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Abstract

Michael Somos conjectured a relation between Hankel determinants whose en-
tries 1

2n+1

(

3n
n

)

count ternary trees and the number of certain plane partitions and
alternating sign matrices. Tamm evaluated these determinants by showing that the
generating function for these entries has a continued fraction that is a special case
of Gauss’s continued fraction for a quotient of hypergeometric series. We give a sys-
tematic application of the continued fraction method to a number of similar Hankel
determinants. We also describe a simple method for transforming determinants
using the generating function for their entries. In this way we transform Somos’s
Hankel determinants to known determinants, and we obtain, up to a power of 3, a
Hankel determinant for the number of alternating sign matrices. We obtain a combi-
natorial proof, in terms of nonintersecting paths, of determinant identities involving
the number of ternary trees and more general determinant identities involving the
number of r-ary trees.
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1 Introduction

Let an = 1
2n+1

(

3n
n

)

= 1
3n+1

(

3n+1
n

)

be the number of ternary trees with n vertices and define
the Hankel determinants

Un = det (ai+j)0≤i,j≤n−1 (1)

Vn = det (ai+j+1)0≤i,j≤n−1 (2)

Wn = det
(

a(i+j+1)/2

)

0≤i,j≤n−1
, (3)

where we take ak to be 0 if k is not an integer. (We also interpret determinants of 0 × 0
matrices as 1.) The first few values of these determinants are

n 1 2 3 4 5 6 7
Un 1 2 11 170 7429 920460 323801820
Vn 1 3 26 646 45885 9304650 5382618660

Wn 1 1 2 6 33 286 4420

This paper began as an attempt to prove the conjectures of Michael Somos [27] that

(a) Un is the number of of cyclically symmetric transpose complement plane partitions
whose Ferrers diagrams fit in an n × n × n box,

(b) Vn is the number of (2n + 1)× (2n + 1) alternating sign matrices that are invariant
under vertical reflection, and

(c) Wn is the number of (2n+1)× (2n+1) alternating sign matrices that are invariant
under both vertical and horizontal reflection.

Mills, Robbins, and Rumsey [22] (see also [5, Eq. (6.15), p. 199]) showed that the
number of objects of type (a) is

n−1
∏

i=1

(3i + 1)(6i)! (2i)!

(4i + 1)! (4i)!
. (4)

Mills [25] conjectured the formula
n
∏

i=1

(

6i−2
2i

)

2
(

4i−1
2i

) (5)

for objects of type (b) and this conjecture was proved by Kuperberg [19]. A formula
for objects of type (c) was conjectured by Robbins [26] and proved by Okada [23]. A
determinant formula for these objects was proved by Kuperberg [19].

It turns out that it is much easier to evaluate Somos’s determinants than to relate
them directly to (a)–(c). It is easy to see that W2n = UnVn and W2n+1 = Un+1Vn, so it
is only necessary show that Un is equal to (4) and Vn is equal to (5) to prove Somos’s
conjectures.
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This was done by Tamm [28], who was unaware of Somos’s conjectures. Thus Somos’s
conjectures are already proved; nevertheless, our study of these conjecture led to some
additional determinant evaluations and transformations that are the subject of this paper.

Tamm’s proof used the fact that Hankel determinants can be evaluated using continued
fractions; the continued fraction that gives these Hankel determinants is a special case
of Gauss’s continued fraction for a quotient of hypergeometric series. The determinant
Vn was also evaluated, using a different method, by Eğecioğlu, Redmond, and Ryavec
[6, Theorem 4], who also noted the connection with alternating sign matrices and gave
several additional Hankel determinants for Vn:

Vn = det (bi+j)0≤i,j≤n−1 = det (ri+j)0≤i,j≤n−1 = det (si+j(u))0≤i,j≤n−1 , (6)

where bn = 1
n+1

(

3n+1
n

)

, rn =
(

3n+2
n

)

, and

sn(u) =

n
∑

k=0

k + 1

n + 1

(

3n − k + 1

n − k

)

uk,

where u is arbitrary. As noted in [6, Theorem 4], sn(0) = bn, sn(1) = an+1, and sn(3) = rn.
In Section 2, we describe Tamm’s continued fraction method for evaluating these

determinants. In Section 3, we give a systematic application of the continued fraction
method to several similar Hankel determinants. In Theorem 3.1 we give five pairs of
generating functions similar to that for an whose continued fractions are instances of
Gauss’s theorem. Three of them have known combinatorial meanings for their coefficients,
including the number of two-stack-sortable permutations (see West [29]).

In Section 4 we discuss a simple method, using generating functions, for transforming
determinants and use it to show that

Un = det

((

i + j

2i − j

))

0≤i,j≤n−1

(7)

and

Vn = det

((

i + j + 1

2i − j

))

0≤i,j≤n−1

. (8)

We also prove Eğecioğlu, Redmond, and Ryavec’s identity (6) and the related identity

det (si+j−1(u))0≤i,j≤n−1 = Un/u, n > 0, (9)

where s−1(u) = u−1. When u = 1, (9) reduces to (1) and when u = 3, (9) reduces to

det (ri+j−1)0≤i,j≤n−1 = Un/3, n > 0. (10)

Note that rn−1 = 1
3

(

3n
n

)

, so (10) is equivalent to det
((

3n
n

))

0≤i,j≤n−1
= 3n−1Un for n > 0.
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In Section 5 we consider the Hankel determinants of the coefficients of

1 − (1 − 9x)1/3

3x
.

We first evaluate them using continued fractions, and then show that the method of
Section 4 transforms them into powers of 3 times the determinant

det

((

i + j

i − 1

)

+ δij

)

0≤i,j≤n−1

,

which counts descending plane partitions and alternating sign matrices. Similarly, the
Hankel determinant corresponding to

1 − (1 − 9x)2/3

3x
is transformed to a power of 3 times the determinant

det

((

i + j

i

)

+ δij

)

0≤i,j≤n−1

,

which counts cyclically symmetric plane partitions.
Determinants of binomial coefficients can often be interpreted as counting configura-

tions of non-intersecting paths (see, for example, Gessel and Viennot [11] and Bressoud
[5]) and both sides of (7) (8) have such interpretations. In Section 6, we describe the
nonintersecting lattice path interpretation for (7). We give a new class of interpretations
of an in terms of certain paths called K-paths in Theorem 6.3. From this new interpreta-
tion of an, (7) follows easily. The proof of Theorem 6.3 relies on a “sliding lemma”, which
says that the number of certain K-paths does not change after sliding their starting and
ending points.

In Section 7, we study another class of paths called T -paths, which are related to
trinomial coefficients, and KT -paths, which are analogous to K-paths. We find another
class of interpretations of an in terms of KT -paths, using which we find a new determinant
identity involving Un (Theorem 7.3). Unfortunately, we do not have a nonintersecting
path interpretation for this determinant. There is a natural bijection from K-paths to
KT -paths, and the sliding lemma for KT -paths is easier to prove than that for K-paths.

In Section 8, we study KT (r)-paths, which reduce to KT paths when r = 2. The
results of Section 7 generalize, and we obtain determinant identities involving Hankel
determinants for the number of (r + 1)-ary trees (see (72) and (73)).

In Section 9, we give algebraic proofs of the results of Section 8 using partial fractions.

2 Hankel Determinants and Gauss’s Continued Frac-

tion

Let A(x) =
∑

n≥0 Anxn be a formal power series. We define the Hankel determinants

H
(k)
n (A) of A(x) by

H(k)
n (A) = det (Ai+j+k)0≤i,j≤n−1 .
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We shall write Hn(A) for H
(0)
n (A) and H1

n(A) for H
(1)
n (A). We also define Ĥn(A) to be

Hn(A(x2)). It is not difficult to show that Ĥ2n(A) = Hn(A)H1
n(A) and Ĥ2n+1(A) =

Hn+1(A)H1
n(A).

Let g(x) be the generating function for ternary trees:

g(x) =
∑

n≥0

anxn =
∑

n≥0

1

2n + 1

(

3n

n

)

xn, (11)

which is uniquely determined by the functional equation

g(x) = 1 + xg(x)3. (12)

Then Un = Hn(g(x)), Vn = H1
n(g(x)), and Wn = Ĥn(g(x)).

In general, it is difficult to say much about Hn(A(x)). However, if A(x) can be
expressed as a continued fraction, then there is a very nice formula. This is the case
for g(x): Tamm [28] observed that g(x) has a nice continued fraction expression, which
is a special case of Gauss’s continued fraction. We introduce some notation to explain
Tamm’s approach.

We use the notation S(x; λ1, λ2, λ3, . . .) to denote the continued fraction

S(x; λ1, λ2, λ3, . . .) =
1

1 − λ1x

1 − λ2x

1 − λ3x

. . .

(13)

The following theorem is equivalent to [14, Theorem 7.2]. Additional information about
continued fractions and Hankel determinants can be found in Krattenthaler [17, Section
5.4].

Lemma 2.1. Let A(x) = S(x; λ1, λ2, λ3, . . .) and let µi = λ1λ2 · · ·λi. Then for n ≥ 1,

Hn(A) = (λ1λ2)
n−1(λ3λ4)

n−2 · · · (λ2n−3λ2n−2) = µ2µ4 · · ·µ2n−2 (14)

H1
n(A) = λn

1 (λ2λ3)
n−1 · · · (λ2n−2λ2n−1) = µ1µ3 · · ·µ2n−1 (15)

Ĥn(A) = λn−1
1 λn−2

2 · · ·λ2
n−2λn−1 = µ1µ2 · · ·µn−1. (16)

We define the hypergeometric series by

2F1 (a, b; c | x) =

∞
∑

n=0

(a)n(b)n

n! (c)n
xn,

where (u)n = u(u + 1) · · · (u + n − 1).
Gauss proved the following theorem [14, Theorem 6.1], which gives a continued fraction

for a quotient of two hypergeometric series:
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Lemma 2.2. If c is not a negative integer then we have the continued fraction

2F1 (a, b + 1; c + 1 | x)
/

2F1 (a, b; c | x) = S(x; λ1, λ2, . . .), (17)

where

λ2n−1 =
(a + n − 1)(c − b + n − 1)

(c + 2n − 2)(c + 2n − 1)
, n = 1, 2, . . . ,

λ2n =
(b + n)(c − a + n)

(c + 2n − 1)(c + 2n)
, n = 1, 2, . . . .

(18)

Combining Lemmas 2.1 and 2.2 gives a formula for evaluating certain Hankel deter-
minants.

Lemma 2.3. Let

A(x) = 2F1 (a, b + 1; c + 1 | ρx)
/

2F1 (a, b; c | ρx) .

Then

Hn(A) =
n−1
∏

i=0

(a)i(b + 1)i(c − b)i(c − a + 1)i

(c)2i(c + 1)2i

ρ2i (19)

H1
n(A) =

n
∏

i=1

(a)i(b + 1)i−1(c − b)i(c − a + 1)i−1

(c)2i−1(c + 1)2i−1
ρ2i−1 (20)

=

n
∏

i=1

(c − 1)c

b(c − a)ρ

(a)i(b)i(c − b)i(c − a)i

(c)2i(c − 1)2i
ρ2i (21)

Proof. By Lemma 2.2, A(x) has the continued fraction expansion A(x) = S(x; λ1, λ2, · · · )
where

λ2n−1 =
(a + n − 1)(c − b + n − 1)

(c + 2n − 2)(c + 2n − 1)
ρ,

λ2n =
(b + n)(c − a + n)

(c + 2n − 1)(c + 2n)
ρ.

