CO

A similar result for (0, 1) has already been derived in WF (§2). Next we prove

the Riemann-Lebesgue Theorem,

lim   f  Tj,vix)fix)dx = 0
I/—,«,   J n

for/(x) GLiO, » ). This is followed by a proof of the Fourier Integral Theorem

and a statement of the Poisson Formula for the generalized Walsh functions.

2. The field % and the characters of F. Let % denote the field of formal

power series

(1) x =  22 Xn£",
TlSiV

in which TV is an integer (positive, negative, or zero) which may vary from

one element to another; the coefficients x„ are chosen from the field with two

elements 0, 1. We define a neighborhood of zero as the set of x for which TV

has a fixed value. With this definition g becomes a topological field which is

totally disconnected, locally compact but not compact. We denote the

additive group of g by F, and its character group by 36. Let G be the subgroup

of 7 consisting of all x lor which TV=1. It is easily verified that G is iso-

morphic with the dyadic group defined in WF (§2), and that the mapping

a which carries the element x = ^neNXnt" into a(x) = 22«äiX„fn is a homo-

morphism of F on G. The kernel is a discrete group isomorphic with the char-

acter group of G(4), and in fact T^GXChar G. It follows that Ï^Char G

(4) To every y= Xiaoy»?" ¡n the kernel there corresponds the integer S„§o:y-n2n

= X2"*, re*<w*+i.For xGG, definexn(i) = ( — l)*».Then the correspondence y—»IIx»^*) 's t'ie

required isomorphism.
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XChar (Char G)=Char GXG=F. We shall now investigate this isomorphism

more closely.

Every xGï is completely determined by the sequence {xG"")}- Since

£""—»() as »—»oo, xG"")-^l, so x(f") = l for n>Mix) + l. Hence, with each x

we can associate the sequence of O's and l's {yn}, defined by ( — l)v" = xiÇ1~n),

and for n< —Mix), yn = 0. Define yGiS by

y =    22   y»f "•
në-M(x)

Now, for any element xG$ we have

x(*) = X[ 2>»fn)

= IIx(*»r)
nèN

II     (x(r-))-

n   (-D^-
2VSnëAf(x) + l

=   ("I)*,

where

2l = 22 tfnVl-T,.
i\rSnSAT(x)+l

But Zi (mod 2) is the coefficient of f in the product xy = z, and ( —l)*1 is

clearly a character Xi(z)- Hence

(2) xix) = xiixy).

Thus, corresponding to each xGï there is a yG% such that (2) holds for all

xG%- If y is given, then xi%) as defined by (2) is a character. The one-to-one

correspondence thus established between 3É and F is easily seen to be an iso-

morphism. 36 can be made into a field isomorphic to g by defining the field

product (x*x') ix)=Xii%yy') if X*-*y and x'^-f-
3. Definition and properties of the generalized Walsh functions. Given

xG\§, we define

(3) x(x) = x( 22 *.r) - 22 **t- = *•
\niN / n^N

For 0^x< oo, we define the inverse mapping ¿u(x) by (3), choosing the finite

expansion if x is a dyadic rational. The mapping a is into %, omitting only

the exceptional set @ consisting of elements with coefficients 1 from some point

on. We have
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(4) Hßix)) = x (0 ^ x < oo),

and

(5) m(X(x)) = x (x £ (8).

We define the transforms of the field operations:

(6) x © y = XOu(x) + ^(y)),

(7) xo y = \(ßix)uiy)).

The operation © is closely related to the + defined in WF (§2); in fact,

(8) (x © y) — (x + y) = integer.

It follows from (8) that

(9) faix © y) = faix + y),

since faix) has period 1. We recall [WF; (2.12)] that

(10) faix + y) = faix)faiy)

unless the dyadic expansions of x and y differ from some point on; in our

present notation, unless ¿u(x)+;u(y) £G?. Also, by definition [WF, §l],

(11) ^m®„(x)   = tmix)faix).

We shall now define a generalization of the Walsh functions. Since the

faix) are the transforms of the characters of G, it is natural to consider the

transforms of the characters of g. Let x£ï be given. By (2), there is a y £55

such that

(12) x(*) = Xiixy)-

Let y=~Kiy), and define the functions

fa(x) = xißix)) = Xiivix)y) if y € %
(13)

He

faix) = x(m(*)) = xiiKx)y) if y £ @.

For the present, we restrict ourselves to a consideration of fa-ix). In order to

justify the use the symbol, we shall now prove that definition (13) yields the

Walsh function ^„(x) whenever y is an integer », that is, that

(14) xMx)uin)) = faix).

Since (14) is trivial for n = 0, we may assume that

„ = 2*i + 2*2 + • • • + 2*v ih> k2> - • ■ > h^ 0).

