THE GENERALIZED WALSH FUNCTIONS

BY
N. J. FINE

1. Introduction. In a recent paper(!) the author discussed various prop-
erties of the Walsh functions {¥a(x)} and attempted to exhibit the close
analogy between them and the exponentials {exp 21rinx}. This analogy was
seen to stem from the fact that each system is essentially the character
group of a certain compact commutative group, and that it is possible to
set up a reasonably faithful correspondence between the two groups. It is
natural to ask whether the analogy can be extended to the system
{exp 27r'iyx}, that is, whether the Walsh functions can be imbedded in a
larger class {{,(x) } so as to preserve most of the properties of the exponential
which are desirable and useful in analysis. This question is answered in the
affirmative here, and again group-theoretic considerations play an important
role.

In §2 we construct a topological field § analogous to the reals, and show
that the characters of the additive group F of § are generated by means of
a single character and the multiplication in §. If x1(£) is this character, and
x an arbitrary character, there is a unique §&F such that x(%) =x1(9%).
The correspondence §«»x is indeed an isomorphism between F and its char-
acter group %. It follows that ¥ may be made into a field isomorphic with .
The relation F=~% may also be deduced from F=~GX Char G, where G is the
dyadic group defined in WF(§2), but the analogy with the reals is somewhat
obscured by the direct product decomposition of F, the analogue of which
does not exist for the reals. The relevant facts are that there is a homo-
morphism a of F on G, the kernel of which is isomorphic with Char G, and
that ¥ contains a subgroup X'’ isomorphic with Char G, defined by the cor-
respondence x &Char G—x'(%) =x(a(%)).

We should remark here that the group F and its character group X have
been discussed briefly by Paley and Wiener(2), without, however, any men-
tion of the field or of the connection with the Walsh functions. It is quite
likely, in view of Paley’s work on the Walsh functions(®), that they were
aware of the connection.
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In §3 we define a continuous mapping N of § onto the non-negative reals
and an “inverse” u which is made unique by excluding the elements of a set
€ in § as images under u. The set € plays a necessarily exceptional part in
the whole discussion. The generalized Walsh functions are defined by
x(p(x)), xE%, 0=x< . Those xE% which correspond to &€ under the
isomorphism F=2¥ are denoted by ¢ (x), y=X\(j); the others are denoted
by ¥,(x), y=X(9). Several alternate definitions of the generalized Walsh
functions are derived, and it is shown that they satisfy a functional equation
similar to f(x+y) =f(x)f(v). In §4 we prove that they are the only non-
trivial measurable solutions of this functional equation, and in §5 we prove
that the only periodic ¥,(x) are those for which ¥ is a dyadic rational, and
that no ¥,;*(x) is periodic.

The last section contains the derivation of an invariant integral on (0, «),
corresponding to the formula

+0 o0
f(x 4+ a)dx = f(x)dx.
A similar result for (0, 1) has already been derived in WF (§2). Next we prove
the Riemann-Lebesgue Theorem,

lim Yy(x)f(x)dx = 0
v Jog
for f(x) €L(0, ). This is followed by a proof of the Fourier Integral Théorem
and a statement of the Poisson Formula for the generalized Walsh functions.

2. The field § and the characters of F. Let § denote the field of formal
power series
(1) x = Z ",

nZN

in which IV is an integer (positive, negative, or zero) which may vary from
one element to another; the coefficients x, are chosen from the field with two
elements 0, 1. We define a neighborhood of zero as the set of % for which ¥
has a fixed value. With this definition § becomes a topological field which is
totally disconnected, locally compact but not compact. We denote the
additive group of § by F, and its character group by X. Let G be the subgroup
of F consisting of all & for which N=1. It is easily verified that G is iso-
morphic with the dyadic group defined in WF (§2), and that the mapping
a which carries the element &= Y ,2n%.{" into a(£) = Y .21%.{" is a homo-
morphism of Fon G. The kernel is a discrete group isomorphic with the char-
acter group of G(%), and in fact F~GXChar G. It follows that ¥=2Char G

(*) To every = 2 .<oysi™ in the kernel there corresponds the integer 2 nzo¥-n2"
= 32", ny <mpy. For #C G, define xn(%) = (—1)%. Then the correspondence 9—>Hxnk(£) is the
required isomorphism.
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X Char (Char G)=2Char GXG=2F. We shall now investigate this isomorphism
more closely.