Then

λ1λ3 · · ·λ2i−1 =
(a)i(c − b)i

(c)2i

ρi

and

λ2λ4 · · ·λ2i =
(b + 1)i(c − a + 1)i

(c + 1)2i

ρi.

So with the notation of Lemma 2.1,

µ2i = λ1λ2 · · ·λ2i =
(a)i(c − b)i(b + 1)i(c − a + 1)i

(c)2i(c + 1)2i
ρ2i
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and

µ2i−1 = λ1λ2 · · ·λ2i−1 =
(a)i(c − b)i(b + 1)i−1(c − a + 1)i−1

(c)2i(c + 1)2i−2

ρ2i−1.

Then (19) follows immediately from (14), and (20) follows from (15) with the help of the
identity (c)2i(c + 1)2i−2 = (c)2i−1(c + 1)2i−1, and (21) follows easily from 20.

There is also a simple formula for H
(2)
n (A), although we will not need it.

Lemma 2.4. Let Q(a, b, c | x) = 2F1 (a, b + 1; c + 1 | x) /2F1 (a, b; c | x). Then

Q(b, a, c | x) =
c(a − b)

a(c − b)
+

b(c − a)

a(c − b)
Q(a, b, c | x).

Proof. The formula is an immediate consequence of the contiguous relation

c(a−b)2F1 (a, b; c | x)+b(c−a)2F1 (a, b + 1; c + 1 | x)+a(b−c)2F1 (a + 1, b; c + 1 | x) = 0,

which is easily proved by equating coefficients of powers of x.

Equivalently, Lemma 2.4 asserts that ca + b(c − a)Q(a, b, c | x) is symmetric in a and
b.

Proposition 2.5. With A(x) as in Lemma 2.3, we have

H(2)
n (A) =

(

a(c − b)

c(a − b)

(a + 1)n(c − b + 1)n

(b + 1)n(c − a + 1)n

− b(c − a)

c(a − b)

)

Hn+1(A).

Proof. First note that if u(x) = α + βv(x), where α and β are constants, then

Hn+1(u) = βn+1Hn+1(v) + αβnH(2)
n (v),

so

H(2)
n (v) =

1

αβn
Hn+1(u) − β

α
Hn+1(v). (22)

Now take u = Q(b, a, c | x) and v = Q(a, b, c | x), so that u = α + βv by Lemma 2.4,
where α = c(a − b)/a(c − b) and β = b(c − a)/a(c − b). Then by Lemma 2.3, we have

Hn+1(u)

Hn+1(v)
=

n
∏

i=1

(a + 1)i

(a)i

(b)i

(b + 1)i

(c − b + 1)i

(c − b)i

(c − a)i

(c − a + 1)i

=

n
∏

i=1

b(c − a)

a(c − b)

(a + i)(c − b + i)

(b + i)(c − a + i)
=

[

b(c − a)

a(c − b)

]n
(a + 1)n(c − b + 1)n

(b + 1)n(c − a + 1)n
, (23)

and by (22) we have

H
(2)
n (v)

Hn+1(v)
=

a(c − b)

c(a − b)

[

a(c − b)

b(c − a)

]n
Hn+1(u)

Hn+1(v)
− b(c − a)

c(a − b)
. (24)

The result follows from (23) and (24).
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Tamm [28] evaluated the determinants Un and Vn by first showing that

∞
∑

n=0

anxn = 2F1

(

2

3
,
4

3
;
3

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

2

3
,
1

3
;
1

2

∣

∣

∣

∣

27

4
x

)

. (25)

Given (25), it follows from Lemma 2.3 that

Un =

n−1
∏

i=1

(2
3
)i(

1
6
)i(

4
3
)i(

5
6
)i

(1
2
)2i(

3
2
)2i

(

27

4

)2i

and

Vn =
n
∏

i=0

2

3

(2
3
)i(

1
6
)i(

1
3
)i(−1

6
)i

(1
2
)2i(−1

2
)2i

(

27

4

)2i

So (4) and (5) will follow from

(2
3
)i(

1
6
)i(

4
3
)i(

5
6
)i

(1
2
)2i(

3
2
)2i

(

27

4

)2i

=
(3i + 1)(6i)! (2i)!

(4i + 1)! (4i)!
(26)

and

2

3

(2
3
)i(

1
6
)i(

1
3
)i(−1

6
)i

(1
2
)2i(−1

2
)2i

(

27

4

)2i

=

(

6i − 2

2i

)

2

(

4i − 1

2i

) (27)

for i ≥ 1. These identities are most easily verified by using the fact that if A1 = B1 and
Ai+1/Ai = Bi+1/Bi for i ≥ 1, then Ai = Bi for all i ≥ 1. It is interesting to note that
although (26) holds for i = 0, (27) does not.

3 Hypergeometric series evaluations

Let f = g−1 =
∑∞

n=1 anxn =
∑∞

n=1
1

2n+1

(

3n
n

)

xn. In this section we study cases of Gauss’s
continued fraction (17) that can be expressed in terms of f . We found empirically that
there are ten cases of (17) that can be expressed as polynomials in f . We believe there
are no others, but we do not have a proof of this. Since a 6= b in all of these cases, by
Lemma 2.4 they must come in pairs which are the same, except for their constant terms,
up to a constant factor. It turns out that one element of each of these pairs factors as
(1 + f)(1 + rf), where r is 0, 1, 1

2
, −1

2
, or 2

5
, while the other does not factor nicely. We

have no explanation for this phenomenon.
Note that (28a) is the same as (25).
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Theorem 3.1. We have the following cases of Gauss’s continued fraction:

1 + f = 2F1

(

2

3
,
4

3
;
3

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

2

3
,
1

3
;
1

2

∣

∣

∣

∣

27

4
x

)

(28a)

(1 + f)2 = 2F1

(

4

3
,
5

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

4

3
,
2

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(28b)

(1 + f)(1 + 1
2
f) = 2F1

(

5

3
,
7

3
;
7

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

5

3
,
4

3
;
5

2

∣

∣

∣

∣

27

4
x

)

(28c)

(1 + f)(1 − 1
2
f) = 2F1

(

5

3
,
7

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

5

3
,
4

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(28d)

(1 + f)(1 + 2
5
f) = 2F1

(

2

3
,
4

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

2

3
,
1

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(28e)

Their companions are

1 − 1
2
f = 2F1

(

1

3
,
5

3
;
3

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

27

4
x

)

(29a)

1 + 1
5
f + 1

10
f 2 = 2F1

(

2

3
,
7

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

2

3
,
4

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(29b)

1 + 6
7
f + 2

7
f 2 = 2F1

(

4

3
,
8

3
;
7

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

4

3
,
5

3
;
5

2

∣

∣

∣

∣

27

4
x

)

(29c)

1 − 2
5
f + 2

5
f 2 = 2F1

(

4

3
,
8

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

4

3
,
5

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(29d)

1 + 1
2
f + 1

7
f 2 = 2F1

(

1

3
,
5

3
;
5

2

∣

∣

∣

∣

27

4
x

)/

2F1

(

1

3
,
2

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(29e)

In order to prove Theorem 3.1, we need formulas for some rational functions of f that
are easily proved by Lagrange inversion.

Lemma 3.2. Let f =
∑∞

n=1
1

2n+1

(

3n
n

)

xn. Then f satisfies the functional equation f =
x(1 + f)3 and

fk =
∞
∑

n=k

k

n

(

3n

n − k

)

xn (30)

(1 + f)k =
∞
∑

n=0

k

3n + k

(

3n + k

n

)

xn (31)

(1 + f)k+1

1 − 2f
=

∞
∑

n=0

(

3n + k

n

)

xn. (32)
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In particular,

1 + f = 2F1

(

1

3
,
2

3
;
3

2

∣

∣

∣

∣

27

4
x

)

(33)

1 + f

1 − 2f
= 2F1

(

1

3
,
2

3
;
1

2

∣

∣

∣

∣

27

4
x

)

(34)

(1 + f)2

1 − 2f
= 2F1

(

4

3
,
2

3
;
3

2

∣

∣

∣

∣

27

4
x

)

. (35)

Proof. We use the following form of the Lagrange inversion formula (see [9, Theorem 2.1]
or [13, Theorem 1.2.4]): If G(t) is a formal power series, then there is a unique formal
power series h = h(x) satisfying h = xG(h), and

[xn] hk =
k

n
[tn−k] G(t)n, for n, k > 0, (36)

[xn]
hk

1 − xG′(h)
= [tn−k] G(t)n, for n, k ≥ 0. (37)

Let us define f to be the unique formal power series satisfying f = x(1 + f)3. With
G(t) = (1 + t)3, (36) gives (30), and the case k = 1 gives that the coefficient of xn in f
for n ≥ 1 is 1

n

(

3n
n−1

)

= 1
2n+1

(

3n
n

)

.

Replacing with f with x(1 + f)3 and k with j in (30), and dividing both sides by xj ,
gives

(1 + f)3j =

∞
∑

n=0

j

n + j

(

3n + 3j

n

)

xn.

Since the coefficient of xn on each side is a polynomial in j, we may set j = k/3 to obtain
(31).

From (37) we have

f j

1 − 3x(1 + f)2
=

∞
∑

n=j

(

3n

n − j

)

xn.

Replacing f by x(1 + f)3 in the numerator, and replacing x(1 + f)2 by f/(1 + f) in the
denominator, gives

xj(1 + f)3j+1

1 − 2f
=

∞
∑

n=j

(

3n

n − j

)

xn

=
∞
∑

n=0

(

3n + 3j

n

)

xn+j ,

so
(1 + f)3j+1

1 − 2f
=

∞
∑

n=0

(

3n + 3j

n

)

xn.

As before, we may set j = k/3 to obtain (32).
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Proof of Theorem 3.1. Formulas (28a)–(28e) follow from the evaluations of their numer-
ators and denominators: (33), (34), (35), and

2F1

(

2

3
,
4

3
;
5

2

∣

∣

∣

∣

27

4
x

)

= (1 + f)2(1 + 2
5
f) (38)

2F1

(

4

3
,
5

3
;
5

2

∣

∣

∣

∣

27

4
x

)

=
(1 + f)4

1 − 2f
(39)

2F1

(

5

3
,
7

3
;
7

2

∣

∣

∣

∣

27

4
x

)

=
(1 + f)5(1 + 1

2
f)

1 − 2f
(40)

2F1

(

4

3
,
5

3
;
3

2

∣

∣

∣

∣

27

4
x

)

=
(1 + f)4

(1 − 2f)3
(41)

2F1

(

5

3
,
7

3
;
5

2

∣

∣

∣

∣

27

4
x

)

=
(1 + f)5(1 − 1

2
f)

(1 − 2f)3
. (42)

Our original derivations of these formulas were through the 2F1 contiguous relations [1,
p. 558], but once we have found them, we can verify (38)–(40) by by taking appropriate
linear combinations of (30) and (32). Formulas (41) and (42) can be proved by applying
the formula

2F1 (a + 1, b + 1; c + 1 | x) =
c

ab

d

dx
2F1 (a, b; c | x)

to (34) and (35) and using the fact that df/dx = (1 + f)4/(1 − 2f).
Formulas (29a)–(29e) can be proved similarly; alternatively, they can be derived from

(28a)–(28e) by using Lemma 2.4.