Then

/*(») = rki + rh-i— + r*-
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and

F

XiGu(x)m(»)) = Il Xi(M(*)r~*0
r-1

= ÎK-i)%+i
r-1

= ilfah'ix)
r-1

=  &*l©i*»©...©2*'0)

=  *.(*),

which proves (14). Thus (13) is a valid generalization of the Walsh functions.

We shall now derive a somewhat more useful expression for ^„(x), de-

pending only on the original set {fat(x)}. If

ß(x) = 22 x„'c»,       /i(y) = 22 y<»ïm>

then

Xi(ß(x)u(y)) = (-1)1,
where

2i = 23 xnym = z + z',    z = 22 *n;y>»>     2' = 22 ^y™.
m+n=l náO máO

and m+n = l in both sums. It is easy to see that

(-1)' = xÁK[x])n(y)),      (-1)'' = xi(v(xM[y])),

the square brackets denoting the greatest integer function. Hence, by (14),

(is) faix) = fa.x]iy)fa.Ax).

It is interesting to observe that

(16) faix) = faix o y) ißixMy) £ (8).

For

xiißix)ßiy)) = Xl{rt(X(/*(*)r»(y)))}

= Xi{ßixoy)}

= faix o y).

It is now fairly easy to show that

(17) faix © x') = faix)faix') (M(x) + „(«0 £ @).

For, by (15),

(18) faix © x') = *w(* © x')tlx®x>)iy)-
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By (9) and (10), we have

(19) fa_v](x © x') = fa.y^(x)fa_v}(x');

also, since/u(¡c)+/*(*')£(£, [*©#']= [x]® [x'j, so that, from (11),

(20) ^ix®x'\iy) = faixiiy)faix']iy)-

Equations (18), (19), (20), and (15) now yield the required result (17).

It remains to consider those characters generated by elements of (5, and

their transforms fa?ix) as given by (13). Let

y = 22 y«fn G (g,       X(y) = y.

By the nature of y, for all sufficiently large TV, and for all / such that y — 2~N

<t<y, we have

tn = y» in ^ A7),

íM ^ y„ (« > A7),

where the tn are of course determined by

ßit) = E un.

Hence

y + ßit) = Z (y» - Of
n>W

and

Zl  =     22     *m(yn  —  tn)
m+n-»l

depends only on those xm with m < 1 — TV; indeed zx = 0 if xm = 0 for m < 1 — TV.

This is the case for all x= ^m^i-NXm2~m<2N. It follows that

(21) xMx)iy + ßit))) = 1 (0^<2")

But the left member of (21) is equal to

(22) xiißix)y)xiißix)ßit)) = tîix)faix).

Therefore fa?ix) coincides with ^((x) on any given interval (0, 2^) if t is less

than but sufficiently close to y. We have therefore proved that

(23) £(*)  =    "m   faix).
t—ll—O

We have also the result corresponding to (17),

(24) £(« © x') = ^(x)^(x') Gu(x) + „(*0 £ @).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



72 N. J. FINE [July

4. Solution of a functional equation. In the preceding section we obtained

the solutions fa-ix), fa?ix) for the functional equation

(25) fx © x') = /(x)/(x') (m(*) + ßix') £ g).

This was done by considering the transforms of all the characters of g. We

shall now show that there are no other nontrivial measurable solutions.

Let/(x), not equivalent to zero, be a measurable solution of (25). Taking

x'=xinthat equation, /(0) —fix), so /(O)?^. Taking x = 0,/(0) = 1 ; hence

fix) = ± 1 and fix) is integrable over any finite range. Define Fix) =/(x) in

0í£x<1, Fix+l) =7?(x) for all x, and consider the Walsh-Fourier coefficients

{cn} of Fix). Clearly not all the c„ vanish, for then we would have Fix) =/(x)

equivalent to zero in 0^x<l, by the completeness of the Walsh system;

since/(TV+x) =/(TV©x) for all positive integers TV and all x in 0^x<l, we

would have/(TV+x) =/(TV)/(x) =0 almost everywhere, which is ruled out by

assumption.

Let cn be a nonzero Fourier coefficient of Fix). Then for every fixed a,

0^a<l,

Cn =  I    faix)fx)dx =  I    faix + a)fx + a)dx
•7 o «7 o

by the invariance of the Lebesgue integral [WF, Theorem I]. But for almost

all x in (0, 1), we have fatix+a) =fa.ix)fa.ia) by (10), and /(x+a) =/(xffia)

=/(x)/(a) by (25). Hence

Cn =  j    faix)faia)fix)fia)dx = cnfaia)fia).
do

Cancelling e„, we get

fa) = faia) (0 = a < 1).

Hence, for all x^0 with fractional part a,

fx) = /([*] + a) = /([*] © a) = f[x]) faia) = /([x])^„(x).