Every xEX is completely determined by the sequence {x(¢™)}. Since
"0 as n— o, x({™—1, so x(¢" =1 for n>M(x)+1. Hence, with each x
we can associate the sequence of 0’s and 1’s {y.}, defined by (—1)%=x({*"),
and for n<—M(x), y.=0. Define yE§ by

x(%) = x( > xns“”)

nZN

= JI x(zt™)
nZN

= II (x (™)==
N=asSM(x)+1

= H (— l)znﬂ—n
N=asSM(x)+1

= (_ 1)211

where
Z1 = Z XnY1—-ne.
NEnSM(x)+1

But z; (mod 2) is the coefficient of { in the product #j=3, and (—1) is
clearly a character xi(z). Hence

@ x(® = x:(%9).

Thus, corresponding to each x €X there is a §E&§ such that (2) holds for all
£EF. If 7 is given, then x(&) as defined by (2) is a character. The one-to-one
correspondence thus established between ¥ and F is easily seen to be an iso-
morphism. ¥ can be made into a field isomorphic to § by defining the field
product (x *x’) (%) =x1(#53") if x9 and x'7".

3. Definition and properties of the generalized Walsh functions. Given
ZEF, we define

3) &) = x( > x,.;"‘) =D 227" = x.

nZN n=N

For 0 =x < =, we define the inverse mapping u(x) by (3), choosing the finite
expansion if x is a dyadic rational. The mapping u is into §, omitting only
the exceptional set € consisting of elements with coefficients 1 from some point
on. We have
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4) Mu(x)) = = (0= 2x2< ),
and

©) B(\(#) = & (z & 6).
We define the transforms of the field operations:

(6) @y = NMu(x) + u(y),

™ x0y = Mu(x)u(y)).

The operation @ is closely related to the 4 defined in WF (§2); in fact,
(8) (x ® y) — (x + y) = integer.

It follows from (8) that

9) Ya(x @ 9) = ¥u(z + 3),

since Ya(x) has period 1. We recall [WF; (2.12)] that

(10) ¥a(x + ) = ¥a(2W¥a()

unless the dyadic expansions of x and y differ from some point on; in our
present notation, unless u(x)+u(y) €E. Also, by definition [WF, §1],

(11) \l’m@n(x) = ¥Ym(2)¥a(x).

We shall now define a generalization of the Walsh functions. Since the
¥a(x) are the transforms of the characters of G, it is natural to consider the
transforms of the characters of §. Let x €% be given. By (2), there is a §EF
such that

(12) x(®) = x1(29).

Let y=A(9), and define the functions

(13) Vu(®) = x(u(#) = x1(u(%)9) ify & G,
Va(®) = x(u(®) = x:(w(%)7) ifj € G

For the present, we restrict ourselves to a consideration of ¥,(x). In order to
justify the use the symbol, we shall now prove that definition (13) yields the
Walsh function ¥,(x) whenever y is an integer %, that is, that

(14) x1(u(x)u(n)) = ¥n().
Since (14) is trivial for =0, we may assume that

no= 2k 2k 4 ... 4 2k (By> ka> ">k =0).
Then

pn) =R R R
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and

xa(u(@)u(n)) = II xa(u(@)e)
= I'I1 (—l)zkr-l-l

- II Yobe()

= \bgh@gkz@ eee ®2ﬁ, (x)
= Yu(%),

which proves (14). Thus (13) is a valid generalization of the Walsh functions.
We shall now derive a somewhat more useful expression for ¥,(x), de-
pending only on the original set {y.(x)}. If

u(x) = Z Zal", M(y) = Z Ym ™,
then

x1(u(2)u(y)) = (—1)3,
where

B= O T¥m=2+3, Z=0 ZTn¥m & = D TnYm
m-n=l ns0 mS0

and m+#n=1 in both sums. It is easy to see that
(=% = xa@([=De(),  (=D7 = xa@w@)r([y])),
the square brackets denoting the greatest integer function. Hence, by (14),