Now we apply Lemma 2.3 to the formulas of Theorem 3.1. First we normalize the
coefficient sequences that occur in (28a)–(28e) to make them integers, using (30) to find
formulas for the coefficients. We define the sequence an, bn, cn, dn, and en by

1 + f =

∞
∑

n=0

anxn an =
(3n)!

n! (2n + 1)!
=

1

2n + 1

(

3n

n

)

(1 + f)2 =

∞
∑

n=0

bnxn bn =
(3n + 1)!

(n + 1)! (2n + 1)!
=

1

n + 1

(

3n + 1

n

)

(1 + f)(2 + f) =
∞
∑

n=0

cnxn cn = 2
(3n)!

(n + 1)! (2n)!
=

2

n + 1

(

3n

n

)

= an + bn

(1 + f)(2 − f) =
∞
∑

n=0

dnxn dn = 2
(3n)!

(n + 1)! (2n + 1)!
= 3an − bn

(1 + f)(5 + 2f) =
∞
∑

n=0

enxn en = (9n + 5)
(3n)!

(n + 1)! (2n + 1)!
= 3an + 2bn

Here is a table of the first few values of these numbers
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n 0 1 2 3 4 5 6 7
an 1 1 3 12 55 273 1428 7752
bn 1 2 7 30 143 728 3876 21318
cn 2 3 10 42 198 1001 5304 29070
dn 2 1 2 6 22 91 408 1938
en 5 7 23 96 451 2275 12036 65892

The sequences an and bn are well-known, and have simple combinatorial interpretations
in terms of lattice paths: an is the number of paths, with steps (1, 0) and (0, 1), from (0, 0)
to (2n, n) that never rise above (but may touch) the line x = 2y and bn is the number
of paths from (0, 0) to (2n, n) that never rise above (but may touch) the line x = 2y − 1
(see, e.g., Gessel [10]). Moreover, for n > 0, dn is the number of two-stack-sortable
permutations of {1, 2, . . . , n}. (See, e.g., West [29] and Zeilberger [30].) The sequences cn

and en are apparently not well-known.
Let us write Hn(a) for Hn

(
∑∞

n=0 anxn
)

, and similarly for other letters replacing a.
Then applying Lemma 2.3 and Theorem 3.1 gives

Hn(a) =

n−1
∏

i=0

(2
3
)i(

1
6
)i(

4
3
)i(

5
6
)i

(1
2
)2 i(

3
2
)2 i

(

27

4

)2i

H1
n(a) =

n
∏

i=1

2

3

(2
3
)i(

1
6
)i(

1
3
)i(−1

6
)i

(1
2
)2 i(−1

2
)2 i

(

27

4

)2i

Hn(b) =

n−1
∏

i=0

(4
3
)i(

5
6
)i(

5
3
)i(

7
6
)i

(3
2
)2 i(

5
2
)2 i

(

27

4

)2i

H1
n(b) =

n
∏

i=1

(4
3
)i(

5
6
)i(

2
3
)i(

1
6
)i

(3
2
)2 i(

1
2
)2 i

(

27

4

)2i

Hn(c) =
n−1
∏

i=0

2
(5

3
)i(

7
6
)i(

7
3
)i(

11
6
)i

(5
2
)2 i(

7
2
)2 i

(

27

4

)2i

H1
n(c) =

n
∏

i=1

(5
3
)i(

7
6
)i(

4
3
)i(

5
6
)i

(5
2
)2 i(

3
2
)2 i

(

27

4

)2i

Hn(d) =

n−1
∏

i=0

2
(5

3
)i(

1
6
)i(

7
3
)i(

5
6
)i

(5
2
)2 i(

3
2
)2 i

(

27

4

)2i

H1
n(d) = (−1)n

n
∏

i=1

(5
3
)i(

1
6
)i(

4
3
)i(−1

6
)i

(3
2
)2 i(

1
2
)2 i

(

27

4

)2i
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Hn(e) =
n−1
∏

i=0

5
(2

3
)i(

7
6
)i(

4
3
)i(

11
6
)i

(3
2
)2 i(

5
2
)2 i

(

27

4

)2i

H1
n(e) =

n
∏

i=1

2
(2

3
)i(

7
6
)i(

1
3
)i(

5
6
)i

(3
2
)2 i(

1
2
)2 i

(

27

4

)2i

Here is a table of the values of these Hankel determinants:

n 1 2 3 4 5 6 7
Hn(a) 1 2 11 170 7429 920460 323801820
H1

n(a) 1 3 26 646 45885 9304650 5382618660
Hn(b) 1 3 26 646 45885 9304650 5382618660
H1

n(b) 2 11 170 7429 920460 323801820 323674802088
Hn(c) 2 11 170 7429 920460 323801820 323674802088
H1

n(c) 3 26 646 45885 9304650 5382618660 8878734657276
Hn(d) 2 3 10 85 1932 120060 20648232
H1

n(d) 1 2 10 133 4830 485460 136112196
Hn(e) 5 66 2431 252586 74327145 62062015500 147198472495020
H1

n(e) 7 143 8398 1411510 677688675 928501718850 3628173844041420

It is apparent from the table that

Un = Hn(a) = H1
n−1(b) = Hn−1(c), (43)

and that Vn = H1
n(a) = Hn(b) = H1

n−1(c), and these are easily verified from the formulas.
The combinatorial interpretations of Un and Vn have already been discussed. The num-
bers Hn(e) were shown by Kuperberg [19, Theorem 5] to count certain alternating sign

matrices. In Kuperberg’s notation, Hn(e) = A
(2)
UU(4n; 1, 1, 1).

There are also Hankel determinant evaluations corresponding to (29a)–(29e), normal-
ized to make the entries integers. These evaluations can be found in Krattenthaler [17,
Theorem 30].

4 Determinants and Two-Variable Generating Func-

tions

In this section we describe a method for transforming determinants whose entries are given
as coefficients of generating functions. (A related approach was used in [8] to evaluate
Hankel determinants of Bell numbers.) Using this technique, we are able to convert the
determinants for Un and Vn in (1) and (2) into the known determinant evaluations given
in (7) and (8). (Conversely, the evaluations of these Hankel determinants give new proofs
of (7) and (8).) These two determinants are special cases of a determinant evaluation of
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Mills, Robbins, and Rumsey [22] (see [16, Theorem 37] for related determinants):

det

((

i + j + r

2i − j

))

0≤i,j≤n−1

= (−1)χ(n≡3 mod 4)2(n−1
2 )

n−1
∏

i=1

(r + i + 1)⌊(i+1)/2⌋(−r − 3n + i + 3
2
)⌊i/2⌋

(i)i

, (44)

where χ(S) = 1 if S is true and χ(S) = 0 otherwise. There exist short direct proofs of
(44) (see [3, 15, 24]), but no really simple proof.

Suppose that we have a two-variable generating function

D(x, y) =
∞
∑

i,j=0

di,jx
iyj.

Let [D(x, y)]n be the determinant of the n × n matrix

(di,j)0≤i,j≤n−1.

The following rules can be used to transform the determinant [D(x, y)]n to a determi-
nant with the same value:

Constant Rules. Let c be a non-zero constant. Then

[cD(x, y)]n = cn[D(x, y)]n,

and

[D(cx, y)]n = c(
n

2)[D(x, y)]n.

Product Rule. If u(x) is any formal power series with u(0) = 1, then

[u(x)D(x, y)]n = [D(x, y)]n.

Composition Rule. If v(x) is any formal power series with v(0) = 0 and v′(0) = 1, then

[D(v(x), y)]n = [D(x, y)]n.

The product and composition rules hold because the transformed determinants are
obtained from the original determinants by elementary row operations. Equivalently,
the new matrix is obtained by multiplying the old matrix on the left by a matrix with
determinant 1. Note that all of these transformations can be applied to y as well as to x.

The Hankel determinants Hn(A) and H1
n(A) of a formal power series A(x) are given

by

Hn(A) =

[

xA(x) − yA(y)

x − y

]

n

, (45)

H1
n(A) =

[

A(x) − A(y)

x − y

]

n

. (46)
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Proof of (7) and (8). The generating function for the Hankel determinant Hn(g) is

xg(x) − yg(y)

x − y
. (47)

Since f/(1+f)3 = x, f is the compositional inverse of x/(1+x)3, and thus f
(

x/(1+x)3
)

=
x. Since g = 1 + f , we have g

(

x/(1 + x)3
)

= 1 + x.
Now let us substitute x → x/(1 + x)3, y → y/(1 + y)3 in (47). After simplifying, we

obtain
(1 − xy)(1 + x)(1 + y)

1 − xy2 − 3xy − x2y
.

Then dividing by (1 + x)(1 + y), we get

1 − xy

1 − xy2 − 3xy − x2y
.

Next, we show that

1 − xy

1 − xy2 − 3xy − x2y
=
∑

i,j

(

i + j

2i − j

)

xiyj. (48)

Multiplying both sides of (48) by 1 − xy2 − 3xy − x2y and equating coefficients of xmyn

shows that (48) is equivalent to the recurrence

(

m + n

2m − n

)

−
(

m + n − 3

2m − n

)

− 3

(

m + n − 2

2m − n − 1

)

−
(

m + n − 3

2m − n − 3

)

=











1, if m = n = 0

−1, if m = n = 1

0, otherwise

where we interpret the binomial coefficient
(

a
b

)

as 0 if either a or b is negative, and the
verification of the recurrence is straightforward. (We will give another proof of (48) in
Example 9.2.) This completes the proof of (7).

For equation (8), we need to consider the generating function

(g(x) − g(y))/(x− y).

Making the same substitution as before gives

(1 + x)3(1 + y)3

1 − xy2 − 3xy − x2y
.

Dividing by (1 + x)2(1 + y)3 gives

1 + x

1 − xy2 − 3xy − x2y
, (49)

which can be shown, by the same method as before, to equal

∑

i,j

(

i + j + 1

2i − j

)

xiyj.
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Using the same approach, we can prove a result of Eğecioğlu, Redmond, and Ryavec [6]
that gives another Hankel determinant for Vn. (It should be noted that our Vn is their
Vn−1.) In Section 4 of [6] they define numbers µn and gave several characterizations
for them. In later sections they transform the Hankel determinant for these numbers
several times, as described on page 5 of their paper, ultimately reducing it to the Hankel
determinant for the numbers

(

3n+2
n

)

. We will give a direct reduction of the generating
function for these Hankel determinants to (49).

In their Theorem 2, Eğecioğlu, Redmond, and Ryavec give several characterizations
of the numbers µn. We will use a characterization given not in the statement of this
theorem, but in the proof, on page 16: the generating function

M(x) =
∞
∑

n=0

µnx
n+1 (50)

satisfies
M(x) = x + 3xM(x)2 + xM(x)3. (51)

Theorem 4.1. Let µn be defined by (50) and (51). Then det (µi+j)0≤i,j≤n−1 = Vn.

Proof. By (45),

det (µi+j)0≤i,j≤n−1 =

[

M(x) − M(y)

x − y

]

n

.

By (51), M(x) is the compositional inverse of x/(1+3x2 +x3), so making the substitution
x → x/(1 + 3x2 + x3), y → y/(1 + 3y2 + y3) in (M(x) − M(y))/(x − y) and simplifying
gives

(1 + 3x2 + x3)(1 + 3y2 + y3)

1 − xy2 − 3xy − x2y
.

Applying the product rule, we reduce this generating function to (49), for which the
corresponding determinant, as we have seen, is Vn.

We note that if (51) is replaced with M(x) = x+αxM(x)+3xM(x)2 +xM(x)3, where
α is arbitrary, then the Hankel determinants are unchanged.