If [x] =2*i + 2*»+ • • • + 2k\ h>k2> ■ ■ ■ >kv^0,

/([x])=/(2*0/(2*2)---/(2*,),

so/([x]) is completely determined by the sequence {/(2n)}, «2i0. Let us

define IGG by the equations (-l)6»«=/(2"), «^0. If 5£(g, then l=p(b),

and

f({x]) = faHb) • • • faHb) =fa_xiib),

so that, defining y = n+b, we have

/(*) = fa.x\ib)4>nix) = fa_xiiy)fa.y]ix) = ^„(a;).
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If 5£S and b = \(h), then for any given M we can find t = tiM) <b such that

/([x]) ='r'[x](i) for all x<Tlf. Since /—»¿ as M—»oo, we have

/([*])   =    lim   fa_x]it).
t-,b-0

Again defining y = n + b, u = n+t,we have

/(*) = faix)   lim   ^[i(](0
l->4-0

=   lim   irqu](*#[*](«)
(-•6-0

=    lim   fa>ix)

= fa^ix).
This proves the stated result and shows that there is a one-to-one cor-

respondence between the characters of F and the nontrivial measurable solu-

tions of (25).

5. Periodicity. In this section we prove the following theorem:

(i) If y = m- 2~n, where m is odd, n an arbitrary integer, then faix) has the

exact period 2".

(ii) If y is not a dyadic rational, faix) is not periodic; fa?ix) is never

periodic.

To prove (i), we observe that for all x, y,

(26) fa»yix) = fa(2*x).

This follows from

fa-vix) = xiißi2ny)ßix)) = Xiißiy)ßi2nx)) = fa-i2"x).

If we set y = m-2_n, x = 2~nu, (26) becomes

fain) = fai2~nu).

Since the exact period of faix) =faix)fakix) is 1, the exact period of faix) is
2".

To prove (ii), we write faix) = </>(x)/(x), where fax) has period 1 and/(x)

= (/[x]) satisfies

fib ®l)= fk)fl)

for all integers k, 1^0, and/(0) =1. If fa-ix) is periodic, the period must be

rational, so that/(&) has an integral period P. A similar conclusion holds for

faix). In both cases we have f2N) = — 1 for all TV in a certain infinite set

93. Hence we can find a residue c (mod P) which is assumed by P distinct

values 2N\ ■ ■ ■ , 21" (TV,£93). If s = 2»i+ ■ ■ ■ +2^, then 5=0 (mod P),

so f{s) = 1. On the other hand, fs) =/(2^) • • • /(2**) = ( -1)', so P is even,
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say P = 2P'. Now define gik) =f2k). Clearly g has the period P' and

gik © I) = /(2(Ä © 0) = f2k © 2/) = f2k)f(2l) = gik)gil).

Finally, g(2N~l) =fi2N) = — 1 for all TVS; 1 in 93. By the same argument as was

used above, we see that P' is even, say P' = 2P". In this way we obtain an

infinite sequence of positive integers P>P'>P"> • • • . This contradiction

proves (ii).

6. Analytic results. In this section we shall prove several results which

have direct analogues in the trigonometric theory.

We begin with the invariance of the integral :

/»CO p CO

fx © a)dx =   I    fx)dx.
o «7 o

This follows directly from the fact that Ta(x) =xffia is a measure-preserving

transformation on every interval (0, 2"), 2">a(5).

Next we prove the Riemann-Lebesgue Theorem: If fix) is integrable on

(0,  «>), then

(28) lim   f   fa.(x)f(x)dx = 0.
7/-.O0     J 0

Write

n CO /» n ». CO

(29) ^„(x)/(x)áx]=   I    fa.(x)f(x)dx +  I    fa.(x)f(x)dx = In + Jn.
Jo do J n

We may choose n so that for all y,

Xoo
I /(x) | dx < e/2.

Now

n—1     /» fc+1 n—1 y» A+l

in = 23 I    fa.(x)fx)dx = 22^*(y) I    ^ti/i(*)/(*)¿*.
*-o «7 * fc-o •/ *

n-l I    p 4+1

(30) Un|^Z fa_vAx)f(x)dx .
*=o I •/ *

On the right we have a sum of a fixed number of Fourier coefficients of order

[y]. We may choose y so large that this sum is less than e/2, so that

|  In |   + | Jn |   <  e,

which proves (28).

(5) For a detailed proof of a similar result for the transformation x+a on the unit interval,

see WF(§2).
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Finally we prove one form of the Fourier Integral Theorem. For the

corresponding trigonometric theorem we refer the reader to Zygmund's

Trigonometrical series, p. 306. It will be observed that a number of simplifica-

tions occur, so that the following proof differs from that of the trigonometric

theorem. In fact, we obtain a slightly stronger result.