(15) ¥u(2) = Y (¥ ().
It is interesting to observe that
(16) ¥y(x) = ¥1(x0 ) (u(2)u(y) & €).
For .
x1w@p) = xa{pO@@)r()))}

= xi{u(zo 3}

= Y1(x 0 y).
It is now fairly easy to show that
an Yu(z © &) = Yy(2)¥(a) (u(%) + n(=) & ©).
For, by (15),
(18) Yoz ® o) = Y1(x © ¥ Wi=@1(3).
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By (9) and (10), we have

(19 Yin(x @ ') = Y@ m();
also, since u(x)+u(x")€&EE, [x®x'] = [x]® [x’], so that, from (11),
(20) Vi@ =1(3) = Yra(M¥11(9)-

Equations (18), (19), (20), and (15) now yield the required result (17).
It remains to consider those characters generated by elements of €, and
their transforms ¥,;*(x) as given by (13). Let

F=2 " EE A =9

By the nature of 4, for all sufficiently large N, and for all ¢ such that y—2-¥
<t<y, we have

bn = Yn (n = N),
b £ yn (n > N),
where the ¢, are of course determined by
B(O) = 22 tag™
Hence

J 4 w) = 20 (ya — ta)i"

a>N
and

% = E xm(yn - tn)

Mmt-ne=l

depends only on those x,, with m <1 —N; indeed 2,=0 if x,,=0 for m <1—N,
This is the case for all x= Y nz1_y%.2~™ <2V, It follows that

(21) : x1(e(%) (3 + r@®)) =1 0=2z<2Y)
But the left member of (21) is equal to

(22) X1 (1D F)x2 (@) (@) = Yy(@)i().

Therefore ¥*(x) coincides with ¥(x) on any given interval (0, 2¥) if ¢ is less
than but sufficiently close to y. We have therefore proved that

(23) Vi(a) = lim ().
-0
We have also the result corresponding to (17),

(24) Vi(z ® #) = Yy(a)y(2) (u(x) + u(@) & 6).
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4. Solution of a functional equation. In the preceding section we obtained
the solutions ¥, (x), ¥, (x) for the functional equation

(25) f(z ® &) = f(*)f(«) (u(2) + n(=) & €).

This was done by considering the transforms of all the characters of §. We
shall now show that there are no other nontrivial measurable solutions.

Let f(x), not equivalent to zero, be a measurable solution of (25). Taking
x’=x in that equation, f(0) =f%(x), so f(0) #0. Taking x=0, f(0) =1; hence
f(x)==%1 and f(x) is integrable over any finite range. Define F(x)=f(x) in
0=<x<1, F(x+1) = F(x) for all x, and consider the Walsh-Fourier coefficients
{c,.} of F(x). Clearly not all the ¢, vanish, for then we would have F(x) =f(x)
equivalent to zero in 0=<x<1, by the completeness of the Walsh system;
since f(N+x) =f(N@x) for all positive integers NV and all x in 0=x<1, we
would have f(N+x) =f(N)f(x) =0 almost everywhere, which is ruled out by
assumption.

Let ¢, be a nonzero Fourier coefficient of F(x). Then for every fixed g,
0=a<l,

Cn = j;lup,.(x)f(x)dx = j;ltp,.(x + o)f(x + a)dx

by the invariance of the Lebesgue integral [WF, Theorem I]. But for almost
all x in (0, 1), we have ¥,(x+a) =¢.(x)¢.(a) by (10), and f(x+a) =f(xDa)
=f(x)f(a) by (25). Hence

1
o= [ W2 = @1

Cancelling ¢,, we get
f(@) = ¥n(a) 0=<a<1).
Hence, for all x>0 with fractional part a,
f(®) = f([z] + o) = f([#] ® o) = f([x])¥n(a) = f([5])¥a(2).
If [x]=20+2k4 -« 4+ 20 By >k> - - - >k 20,
=] = f@m)f(2%) - - - f(2%),
so f([x]) is completely determined by the sequence {f(2")}, #=0. Let us
gﬁcﬁlne bEG by the equations (—1)b+1=£(2"), n=0. If b&E, then b=pu(bd),
F&D) = 2 (@) - - - ¥abo(0) = Y1a1 (D),

so that, defining y=#n-+b, we have
() = Ya(0W¥n(2) = ¥y (x) = ¥u(x).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use