To transform in this way the more general determinant on the left side of (44), we
would start with the generating function

∑

i,j

(

i + j + r

2i − j

)

xiyj =

∞
∑

n=0

[(

r + n

2n

)

+

(

r + n − 2

2n − 1

)

y

]

xn

1 − xy2 − 3xy − x2y
. (52)

The generating function in r of (52) is derived in (77). The sums in the numerator can
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be evaluated explicitly by making an appropriate substitution in the identities

∞
∑

n=0

(

r + n

2n

)

(−4 sin2 θ)n =
cos(2r + 1)θ

cos θ

∞
∑

n=0

(

r + n − 2

2n − 1

)

(−4 sin2 θ)n = −2 tan θ sin 2(r − 1)θ.

However we have not been able to use these formulas to prove (44).
Another application of this method gives a family of generating functions that have

the same Hankel determinants.

Theorem 4.2. Let A(x) be a formal power series with A(0) = 1 and let c be a constant.

Then we have

Hn

(

A(x)

1 − cxA(x)

)

= Hn(A) (53)

for all n, and

Hn

(

1

1 − cxA(x)

)

= cn−1H1
n−1(A) (54)

for n ≥ 1.

Proof. We use the method of generating functions to evaluate these determinants. By
(45),

Hn

(

A(x)

1 − cxA(x)

)

=





xA(x)

1 − cxA(x)
− yA(y)

1 − cyA(y)
x − y





n

=

[

1

(1 − cxA(x))(1 − cyA(y))

xA(x) − yA(y)

x − y

]

n

.

Since(1 − cxA(x))−1 is a formal power series with constant term 1, we get

Hn

(

A(x)

1 − cxA(x)

)

=

[

xA(x) − yA(y)

x − y

]

n

= Hn(A).

A similar computation shows that

Hn

(

1

1 − cxA(x)

)

=

[

1 + cxy
A(x) − A(y)

x − y

]

n

=

[

c
A(x) − A(y)

x − y

]

n−1

= cn−1H1
n−1(A),

since [1 + xyD(x, y)]n is the determinant of a block matrix of two blocks, with the first
block [1] and the second block [D(x, y)]n−1.
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We now prove (6) and (9). First we set c = u − 1 and A = f/x in (53), getting

Vn = det (ai+j+1)0≤i,j≤n−1 = Hn(f/x) = Hn

(

f/x

1 + (1 − u)f

)

.

Next we show that
f/x

1 + (1 − u)f
=

∞
∑

n=0

sn(u)xn, (55)

where

sn(u) =
n
∑

k=0

k + 1

n + 1

(

3n − k + 1

n − k

)

uk. (56)

We have

f/x

1 + (1 − u)f
=

f/x

1 + f
· 1

1 − uf/(1 + f)

=
(1 + f)2

1 − ux(1 + f)2
, since f = x(1 + f)3,

=

∞
∑

k=0

ukxk(1 + f)2k+2

=
∞
∑

k=0

ukxk
∞
∑

m=0

2k + 2

3m + 2k + 2

(

3m + 2k + 2

m

)

xm, by (31),

=
∞
∑

n=0

xn
n
∑

k=0

k + 1

n + 1

(

3n − k + 1

n − k

)

uk,

which proves (55). Then sn(1) = an+1 from (55), sn(0) = 1
n+1

(

3n+1
n

)

by setting u = 0 in

(56), and sn(3) =
(

3n+2
n

)

follows from (32). This completes the proof of (6).
Next we prove (9), which by (55) is equivalent to

Hn

(

u−1 +
f

1 + (1 − u)f

)

= Un/u. (57)

We have

u−1 +
f

1 + (1 − u)f
=

u−1

1 − ux(1 + f)2
,

so by (54), the Hankel determinant is equal to u−1H1
n−1((1 + f)2). In the notation of

Section 3, this is u−1H1
n−1(b), which by (43) is equal to u−1Un.

We also have an analogue of Theorem 4.2 for the Hankel determinants H1
n.

Theorem 4.3. Let A(x) be a formal power series with A(0) = 1 and let c 6= 1 be a

constant. Then we have

H1
n

(

A(x)

1 − cA(x)

)

= (1 − c)−2nH1
n(A) (58)
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Proof. We use the method of generating functions. By (46),

H1
n

(

A(x)

1 − cA(x)

)

=





A(x)

1 − cA(x)
− A(y)

1 − cA(y)
x − y





n

=

[

1

(1 − cA(x))(1 − cA(y))

A(x) − A(y)

x − y

]

n

.

Since (1− cA(x))−1 is a formal power series with constant term (1− c)−1 when c 6= 1, we
get

H1
n

(

(1 − c)2A(x)

1 − cA(x)

)

=

[

(1 − c)−2 A(x) − A(y)

x − y

]

n

= (1 − c)−2nH1
n(A).

5 A Hankel Determinant for the Number of Alter-

nating Sign Matrices

Let An be the number of n × n alternating sign matrices. It is well-known that

An =
n−1
∏

k=0

(3k + 1)!

(n + k)!
,

as conjectured by Mills Robbins and Rumsey [21] and proved by Zeilberger [31] and
Kuperberg [18].

The numbers An also count totally symmetric, self-complementary plane partitions,
as shown by Andrews [2]. We find, up to a power of 3, a Hankel determinant expression
for An.

Let

Ĉ(x) =
1 − (1 − 9x)1/3

3x
. (59)

The coefficients of Ĉ(x) are positive integers that are analogous to Catalan numbers.
They have no known combinatorial interpretation and have been little studied, but they
do appear in [20, Eq. 61].

Theorem 5.1. The number of n × n alternating sign matrices is

An = 3−(n

2)Hn(Ĉ). (60)

Proof. Let
D(x, y) = (xĈ(x) − yĈ(y))/(x − y)

be the generating function for the Hankel determinant Hn(Ĉ). It is easy to see that

D(x/
√

3, y/
√

3) is the generating function for 3−(n

2)Hn(Ĉ). We make the substitution
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x → x−
√

3x2 + x3, y → y −
√

3y2 + y3 in D(x/
√

3, y/
√

3), and simplify. The generating
function becomes

1

1 −
√

3(x + y) + x2 + xy + y2
.

Let ω = −1
2
−

√
−3
2

be a cube root of unity. Make another substitution x → −
√
−1x/(1 +

ωx), y →
√
−1y/(1 + ω2y), and simplify. The generating function becomes

(1 + ωx)2 (1 + ω2y)2

(1 − xy)(1 − x − y)
.

Dividing by (1 + ωx)2 (1 + ω2y)2, the generating function becomes

1

(1 − x − y)(1 − xy)
.

Multiplying by (1 − x + x2)(1 − y)/(1 − x), we get

(1 − x + x2)(1 − y)

(1 − x)(1 − x − y)(1 − xy)
=

x

y(1 − x − y)
+

1

1 − xy
− x

y(1 − x)
.

Expanding the right-hand side of the above equation, we get

Hn(Ĉ) = 3(n

2) det

((

i + j

i − 1

)

+ δi,j

)

0≤i,j≤n−1

,

where δi,j equals 1 if i = j and 0 otherwise. The theorem then follows from a known
formula for An [5, p. 22].

Remark 5.2. We have another determinant expression

An = det

((

i + j

i

)

− δi,j+1

)

,

since
1

(1 − x − y)(1 − xy)
=

1

1 − y + y2

(

1

1 − x − y
− y

1 − xy

)

.

There is a result similar to Theorem 5.1

Ĉ1(x) =
1 − (1 − 9x)2/3

3x
.

Let A′
n be the number of cyclically symmetric plane partitions in the n-cube. We have

Theorem 5.3.

A′
n = 3−(n

2)Hn(Ĉ1). (61)
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Proof. Let
D(x, y) = (xĈ1(x) − yĈ1(y))/(x− y)

be the generating function for the Hankel determinant Hn(Ĉ1). Similarly D(x/
√

3, y/
√

3)

is the generating function for 3−(n

2)Hn(Ĉ1). We make the same substitution (as for Hn(Ĉ))
x → x −

√
3x2 + x3, y → y −

√
3y2 + y3, and simplify. The generating function becomes

2 −
√

3(x + y)

1 −
√

3(x + y) + x2 + xy + y2
.

Similarly, we make another substitution x → −
√
−1x/(1 + ωx), y →

√
−1y/(1 + ω2y),

and simplify. The generating function becomes

(2 − x − y − xy)(1 + ωx) (1 + ω2y)

(1 − xy)(1 − x − y)
.

Dividing by (1 + ωx) (1 + ω2y), the generating function becomes

(2 − x − y − xy)

(1 − x − y)(1 − xy)
=

1

1 − x − y
+

1

1 − xy
.

So we have

Hn(Ĉ1) = 3(n

2) det

((

i + j

i

)

+ δi,j

)

0≤i,j≤n−1

,

which is equal to 3(n

2)A′
n. (See [5, p. 177, (5.28)].)

Since Ĉ(x) = 2F1

(

2
3
, 1; 2 | 9x

)

, we can find a continued fraction for Ĉ(x) by setting

a = 2
3
, b = 0, c = 1 in Lemma 2.2, and thus evaluate the Hankel determinant for Ĉ(x)

by Lemma 2.1. Similarly, since Ĉ1(x) = 22F1

(

1
3
, 1; 2 | 9x

)

, we can evaluate the Hankel

determinant for Ĉ1(x) be taking a = 1
3
, b = 0, c = 1 in Lemma 2.2.

The Hankel determinants Hn(Ĉ) and Hn(Ĉ1), can also be evaluated by applying a
more general result (see, e.g., [16, Theorem 26, Eq. (3.12)]):

det

((

A

Li + j

))

1≤i,j≤n

=

∏

1≤i<j≤n(Li − Lj)
∏

1≤i≤n(Li + n)!

∏

1≤i≤n(Li + A + 1)!
∏

1≤i≤n(A + 1 − i)!
, (62)

where L1, . . . , Ln and A are indeterminates, and the factorials are interpreted using gamma
functions when necessary.

Thus these calculations give a simple method of evaluating the determinants

det

((

i + j

i − 1

)

+ δi,j

)

0≤i,j≤n−1

and det

((

i + j

i

)

+ δi,j

)

0≤i,j≤n−1

.

For more information on similar determinants, see Krattenthaler [16, Theorems 32–35]
[17, Section 5.5].
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6 A Combinatorial Proof of (7)

For the reader’s convenience, we restate equation (7) as follows:

det (ai+j)0≤i,j≤n−1 = det

((

i + j

2i − j

))

0≤i,j≤n−1

. (63)

Both sides of (63) have combinatorial meanings in terms of nonintersecting paths
(see Gessel and Viennot [11]). The right-hand side counts UR(n), the set of n-tuples
of nonintersecting paths from P ′

0, . . . , P
′
n−1 to Q′

0, . . . , Q
′
n−1, where P ′

i = (i,−2i) and
Q′

i = (2i,−i). For the paths to be nonintersecting, P ′
i must go to Q′

i. See the right
picture of Figure 1. Mills, Robbins, and Rumsey [15] in fact gave a bijection from the
type (a) objects of Section 1 to such n-tuples of lattice paths.

P ′

3

P ′

1

Q′

1

Q′

3

M3

M1

N3

N1

M ′

3

Figure 1: Lattice path interpretation of (63).