Let us define

/*a

(31) /(«; «) =   I     <pv(u)dy,
J o

(32) Su(x) =   f   f(t)J(x © t; a)dt.
Jo

Let Iq denote the interval <¡ríSx<cz+l, where q is a non-negative integer. Assume

that f(t)/(l+t)GL(0, oo ). Let fq(t) be the function of period 1 which coincides

with f(t) on Iq, and let sn(x) be the nth partial sum of the Walsh-Fourier series

forfq(t). Then as ui—» oo ,'Sa(x) — .^(x) tends to zero uniformly for x£7",.

We require several lemmas.

Lemma 1. If b(u) is the characteristic function of 0^u<l, then

[0,1-1

J(u; u) = 5(u) 22 fa-(u) + fa»\(n)Ji[u\; w — [to]).

Proof.

7(w;co) =   I    faiy]iu)fa:u]iy)dy
J o

[cj]-1 n k+1¿1 — 1 n k+1 n (a

22 fa-i«) I       fa\u]iy)dy+  I     ipwiu)ipwiy)dy
k—0 J k J [u]

[oi] —1 y» U—[w]

5(«) 22 fai») + ^iu.](«) I        >/'iu](y)áy.
*=o «7 o

Lemma 2. For all n>0, |/(w; w) | <1/».

Proof. If 2má»<2m+1, and if ym is the number nearest to co of the form

p/2m, then by WF (§3, equation 3.8),

Jin; u) = | co - 7m| ^ 2-(m+1> < 1/w.

Lemma 3. J/ *£J, awd ^2^^4(2+1), then [x®t]^t/2.

Proof. Since ¿®x^/-x>/-(g+l) ^3//4, [x®t] ¡>3i/4—1 £f/2.

We begin our proof of the theorem by showing that the integral (32)

exists uniformly for x£7g. Choose M so that 2M^4iq+l). For t<2M, we

have |/(x©i; co) ( gco, from (31). For i = 2M, set u = x®t in Lemma 1 and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



76 N. J. FINE [July

observe that [u] >0, so that

1 2
| /(«; to) | = | /([«];« -  [to]) |  < yy S — >

[u\       t

by virtue of Lemmas 2 and 3. Thus So>(x) exists.

Next we show that S^ix) =S[M](x). Let [co] =». By Lemma 1,

n-l

7(x ©<;»)= ¿(x © /) 22 fa:ix ® t)
k=0

and ô(xffi/) is the characteristic function of Iq. Hence

i Î+1 n-l
/• g-t-I n— 1ft) 22 **(* © 0*

8 *=0

»—1 /» 9+1

= E fa-ix) I      fWkiOdt
fc«0 J q

=  Sn(*).

Now consider the^difference

/.CO *•  01

/(<) I   *»(* © Ody*
0 J n

/(/)       *,(* © <)¿y<0 + I     ft) I   >A„(x © Ody*
0 ** n J 2M J n

= /i + 72.

Choose Af to satisfy the condition of Lemma 3. Since for /^2M

I    fajix ® t)dy = J(x © t; to) - /(x © ¿; »)
•7 n

= /(x © i; to),

we see that I2 is the tail of the uniformly convergent integral (32). Hence we

can choose Af so large that \l2\ <e uniformly for x£J8. Finally,

, 2ÜÍI     /»o> /     p 2M \

/i|=|J    faix)}J     fit)fait)dtjdy

/, 2M ,
fit)fait)dt   ,

0 I

which tends to zero as a>—>°o, by the Riemann-Lebesgue Theorem. This

completes our proof.

II fit) GLiO, oo ), and the Walsh-Fourier series of/(i) converges to/(x) for
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t = x, we obtain

/»co p a

ft) j    fajix © t)dydt
0 ** 0

*»(*)  I    fa-it)ft)dtdy,
0 •-'  Ü

or

/(*) = lim   f   faix)Fiy)dy,
ta—»«   «/ 0

í(y) = f fait)fit)dt,
J 0

the usual double-integral form.

It seems clear that a fairly complete Fourier-Transform theory can be

developed for the generalized Walsh functions introduced here.

We close with the remark that it is possible to prove the Poisson Formula

00 00 s*  00

Í33) 22 «(*) - E f    gix)faix)dx,
k=0 n=0 J 0

with the usual assumptions on g(x). We shall omit the proof, which parallels

the classical one almost word-for-word.

We take this opportunity to note the following errata in WF:

p. 393, line —2, read (Dini-Lipschitz),

p. 395, equation (7.2), for DTix+u) read Drix+u),

p. 402, line 11, for (8.15) read (8.14).
In the following places, for + read +: p. 374, display; p. 376, display,

line —5, and line —4; p. 379, fifth display; p. 380, line 4, and line 5 through-
out; p. 382, line —7; p. 386, line 1; p. 393, display, line —6.

University of Pennsylvania,

Philadelphia, Pa.
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