1950] THE GENERALIZED WALSH FUNCTIONS 73

If 5EE and b=X(}), then for any given M we can find ¢=¢(M) <b such that
F([x]) =¥14 (@) for all x<M. Since t—b as M—> =, we have

fUx]) = lim ¥a0).
t—b—0

Again defining y=n-+b, u=n-+1¢, we have
f(2) = ¥u(®) lim Y1)
t—b—0

Hm ) (2)¥ (21 (%)
t—b—0

lim ¢u(x)

#%—y—0

= Yy(9).

This proves the stated result and shows that there is a one-to-one cor-
respondence between the characters of F and the nontrivial measurable solu-
tions-of (25).

5. Periodicity. In this section we prove the following theorem:

(1) If y=m-2—", where m is odd, n an arbitrary integer, then Y,(x) has the
exact period 2™

(i) If v is not a dyadic rational, Yy,(x) is not periodic; ¥f(x) is never
pertodic.

To prove (i), we observe that for all x, v,

(26) Yory(2) = ¥y (27%).
This follows from
¥ory(%) = x1(u(2"y)u()) = x2(u(y)n(272)) = ¥y(2"x).
If we set y=m-2—", x=2""u, (26) becomes
¥y(u) = ¥m(27"u).
?ince the exact period of ¥m(x) =¢1(x)Ya(x) is 1, the exact period of ¥, (x) is

To prove (ii), we write ¥,(x) =¢(x)f(x), where ¢(x) has period 1 and f(x)
=(f[x]) satisfies

f(k® D) = f(B)f()

for all integers k, /=0, and f(0) =1. If ¢,(x) is periodic, the period must be
rational, so that f(k) has an integral period P. A similar conclusion holds for

F(x). In both cases we have f(2¥)= —1 for all N in a certain infinite set
8. Hence we can find a residue ¢ (mod P) which is assumed by P distinct
values 2¥1, - - - 2VP (N,€9). If s=2V14 ... 4+ 2¥P then s=0 (mod P),
so f(s) =1. On the other hand, f(s) =f(2¥1) - - - f(2¥P) =(—1)P, so P is even,
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say P=2P’. Now define g(k) =f(2k). Clearly g has the period P’ and
gk®l) = fQ2(k D) = f2k @ 2I) = f(2R)f(2) = g(k)g(®).

Finally, g(2¥—1) =f(2¥) = —1 for all N=1 in ¥B. By the same argument as was
used above, we see that P’ is even, say P’=2P’’. In this way we obtain an
infinite sequence of positive integers P>P’>P’’> . . . This contradiction
proves (ii).

6. Analytic results. In this section we shall prove several results which
have direct analogues in the trigonometric theory.

We begin with the invariance of the integral:

(27) fowf(x @ a)dx = fowf(x)dx.

This follows directly from the fact that To(x) =x @a is a measure-preserving
transformation on every interval (0, 27), 27 >a(5).
Next we prove the Riemann-Lebesgue Theorem: If f(x) is integrable on
(0, =), then :

(28) lim at//,,(x)f(x)dx = 0.

[1]
Write
(20) fmewm=f%mmwm+fVMMWM=h+h

We may choose 7 so that for all y,

|Jn|§fw|f(x)|dx<e/2.

Now
n—1 k+1 n—1 k+1
L= MW@M=Z%mf V(@) (@)dz,
k=0 k k=0 k
n—1 k+1
(30) | I.]| = kZ% Yin(x)f(x)dx|.

On the right we have a sum of a fixed number of Fourier coefficients of order
[y]. We may choose y so large that this sum is less than €/2, so that

| L] +17.] <«
which proves (28).

(%) For a detailed proof of a similar result for the transformation 2+ a on the unit interval,
see WF(§2).
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Finally we prove one form of the Fourier Integral Theorem. For the
corresponding trigonometric theorem we refer the reader to Zygmund’s
Trigonomeirical series, p. 306. It will be observed that a number of simplifica-
tions occur, so that the following proof differs from that of the trigonometric
theorem. In fact, we obtain a slightly stronger result.