For the left-hand side, we notice that an counts the number of paths from (0, 0) to
(2n, n) that never go above the line y = x/2. See, e.g., [10]. It is easy to see that the
left-hand side of (63) counts UL(n), the set of n-tuples of nonintersecting paths that stay
below the line y = x/2, from M0, . . . , Mn−1 to N0, . . . , Nn−1, where Mi = (−2i,−i) and
Ni = (2i, i). For the paths to be nonintersecting, Mi must go to Ni. Moreover, from the
left picture of Figure 1, we see that Mi can be replaced with M ′

i = (i,−i).
An interesting problem is to find a bijection from UL(n) to UR(n). Such a bijection

will result in a combinatorial enumeration of the type (a) objects.
Both UL(n) and UR(n) can be easily converted into variations of plane partitions. But

we have not found it helpful.
We find an alternative bijective proof of (63). The algebraic idea behind the proof is

the following matrix identity that implies (63):

(ai+j)0≤i,j≤n−1 =

(

3j + 1

3i + 1

(

3i + 1

i − j

))

0≤i,j≤n−1
((

i + j

2i − j

))

0≤i,j≤n−1

(

3i + 1

3j + 1

(

3j + 1

j − i

))

0≤i,j≤n−1

, (64)

where
3i + 1

3j + 1

(

3j + 1

j − i

)

= [xi]gf j
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(See (30)). Note that the left (right) transformation matrix is a lower (upper) triangular
matrix with diagonal entries 1. The matrix identity is obtained by carefully analyzing the
transformation we performed in Section 4 when proving (7).

The bijective proof relies on a new interpretation of an in terms of certain paths that
we call K-paths. The matrix identity (64) follows easily from the new interpretation.
This gives a bijection from UR(n) to UK(n), the set of n-tuples of nonintersecting K-
paths resulting from the new interpretation. The desired bijection could be completed by
giving the bijection from UK(n) to UL(n). But we have not succeeded in this.

The new interpretation of an consists of three kinds of paths: normal paths, H2-paths,
and V2-paths. A normal path has steps (0, 1) and (1, 0). A path is an H2 path if each
horizontal step is (2, 0) instead of (1, 0). By dividing each horizontal 2-step into two
horizontal 1-steps, we can represent an H2 path as a normal path. Similarly, a path is a
V2 path if each vertical step is (0, 2).

By reflecting in the line y = −x, we can convert an H2 path into a V2 path, or a V2

path into an H2 path. This bijection can convert any property of H2-paths into a similar
property of V2-paths.

It is well-known that the number of paths that start at (0, 0), end at (n, 2n), and
never go above the line y = 2x is an = 1

2n+1

(

3n
n

)

. Replacing each horizontal step by two
horizontal steps, it follows that:

Proposition 6.1. The number of H2-paths (or V2-paths) that start at (0, 0), end at

(2n, 2n) and never go above the diagonal equals an.

Definition 6.2. We call a path P a K-path if it satisfies the following four conditions.

1. The path P never goes above the diagonal.

2. The part of P that is below the line y = −2x is a V2 path.

3. The part of P between the two lines y = −2x and x = −2y is a normal path.

4. The part of P that is above the line x = −2y is an H2 path.

From the definition, we see that a K-path can be uniquely decomposed into three
kinds of paths: a V2 path, followed by a normal path, followed by an H2 path. Depending
on its starting point, some of the paths may be empty. The normal path region is between
the two lines y = −2x and x = −2y. The steps occurring in a K-path are shown in Figure
2. We have

Theorem 6.3. The number of K-paths from (−2m,−2m) to (2n, 2n), where m + n ≥ 0,
is am+n.

The proof of the theorem will be given later. From the new interpretation of an,
Un counts UK(n), the set of n-tuples of nonintersecting K-paths from P0, . . . , Pn−1 to
Q0, . . . , Qn−1, where Pi = (−2i,−2i), and Qi = (2i, 2i) for i = 0, 1, . . . , n − 1. See
Figure 2. For the paths to be nonintersecting, Pi must go to Qi. In such an n-tuples
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Q′
1

Q′
2

Q′
3

Q′
4

P ′
1

P ′
2

P ′
3

P ′
4

Q1

(0, 0)Q0

Q2

Q3

Q4

P1

P0

P2

P3

P4

P̃4

Q̃4

Figure 2: The grid for K-paths.

of nonintersecting K-paths, the path from Pi to Qi must start with a path from Pi =
(−2i,−2i) to P ′

i = (i,−2i), and end with a path from Q′
i = (2i,−i) to Qi = (2i, 2i). So

UK(n) is in natural bijection with UR(n). If we count the number of K-paths according
to their intersections with the lines y = −2x and x = −2y, we get the matrix identity
(64).

If P is a K-path from (−2m,−2m) to (2n, 2n) with m ≤ 0 (or n ≤ 0), then P is an
H2 (or a V2)-path, and Theorem 6.3 follows from Proposition 6.1. So we can assume that
m and n are both positive integers.

The idea of the proof of Theorem 6.3 is to show that the number of K-paths from
(−2m,−2m) to (2n, 2n) is unchanged after sliding their starting and ending points along
the diagonal by (2, 2).

In fact, the following refinement is true. See Figure 3.

Lemma 6.4 (Sliding Lemma). The number of K-paths from (i−2,−2i−2) to (2j,−j)
equals the number of K-paths from (i,−2i) to (2j + 2,−j + 2).

Proof. Let N(i, j) be the number of K-paths from Ai = (i− 2,−2i− 2) to Bj = (2j,−j).
It is clear that N(i, j) = 0 if i < 0 or j < 0.

By reflecting in the line y = −x, we can give a bijective proof of the following state-
ment: The number of K-paths from (i,−2i) to (2j + 2,−j + 2) equals the number of
K-paths from (j − 2,−2j − 2) to (2i,−i), which is N(j, i). Therefore it suffices to show
that N(i, j) = N(j, i).
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A1

A0

A2

A3

B1

B2

B4

B3

A′
3

B′
4

(0, 0) = B0

Figure 3: Picture for the sliding lemma.

The cases i = 0 and i = 1 correspond to starting at A0 and A1. From Figure 3, we
can check that N(i, j) = N(j, i) directly. We have

i\j 0 1 2 3 4
0 1 2 1 0 0
1 2 5 9 5 1
2 1 9 ∗ ∗ ∗
3 0 5 ∗ ∗ ∗
4 0 1 ∗ ∗ ∗

and N(i, j) = 0 if one of i, j is 0 or 1 and the other is great than 4.
In the case i ≥ 2, we count the number of K-paths from Ai to Bj according to its

intersection with the line y = −2x. From Figure 3, we see that there are 4 possible
intersection points. We have

N(i, j) = B(2j − i + 2, 2i− j − 4) + 3B(2j − i + 1, 2i − j − 2)

+ 3B(2j − i, 2i − j) + B(2j − i − 1, 2i − j + 2), (65)

where B(a, b) =
(

a+b
b

)

.
Let M(a, b) be defined by

M(a, b) = B(a + 2, b − 4) + 3B(a + 1, b − 2) + 3B(a, b) + B(a − 1, b + 2).

Then N(i, j) = M(2j − i, 2i− j). We need to show that M(a, b) = M(b, a) for a + b ≥ 2,
which implies N(i, j) = N(j, i) for i ≥ 2. Using the basic identity of binomial coefficients
B(c, d) = B(c − 1, d) + B(c, d − 1) for all integers c and d, when a + b ≥ 2, we have

M(a, b) = B(a − 4, b + 2) + 3B(a − 3, b + 1) + 6B(a − 2, b) + 7B(a − 1, b − 1)

+ 6B(a, b − 2) + 3B(a + 1, b − 3) + B(a + 2, b − 4). (66)
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In the following Figure 4, every number we put at a point is the sum of the numbers at
points that are to the left of it or under it. This corresponds to the formula B(c, d) =
B(c − 1, d) + B(c, d − 1).

(0, 0)

(a, b)

1

3

3

1

1

(−2, 4)

3

6

7

6

3

11

21

4

3

(4,−2)

Figure 4: Proof of equation (66) by picture.

By the symmetry property B(c, d) = B(d, c), we have M(a, b) = M(b, a). This com-
pletes the proof.

Remark 6.5. Observe that the symmetry property of the numbers (1, 3, 6, 7, 6, 3, 1) along

the diagonal in Figure 4 implies (66). A bijective proof of this symmetry will induce a

bijective proof of N(i, j) = N(j, i), and then a bijective proof of Lemma 6.4.

Proof of Theorem 6.3. Let G(m, n) be the number of K-paths starting at (−2m,−2m)
and ending at (2n, 2n). We will prove that G(m − 1, n + 1) = G(m, n) for all m > 0.
Then by induction, G(m, n) = G(0, m + n) = am+n.

We give the bijection as follows. Given a K-path P from (−2m,−2m) to (2n, 2n), we
separate it by the two lines y + 2 = −2(x + 2) and x = −2y into three parts: a V2-path
P1, followed by a K-path P2, followed by an H2-path P3.

Applying the bijection in the sliding lemma (Lemma 6.4) for P2, we get P ′
2, a K-path

starting on the line y = −2x, ending on the line x − 2 = −2(y − 2). Then P ′ = P1P
′
2P3

with starting point (−2m + 2,−2m + 2) is the desired K-path.
A similar argument gives the inverse bijection.

This bijective proof of Theorem 6.3 is not ideal, though it is sufficient to prove the
determinant formula (63). The proof relies on the sliding lemma, whose proof involves
a case by case bijection that is not explicitly given. We would prefer a natural bijection
for the sliding lemma that preserves the nonintersecting properties of K-paths. This is
because such a bijection would give rise to a bijection from UK(n) to UL(n): we could
slide the n-tuples of K-paths in UK(n) so that all the paths are above the line x = −2y.
Then the resulting paths would all be H2-paths that can be easily converted into normal
paths in UL(n).
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7 Trinomial Coefficients and an

In this section, we introduce T -paths that are counted by trinomial coefficients. The
trinomial coefficient T (a, b) is defined by

T (a, b) = [xayb](x2 + xy + y2)
a+b
2 ,

if a + b is even, and T (a, b) = 0 otherwise.
The trinomial coefficients T (a, b) have a simple combinatorial interpretation: We call

a path P a T -path if each step of P is (2, 0) or (1, 1) or (0, 2). Then the number of T -paths
that start at (0, 0) and end at (a, b) is T (a, b). This follows easily from the definition of
T (a, b). See the following Figure 5, in which dots represent vertices of T -paths.

Figure 5: The grid for T -paths.

Using T -paths, we can give a better bijective proof of the sliding lemma. In addition,
we find a new determinant identity (68).

Let n = (a + b)/2. We can get another formula for T (a, b) in the following way. We
write (x2 + xy + y2)n = (x(x + y) + y2)n and use the binomial theorem twice:

(x(x + y) + y2)n =

n
∑

k=0

(

n

k

)

y2(n−k)xk
k
∑

l=0

(

k

l

)

xlyk−l

=

2n
∑

a=0

(

a
∑

k=0

(

n

k

)(

k

a − k

)

)

xay2n−a.

So

T (a, b) =
a
∑

k=0

(

n

k

)(

k

a − k

)

. (67)

This algebraic fact gives another combinatorial explanation of T (a, b):

Lemma 7.1. The number of paths from (0,−2m) to (i,−i), in which the part below the

line y = −2x is a V2 path, and the other part is a normal path, is equal to the number of

T -paths from (0,−2m) to (i,−i), which is T (i, 2m − i).
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Proof. For a given path P from (0,−2m) to (i,−i), with the part P1 below the line
y = −2x a V2 path, and the other part P2 a normal path, it is clear that P1 must end at
a point (j,−2j) for some j ≥ 0, and this j is unique.

We observe that the number of horizontal steps in P1 is j, which equals the total
number of steps in P2. Therefore, we can associate to each horizontal step in P1 a step
in P2, with order preserved. We call this new path Q. Clearly, Q is a T -path, since each
step of Q is a (0, 2)-step, which is kept from P1, or a (1, 1)-step, by associating a vertical
step in P2 to a horizontal step in P1, or a (2, 0)-step, by associating a horizontal step in
P2 to a horizontal step in P1. Since the above procedure is a rearrangement of the steps
in P1P2, Q is a T -path from (0,−2m) to (i,−i). So Q is the desired T -path. The above
procedure is clearly reversible.

By reflecting in y = −x, we get

Lemma 7.2. The number of paths from (i,−i) to (0, 2m), in which the part above the

line x = −2y is an H2 path, and the other part is a normal path, is also T (i, 2m − i).

Pictures for generalizations of these lemmas can be found in Figures 8 and 9. These
lemmas correspond to the case r = 2.

Theorem 7.3. The number of K-paths from (0,−2m) to (2n, 0) is equal to the number

of T -paths from (0,−2m) to (2n, 0), which is T (2n, 2m). Moreover, we have the following

identity.

Un = det (T (2i, 2j))0≤i,j≤n−1 . (68)

Proof of Theorem 7.3. We can split any K-path from (0,−2m) to (2n, 0) into two parts:
one ends at (i,−i) and the other starts at (i,−i) for some i ≥ 0 (this i is unique). Then
using the two bijections in Lemmas 7.1 and 7.2, we have a bijective proof of the first part
of the corollary.

We have shown in last section that Un equals the number of n-tuples of nonintersecting
K-paths from P0, . . . , Pn−1 to Q0, . . . , Qn−1, where Pi = (−2i,−2i), and Qi = (2i, 2i) for
i = 0, 1, . . . , n − 1. It is clear (see Figure 2) that it is still true if we replace Pi by
P̃i = (0,−2i), and Qi by Q̃i = (2i, 0). But from the first part of this corollary, the number
of K-paths from P̃i to Q̃j is T (2j, 2i) = T (2i, 2j) for all 0 ≤ i, j ≤. Then the identity (68)
follows.

Remark 7.4. The identity (68) has a generalization in Section 8. Note that Un does not

equal the number of n-tuples of nonintersecting T -paths from P ′
0, . . . , P

′
n−1 to Q′

0, . . . , Q
′
n−1,

because their steps can cross without meeting at a vertex of the T -paths.

Definition 7.5. We call a path P a KT -path if it satisfies the following conditions.

1. The path P never goes above the diagonal.

2. The part of P that is to the left of the line x = 0 is a V2 path.
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3. The part of P in the fourth quadrant is a T -path.

4. The part of P that is above the line y = 0 is an H2 path.

Theorem 7.6. The number of KT -paths from (−2m,−2m) to (2n, 2n) is am+n for all

m + n ≥ 0.

We give three bijective proofs of this theorem. The first bijective proof establishes the
bijection from K-paths to KT -paths. A sliding lemma for KT -paths will then yield a
sliding lemma for K-paths. We find that it is much easier to slide KT -paths: we can slide
slowly and we can also slide fast. We give the fast sliding in our bijection from KT -paths
to V2-paths. This is the second proof. The slow sliding will be given in Section 8 in a
more general setting. This yields the third proof. We suspect that the sliding lemma
for K-paths resulting from our second and third bijections are natural, i.e., preserve the
nonintersecting property.

Bijection from KT -paths to K-paths. We first uniquely separate P , according to its in-
tersections with the lines x = 0 and y = 0, into three parts, a V2-path P1, followed by a
T -path P2, followed by an H2-path P3, such that P1 ends with a horizontal step and P3

starts with a vertical step, except that P1 and P3 may be empty.
From Theorem 7.3, we can get a K-path P ′

2 from P2 without changing the starting
and ending points. Then P ′ = P1P

′
2P3 is the desired K-path. This procedure is clearly

reversible.

The next proof relies highly on Lemmas 7.1 and 7.2. The bijection φv for Lemma 7.1
maps a T -path P to a V2-path PV followed by a normal path PN , in which the number of
horizontal steps in PV equals the total number of steps in PN . Given the starting point
S(P ) and ending point E(P ) of P , we can predict the position of E(PV ) = S(PN): E(PV )
must lie on the line with slope −2 and passing through the point O, which is determined
by the conditions that O → S(P ) is vertical and the slope of O → E(P ) is −1.

Similarly the bijection φh for Lemma 7.2 maps a T -path P to a normal path PN

followed by an H2-path PH with similar properties.

Fast sliding bijection from KT -paths to V2-paths. Let P be a KT -path from (−2m,−2m)
to (2n, 2n) with m, n ≥ 0.

We first uniquely separate P , according to its intersections with the lines x = 0 and
y = 0, into a V2-path P1, followed by a T -path P2, followed by an H2-path P3, such that
P1 ends with a horizontal step and P3 starts with a vertical step, except that P1 and P3

may be empty. We will map P2P3 to a V2 path with the same starting and ending points.
Suppose S(P2) = (0,−i) and E(P2) = (j, 0). Obviously we can assume j > 0 for

otherwise P2 is a V2-path and P3 is the empty path. Applying φv to P2 gives us a V2-path
P2V followed by a normal path P2N with S(P2N) = (a,−2a + j) for some a > 0. See
Figure 6, where we did not draw the paths explicitly.

Draw a vertical line at S(P2N), which intersects the diagonal at (a, a). It is easy to
check that the the total number of steps of P2N is a. Factor the H2-path P3, according
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H2 region

V2 region

N region

H2 region

(j, 0) (j, 0)

(a,−2a + j)(a,−2a + j)

T region

φv

(0,−i) (0,−i)

(0, j) (0, j)

(2n, 2n) (2n, 2n)

Figure 6: First step of the fast sliding.

to its intersection with the line y = a, into P31P
′
3 such that P ′

3 starts with a vertical step.
The the number of vertical steps of P31 equals a. Applying φ−1

h to P2NP31 gives us a
T -path P ′

2. See Figure 7.
Now we are left to map P2V P ′

2P
′
3 to a V2-path. If we slide down the path by (a, a),

then we met the same situation as for the path P2P3. Repeat the above procedure we can
finally obtain the desired V2-path. The procedure is reversible because of the required
conditions of ending with a horizontal step or starting with a vertical step, as shown in
Figures 6 and 7.

8 Generalizations of K-paths and KT -paths

Let g
(r)
n = 1

rn+1

(

(r+1)n
n

)

be the number of r + 1-ary trees with n nodes, and

g(r)(x) =
∑

n≥0

g(r)
n xn

be the generating function. Then g(r)(x) satisfies the following functional equation.

g(r)(x) = 1 + x
(

g(r)(x)
)r+1

.

For r = 1, g
(1)
n is the Catalan number. It is well-known that the Hankel determinants

of the Catalan generating function are all 1. We have studied the the case r = 2. We
wish to say something about the Hankel determinants of g(r)(x) for r ≥ 3.

Since Hn(g
(r)(x)) does not factor for r ≥ 3, a formula like (4) is unlikely. However,

we find generalizations of (63) (which is the same as (7)), (64), and (68). They are given
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V2 region

(j, 0)

V2 region

N region

H2 region
T region

(n, n)
(n, n)

H2 region
H2 region

(a,−2a + j)

(0,−i) (0,−i)

φ
−1

h

(a,−2a + j)

Figure 7: Second step of the fast sliding.

by (71), (72), and (73). Their algebraic proofs can be found in Section 9. Except for
Hn(g(r)(x)), we do not have nonintersecting paths interpretation of these determinants.

We have natural generalizations of the concepts in the last two sections. A path is an
Hr path if each step is either (r, 0) or (0, 1). Similarly, a path is a Vr path if each step
is either (1, 0) or (0, r). The following is equivalent to a special case of a classical result
given (without proof) by Barbier [4]. (See [12] for a new proof and further references.)

Proposition 8.1. The number of Vr-paths (or Hr-paths) from (0, 0) to (rn, rn) that never

go above the diagonal is g
(r)
n .

A path is a T (r)-path if each of its step is (r, 0), (r − 1, 1), . . . , or (0, r). For any path
P , we denote by S(P ) the starting point, E(P ) the ending point, and L(P ) the number
of steps in P .

For a T (r)-path P with S(P ) = (0, 0) and L(P ) = k, E(P ) must lie on the line
y = −x+ rk. So to compute L(P ), we take the sum of the x-coordinate and y-coordinate
of E(P ) − S(P ), and divide by r. A normal path is also a T (1)-path, a V1 path, and an
H1 path, and a T -path is a T (2)-path.

Let T (r)(a, b) be the number of T (r)-paths from (0, 0) to (a, b). Then T (r)(a, b) = 0 if
a + b is not divisible by r, so we can suppose a = ri − s and b = rj + s for some i, j and
0 ≤ s ≤ r − 1. We have

T (r)(ri + s, rj − s) = [xri+syrj−s](xr + xr−1y + · · ·+ yr)i+j.

Since the right-hand side of the above equation is homogeneous in x and y, we can write
it in terms of one variable t, where t = y/x.

Let α = 1 + t + t2 + · · ·+ tr and β = α/tr = 1 + t−1 + · · · t−r. Then

T (ri + s, rj − s) = CT tsαiβj = CT ts−rjαi+j, (69)
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where CT means to take the constant term of a Laurent polynomial of t.

Definition 8.2. We call a path P a K(r)-path if it satisfies the following conditions.

1. The path P never goes above the diagonal.

2. The part of P that is to the left of the line y = −rx is a Vr path.

3. The part of P between the two lines y = −rx and x = −ry is a T (r−1)-path.

4. The part of P that is above the line x = −ry is an Hr path.

Definition 8.3. We call a path P a KT (r)-path if it satisfies the following conditions.

1. The path P never goes above the diagonal.

2. The part of P that is to the left of the line x = 0 is a Vr path.

3. The part of P in the fourth quadrant is a T (r)-path.

4. The part of P that is above the line y = 0 is an Hr path.

For example, a K-path is a K(2)-path, and a KT -path is a KT (2)-path.
Let K(m, n, r) be the set of all K(r)-paths from (−mr,−mr) to (nr, nr). Let

T(m, n, r, s) be the set of all KT (r)-paths from (s−mr, s−mr) to (nr + s, nr + s). Now
we can state our main results.

Theorem 8.4. The cardinality of K(m, n, r) is g
(r)
n+m for all m and n. The cardinality of

T(m, n, r, s) is also g
(r)
n+m for all m, n and s.

As in the case r = 2, if m ≤ 0 (or n ≤ 0), then K(r)-paths and KT (r)-paths are in
fact Hr-paths (or Vr-paths), and in these cases, Theorem 8.4 follows from Proposition 8.1.
The idea of the proof of Theorem 8.4 is to show that |T(m, n, r, s)| = |T(m, n, r, s−1)| for

all 1 ≤ s ≤ r. Then |T(m, n, r, s)| = g
(r)
m+n follows by induction. We will give a bijection

from T(m, n, r, 0) to K(m, n, r).
The bijective proof we are going to give highly relies on the following lemma, especially

on the bijection from T(i, j) to V(i, j), which is a generalization of Lemma 7.1.