Let us define
(31 swio) = [ wtiay,
(32) So(x) = fwf(t)f(x D t; w)dt.
0

Let 1, denote the interval ¢ <x <q-+1, where q is a non-negative integer. Assume
that f(8)/(14+£t) EL(0, «). Let f,(t) be the function of period 1 whick coincides
with f(¢) on I, and let s.(x) be the nth partial sum of the Walsh-Fourier series
Jor fo(t). Then as w—> x, S,(x) — s (x) tends to zero uniformly for xE€1,.

We require several lemmas.

LeEMMA 1. If 6(u) s the characteristic function of 0= u <1, then

[w]—1

J(u; @) = 8(u) D, ¥i(w) + (@I ([u]; 0 = [o]).

k=0

Proof.

Ju; ) = f i @YmG)dy

[w]l—1

k+1 ’]
=3 %) f Yra()dy + f Vi)

k=0

[w]—-1 o—[w]
= 5(u) 2 (%) + Y1 (%) Vi (9)dy.
k=0 0
LeEMMA 2. For all n>0, ]J(n; w)l <1/n.

Proof. If 2»<n <2m*+! and if v, is the number nearest to w of the form
/2™, then by WF (§3, equation 3.8),

J(n;0) = |0 — yn| £ 27D < 1/n,
LemMA 3. If xE1, and t=2% 24(q+1), then [x®t]=1t/2.

Proof. Since t®x=t—x>t—(q+1) 23t/4, [x®t]=3t/4—121/2.

We begin our proof of the theorem by showing that the integral (32)
exists uniformly for x&I,. Choose M so that 2 =4(g+1). For :t<2¥, we
have |J(x€9t; w)[ <o, from (31). For t=2¥, set u=x@®¢ in Lemma 1 and
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observe that [#]>0, so that

|7 @) | = | T[]0 — [a]) | <L§§,

[«]

by virtue of Lemmas 2 and 3. Thus S,(x) exists.
Next we show that Sp;(x) =sp)(x). Let [w]=#n. By Lemma 1,

Jx®t;n) =(x@ t)wf'ﬁk(x )]

k=0

and 6(x @®¢) is the characteristic function of I,. Hence

q+1 n—1
Sta(®) = f O S vils @ t)dt

k=0
n—1 q+1
= kzomx) JAOIOL”
= sq(x).

. ..
Now consider the difference

Su(#) —"sa(2)]= fo " 10 f " V(s @ dydt

-f " ) [T ensa+ [ 50 [ w0 na

= I+ I,

Choose M to satisfy the condition of Lemma 3. Since for t=2#
f V(2 D 8)dy = J(x @ t;0) — J(x D t; n)

=J(x®t;w)r

we see that I, is the tail of the uniformly convergent integral (32). Hence we
can choose M so large that | Iz| <e uniformly for x€I,. Finally,

[ "m(x){ / wf(t)%(t)dt} ay

f wf(t)up,,(t)dtl,

|| =

= sup
y=n

which tends to zero as w—>, by the Riemann-Lebesgue Theorem. This

completes our proof. ,
If f(£) €L(0, =), and the Walsh-Fourier series of f(f) converges to f(x) for
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t=x, we obtain

s = 1im [ 10 [Tt © vy
W0 [1] 0

=im [ [ wsoad,
W 0 1]

or

(3) = lim o“m(x)F(y)dy,

F(y) = f "5,

the usual double-integral form.

It seems clear that a fairly complete Fourier-Transform theory can be
developed for the generalized Walsh functions introduced here.

We close with the remark that it is possible to prove the Poisson Formula

33) 2 8k) = 20 | g(xWa(2)d,
k=0 n=0¢ 0

with the usual assumptions on g(x). We shall omit the proof, which parallels

the classical one almost word-for-word.

We take this opportunity to note the following errata in WF:

p. 393, line —2, read (Dini-Lipschitz),

p. 395, equation (7.2), for D,(x4u) read D,(x+u),

p. 402, line 11, for (8.15) read (8.14).

In the following places, for + read +: p. 374, display; p. 376, display,
line —5, and line —4; p. 379, fifth display; p. 380, line 4, and line 5 through-
out; p. 382, line —7; p. 386, line 1; p. 393, display, line —6.
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