Lemma 8.5. The following four sets all have cardinality T (r)(j, ri − j).

1. The set T(i, j) of all T (r)-paths from (0,−ri) to (j,−j).

2. The set T′(i, j) of all T (r)-paths from (j,−j) to (ri, 0).

3. The set V(i, j) of all paths from (0,−ri) to (j,−j), with the part before the line

y = −rx a Vr path, and the part after the line y = −rx a T (r−1)-path.

4. The set H(i, j) of all paths from (j,−j) to (ri, 0) with the part before the line x =
−ry a T (r−1)-path, and the part after the line x = −ry an Hr path.
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Proof. We construct only the bijection from T(i, j) to V(i, j). The bijection from T′(i, j)
to H(i, j) is similar. The bijection from V(i, j) to H(i, j) and the bijection from T(i, j)
to T′(i, j) are given by reflecting in the line y = −x.

For any given path T ∈ T(i, j) the steps in T are (r − k, k) for k = 0, 1, . . . , r. We
first replace all the steps in T that are not (0, r) with steps (r, 0). Then we get a path T1,
with E(T1) on the line y = −x. Changing every (r, 0)-step in T1 into (1, 0) will give us a
Vr path V1 with E(V1) on the line y = −rx. By removing all the (0, r)-steps in T , and
changing every (r−k, k)-step into (r−k−1, k) for k = 0, 1, . . . r−1, we get a T (r−1)-path
V2. Then V = V1V2 ∈ V(i, j) is the desired path. One way to see that E(V ) = (j,−j)
is that if we regard an (r − k, k)-step as a (1, 0) step followed by a (r − k − 1, k)-step for
k = 0, 1, . . . , r − 1, then the bijection we gave is just a rearrangement of the steps in T .

The inverse procedure is as follows. For a given V ′ ∈ V(i, j), the line y = −rx divides
V ′ into a Vr path V ′

1 followed by a T (r−1) path V ′
2 . Suppose E(V ′

1) = (k′,−rk′) for some k′.
We can see that the number of (1, 0)-steps in V ′

1 , which is k′, equals the total number of
steps in V ′

2 , which is ((j − k′) + (−j + rk′))/(r − 1) = k′. Then we can associate to each
(1, 0) step in V ′

1 a step in V ′
2 , with order preserved. This gives us a T (r)-path T ′ ∈ T(i, j).

In Figure 8, we give an example of the case r = 4. The above two procedures are clearly

y = −x

(0, 0) (0, 0)

(j,−j)(j,−j)

y = −x

(0,−ri) (0,−ri)

T

φv

y = −rx

Figure 8: A T (r)-path T and its image under φv.

inverse to each other.

Remark 8.6. The bijection from T(i, j) to V(i, j) we gave originated from the following

algebraic fact.

For r ≥ 3, there are many ways to group and expand the polynomial (xr + xr−1y +
· · ·+ yr)m. We find the following way has a nice combinatorial explanation.
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(x(xr−1 + xr−2y + · · · yr−1) + yr)m =
m
∑

j=0

(

m

j

)

yr(m−j)xj(xr−1 + xr−2y + · · · yr−1)j

=

rm
∑

i=0

(

m
∑

j=0

(

m

j

)

T (r−1)(rj − i, i − j)

)

xiyrm−i

So we have

T (r)(i, rm − i) =
m
∑

j=0

(

m

j

)

T (r−1)(rj − i, i − j). (70)

In Figure 8, |V(i, j)| can be counted according to the intersection points of the paths

in V(i, j) with the line y = −rx. This yields (70).

We denote the bijection from T(i, j) to V(i, j) by φv, and the bijection from T′(i, j)
to H(i, j) by φh. One thing we should mention is that neither φh nor φv changes the
starting point and the ending point. The path in Figure 9 is obtained from the T (r)-path
T in Figure 8 by applying φh.

y = −rx

x = −ry − ri − rj + j

(0, 0)

(j,−j)
(j,−ri − j)

(0,−ri)

Figure 9: The image of T under φh.

Applying φv to a T (r) path will give us a Vr path followed by a T (r−1) path, in which
the number of horizontal steps in the Vr path equals the total number of steps in the
T (r−1) path. We can locate the ending point of the Vr path by the following three easy
steps. (See Figure 8.)

1. Draw a vertical line at S(T ).
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2. Draw a line of slope −1 at E(T ).

3. At the intersecting point of the above two lines, draw a line of slope −r. Then this
is the line on which the ending point of the Vr path must lie.

We call the line obtained in the above three steps the bisecting line BLv(T ) of φv(T ). For
any T (r) path T , with S(T ) = (0,−ri) and E(T ) = (j,−j), BLv(T ) is y = −rx, which is
independent of i and j.

A similar argument for φh holds for a T (r)-path T ′. The corresponding three steps are
given as follows. (See Figure 9.)

1. Draw a horizontal line at E(T ′).

2. Draw a line of slope −1 at S(T ′).

3. At the intersecting point of the above two lines, draw a line of slope −1/r. Then
this is the line on which the starting point of the Hr-path must lie.

We call the line obtained in the above three steps the bisecting line BLh(T
′) of φh(T

′).
The following is a generalization of Theorem 7.3.

Lemma 8.7. The number of each of the following four kinds of paths from (0,−ri + s)
to (rj + s, 0) equals to T (rj + s, ri − s).

1. All T (r)-paths from (0,−ri + s) to (rj + s, 0).

2. All paths from (0,−ri+ s) to (rj + s, 0) consisting of a Vr path, followed by a T (r−1)

path, in which the number of (1, 0)-steps in the Vr path equals the total number of

steps in the T (r−1) path.

3. All the paths from (0,−ri + s) to (rj + s, 0) consisting of a T (r−1) path, followed

by an Hr path, in which the number of (0, 1)-steps in the Hr path equals the total

number of steps in the T (r−1) path.

4. All the paths from (0,−ri+s) to (rj+s, 0), with the part before the line y = −rx+s
a Vr path, between the lines y = −rx + s and x = −ry + s a T (r−1) path, and the

part after the line x = −ry + s an Hr path.

Proof. Part 1 follows from the definition of T (r)(rj + s, ri − s). Part 2 and part 3 are
obvious by Lemma 8.5, so we need only prove part 4.

For a given T (r) path T from (0,−ri + s) to (rj + s, 0), we can uniquely separate
it by the line y = −x + s into a T (r) path T1 followed by a T (r) path T2. Applying
φv on T1, we get a Vr path T1V followed by a T (r−1) path T1T . Applying φh on T2, we
get a T (r−1) path T2T followed by an Hr path T2H . Using the three steps for finding
BLv(T1), we see that E(T1V ) must lie on the line y = −rx + s, since the line y = −x + s
intersects the line x = 0 at (0, s). Similarly, S(T2T ) must lie on the line x = −ry + s,
since the line y = −x + s intersect the line y = 0 at (s, 0). Together with the fact that
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E(T1T ) = E(T1) = S(T2) = S(T2T ), we see that T1T T2T is also a T (r−1) path and the path
T1V T1T T2T T2H is the desired path.

The above procedure is clearly invertible.

The bijection in the above proof will induce a bijection from T(m, n, r, 0) to K(m, n, r).
We will see this in the proof of Theorem 8.4.

For any 1 ≤ s ≤ r, let As(i, j) be the set of KT (r)-paths from (0,−(ri − s)) to
(rj + s, 1), and Bs(i, j) be the set of KT (r)-paths from (−1,−(ri−s+1) to (rj + s−1, 0).
Then we have the following lemma, which will induce the bijection from T(m, n, r, s) to
T(m, n, r, s − 1).

Lemma 8.8 (Slow Sliding Lemma). There is a bijection from As(i, j) to Bs(i, j) for

all i, j.

We will give two proofs for this lemma. The algebraic proof will be given in the next
section. The bijective proof is as follows.

Bijective proof of Lemma 8.8. For any given P ∈ As(i, j), we uniquely factor P , according
to its intersections with the lines y = 0 and y = −x+ s, into P1P2P3, where we require P3

to start with a vertical step. In the left picture of Figure 10, we marked each intersection
point by a ◦.

(0, s)

rj + s

y = 1

x = 0

y = x

rj + s

x = −ry + s

y = x
(0, s)

ss

y = −x + s

y = −rx + s

φv

φh

s − r

s − ri

r

x = 0

s − ri

s − r

r − 1

Figure 10: First step of the slow sliding bijection.

Now we apply φv to P1 to obtain a Vr-path followed by a T (r−1)-path, and apply φh to
P2 to obtain a T (r−1)-path followed by an Hr-path. The bisection lines are y = −rx + s
and x = −ry + s, as drawn in the right picture of Figure 10.
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Denote by P ′ the whole path obtained this way. We uniquely factor P ′, according
to its intersections with the lines x = 1 and y = −x + s − r + 1 into P ′

1P
′
2P

′
3, where we

require P ′
1 to end with a horizontal step. In the left picture of Figure 11, we marked each

intersection point by a 2.

rj + s

x = −ry + s

y = x

s

y = −rx + s

s − ri

x = 0 x = 0

y = x

y = 1 y = 1

rj + s

r

(s − r, 1) s

s − r

φ
−1

h

φ−1

v

r − 1
s − ri

s − r

(s − r, 1)

Figure 11: Second step of the slow sliding bijection.

Now we apply φ−1
v to P ′

2 to obtain a T (r)-path Q2, and apply φ−1
h to P ′

3 to obtain a
T (r)-path Q3. See the right picture of Figure 11. We need to check that the three lines
y = −x + s − r + 1, x = −ry + s, and y = 1 intersect at the point (s − r, 1), so that
φ−1

h (P ′
3) is well defined.

Finally, let Q be obtained from P ′
1Q2Q3 by sliding down by (1, 1). Then Q is the desired

path. Every step in the above procedure is invertible. This completes the proof.

Proof of Theorem 8.4. First we construct the bijection from T(m, n, r, 0) to K(m, n, r).
This shows that |T(m, n, r, 0)| = |K(m, n, r)|.

Recall that any P ∈ T(m, n, r, 0) is a KT (r)-path from (−rm,−rm) to (rn, rn), and
any Q ∈ K(m, n, r) is a Kr-path with the same ending points. We can uniquely factor P ,
according to its intersections with the lines x = 0 and y = 0, into P1P2P3, such that P1 is
a Vr path ending with a horizonal step and P3 is an Hr path starting with a vertical step,
except that P1 and P3 may be empty. Applying the bijection of Lemma 8.7 part 4 to P2,
we get a Kr-path Q2 = Q2aQ2bQ2c from S(P2) to E(P2), with Q2a a Vr path ending on
the line y = −rx, Q2b a T (r−1) path ending on the line x = −ry, and Q2c an Hr path.
Then P1Q2a is a Vr path, and Q2cP3 is an Hr path. So Q = P1Q2P3 = (P1Q2a)Q2b(Q2cP3)
belonging to K(m, n, r) is the desired path. The above procedure is clearly reversible.

Next we construct the bijection from T(m, n, r, s) to T(m, n, r, s − 1) for 1 ≤ s ≤ r,
which implies |T(m, n, r, s)| = |T(m, n, r, s − 1)|. Any P ∈ T(m, n, r, s) can be uniquely
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factored, according to its intersections with the lines x = 0 and y = 1, into P1P2P3, such
that P1 is a Vr path ending with a horizonal step and P3 is an Hr path starting with a
vertical step, except that P1 and P3 may be empty. Then P2 is a KT (r)-path.

Applying the bijection of Lemma 8.8 to P2, we get a KT (r)-path Q2 = Q2aQ2b, with
Q2a a Vr path starting on the line x = −1 and ending on the line x = 0, and Q2b a Tr

path ending on the line y = 0. Let Q1 be obtained from P1 by sliding down by (1, 1), and
Q3 be obtained from P3 by sliding down by (1, 1). Then Q = Q1Q2Q3 = (Q1Q2a)Q2bQ3

is a path from (s − 1 − mr, s − 1 − mr) to (s − 1 + nr, s − 1, nr) that never goes above
the diagonal and with the part before the line x = 0 a Vr path, the part between the two
lines x = 0 and y = 0 a Tr path, and the part after the line y = 0 an Hr path. Hence
Q ∈ T(m, n, r, s − 1) is the desired path. The above procedure is clearly reversible.

Finally, we use induction to conclude the theorem. By the second part, it is easy
to see that |T(m, n, r, s)| = |T(m, n, r, r)| for 0 ≤ s ≤ r. But T(m, n, r, r) is in fact
T(m − 1, n + 1, r, 0). Theorem 8.4 then follows by induction and the fact that |T(0, m +

n, r, 0)| = g
(r)
m+n.

Remark 8.9. We can also give a fast sliding bijection from T(m, n, r, 0) to T(0, m +
n, r, 0).

Recall that g(r)(x) is the generating function of r+1-ary trees. Let f (r)(x) = g(r)(x)−1.
Then f (r) satisfies the following functional equation.

f (r) = x(1 + f (r))r+1.

If we count K(r)-paths from (−mr,−mr) to (nr, nr) according to their intersections with
the lines y = −rx and x = −ry, we see that Theorem 8.4 yields the matrix identity
(

g
(r)
i+j

)

0≤i,j≤n−1
=
(

[xi]g(r)(f (r))j
)

0≤i,j≤n−1

(

T (r−1)(rj − i, ri − j)
)

0≤i,j≤n−1

(

[xj ]g(r)(f (r))i
)

0≤i,j≤n−1
, (71)

where

[xi]g(r)(f (r))j =
(r + 1)j + 1

(r + 1)i + 1

(

(r + 1)i + 1

i − j

)

is the number of Vr-paths from (−ri,−ri) to (j,−rj) that never go above the diagonal.
Since the transformation matrices in (71) are upper (or lower) triangular matrices with

diagonal entries 1, we have

det
(

g
(r)
i+j

)

0≤i,j≤n−1
= det

(

(T (r−1)(rj − i, ri − j)
)

0≤i,j≤n−1
(72)

A similar argument gives

det
(

g
(r)
i+j

)

0≤i,j≤n−1
= det

(

T (r)(ri, rj)
)

0≤i,j≤n−1
= det

(

T (r)(ri − s, rj + s)
)

0≤i,j≤n−1
,

(73)

for any 0 ≤ s ≤ r − 1.
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9 The Algebraic Proof

The scheme of our algebraic proof of Lemma 8.8 is by first representing our object as
the constant term of a rational function, and then evaluating the constant term. This
technique is well-known. For instance, Egorychev [7] gave many applications for evaluating
combinatorial sums in the context of residues (equivalent to constant terms). We also use
this method, together the method in Section 4, to give algebraic proofs of (72) and (73).

The only thing we need here is the following Proposition 9.1. Its proof is included since
the idea of the proof applies to most of our examples. We will give a different algebraic
proof of equations (48) and (52).

Let B(x, y, t) ∈ Q[t, t−1][[x, y]]. Then B(x, y, t) can be written as

B(x, y, t) =

∞
∑

i,j=0

bij(t)x
iyj,

where bij(t) ∈ Q[t, t−1]. Define

CT B(x, y, t) =
∞
∑

i,j=0

(CT bij(t))x
iyj,

where CT bij(t) is the constant term of the Laurent polynomial bij(t) in t.
The general problem in this section is to find the constant term of the function (1 −

P (t−1)x)−1(1 − Q(t)y)−1, for some specific P (t), Q(t) ∈ Q[t].

Proposition 9.1. Let P (t) and Q(t) be polynomials in t, and let amn = CT P (t)mQ(t−1)n.

Then
∑

m,n

amnx
myn

is a rational function in x and y.

Proof. We show that

CT
1

(1 − P (t)x)(1 − Q(t−1)y)

is rational, where we work in the ring Q[t, t−1][[x, y]]. We may assume that P (t) has
degree at at least 1. Let d be the degree of Q(t). Let

F =
1

(1 − P (t)x)(1 − Q(t−1)y)
=

td

(1 − P (t)x)(td − tdQ(t−1)y)
.

Since tdQ(t−1) is a polynomial in t of degree at most d, and the degree of P (t) is at
least 1, F has a partial fraction expansion in t that may be written

F =
1

R(x, y)

(

A(x, y, t)

1 − P (t)x
+

B(x, y, t)

td − tdQ(t−1)y

)

=
1

R(x, y)

(

A(x, y, t)

1 − P (t)x
+

B(x, y, t)t−d

1 − Q(t−1)y

)

(74)
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where R(x, y) is a polynomial in x and y, A(x, y, t) and B(x, y, t) are polynomials in x,
y, and t, and the degree of B in t is less than d.

Now the constant term in t of B(x, y, t)t−d/(1 − Q(t−1)y) is 0 and the constant term
in A(x, y, t)/(1 − P (t)x) is A(x, y, 0)/(1− P (0)x). We would like to conclude that

CT F =
A(x, y, 0)

R(x, y)(1 − P (0)x)
. (75)

However, we don’t know that 1/R(x, y) has a power series expansion. To avoid this
problem, we multiply (74) by R(x, y) to get

R(x, y)F =
A(x, y, t)

1 − P (t)x
+

B(x, y, t)t−d

1 − Q(t−1)y
.

Then

CT R(x, y)F =
A(x, y, 0)

1 − P (0)x
,

but since CT R(x, y)F = R(x, y) CT F , (75) follows.

Since the main idea of this proof is a partial fraction decomposition, we call this
method the partial fraction method. In the following examples, we use formula (69). Let
α = 1 + t + t2 + · · ·+ tr and β = α/tr = 1 + t−1 + · · · t−r. Then

T (ri + s, rj − s) = CT tsαiβj.

In particular,
(

m + n

m

)

= [tn](1 + t)m+n = CT(1 + t)m(1 +
1

t
)n.

Example 9.2. A different proof of identity (48)

1 − xy

1 − xy2 − 3xy − x2y
=
∑

i,j

(

i + j

2i − j

)

xiyj.

Proof. We have

∑

i,j≥0

(

i + j

2i − j

)

xiyj =
∑

i,j≥0

(

CT(1 + t)2i−j(1 + t−1)2j−i
)

xiyj

= CT
∑

i,j≥0

(1 + t)2i

(1 + t−1)i
xi · (1 + t−1)2j

(1 + t)j
yj

= CT
1

(1 − tx − t2x)(1 − t−1y − t−2y)
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Using Maple, we find the partial fraction expansion in t:

1

(1 − tx − t2x)(1 − t−1y − t−2y)
=

1

1 − 3xy − x2y − xy2

(

1 − xy + txy + tx2y

1 − tx − t2x
− y(1 + t + tx − xy)

t2 − ty − y

)

(76)

It is easy to see that

CT
1

1 − 3xy − x2y − xy2

1 − xy + txy + tx2y

1 − tx − t2x
=

1 − xy

1 − 3xy − x2y − xy2
,

obtained by setting t = 0, since it is a formal power series in x and y, with coefficients in
Q[t]. Similarly,

CT
y(1 + t + tx − xy)

t2 − ty − y
= CT t−1 y(1 + t−1 + x − t−1xy)

1 − t−1y − t−2y
= 0,

since it is a formal power series in x and y with coefficients in t−1Q[t−1].
Equation (48) then follows.

Similarly, we can compute the generating function of
(

i+j+r
2i−j

)

for nonnegative integer

r, from which it is easy to deduce (52).

Example 9.3.

∑

i,j,r≥0

(

i + j + r

2i − j

)

xiyjzr =
1 − z − xy(1 − 2z − xz)

(1 − 3xy − x2y − xy2)(1 − 2z + z2 − xz)
. (77)

Proof. We have

∑

i,j,r≥0

(

i + j + r

2i − j

)

xiyjzr =
∑

i,j,r≥0

(

CT(1 + t)2i−j(1 + t−1)2j−i+u
)

xiyjzr

= CT
∑

i,j,r≥0

(1 + t)2i

(1 + t−1)i
xi · (1 + t−1)2j

(1 + t)j
yj · (1 + t−1)rzr

= CT
1

1 − tx − tx2
· 1

1 − t−1y − t−2y
· 1

1 − z − t−1z

By (76), this equals

CT
1

1 − 3xy − x2y − xy2

(

1 − xy + txy + tx2y

1 − tx − t2x
− y(1 + t + tx − xy)

t2 − ty − y

)

1

1 − z − t−1z
.

Since 1/(1 − z − t−1z) is a formal power series in z with coefficients in Q[t−1], we can
discard the second part of (76) in our computation. So we have

CT
1

1 − 3xy − x2y − xy2

(

1 − xy + txy + tx2y

1 − tx − t2x

)

1

1 − z − t−1z
.
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Converting this into partial fraction in t, we get two parts, one with coefficients in Q[t],
the other with coefficients in t−1Q[t−1]. So we can discard the second part and set t = 0
to get equation (77).

Algebraic Proof of Lemma 8.8. For s with 1 ≤ s ≤ r and any P ∈ As(i, j), we factor P ,
according to its intersection with the line y = 0, uniquely as P1P2, where P1 is a T (r)-path,
and P2 is an Hr path starting with a vertical step. Then S(P2) = (kr + s, 0), for some
0 ≤ k ≤ j. See the left picture of Figure 12.

y = x

rj + s

y = 1

r

y = x

s − ri

x = 0 x = −1

s

r

y = 0

s − 1

s − 1 − ri

Figure 12: Example paths for As(i, j) and Bs(i, j).

For any k, there are T (r)(kr + s, ir − s) choices for P1 since it is a T (r)-path from
(0,−(ir−s)) to (kr+s, 0). There is only one choice for P2 since it is a (0, 1) step followed
by a fixed number of (r, 0) steps. Conversely, any such P1P2 stays below the diagonal and
hence belongs to As(i, j). Summing on all possible k, we get a formula for |As(i, j)|:

|As(i, j)| =

j
∑

k=0

T (r)(kr + s, ir − s). (78)
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Multiplying both sides of equation (78) by xiyj, and summing on i and j, we have

∞
∑

i,j=0

|As(i, j)|xiyj =
∞
∑

i,j=0

i
∑

k=1

T (r)(kr + s, ir − s)xiyj

=

∞
∑

i,j=0

i
∑

k=0

(CT tsαkβi)xiyj

= CT ts
∞
∑

j=0

βixi
∞
∑

k=0

αkyk
∑

j≥k

yj−k

= CT ts
1

(1 − αy)(1 − βx)(1 − y)

Similarly, any Q ∈ Bs(i, j) can be factored, according to its intersection with the line
x = 0, uniquely as Q1Q2, where Q1 is a Vr path ending with a horizontal step and Q2 is
a T (r)-path. Then E(Q1) = (0,−(k′r − s + 1)) for some 1 ≤ k′ ≤ i. See the right picture
of Figure 12. We see that even in the case s = 1, k′ cannot be zero, since otherwise Q1

will go above the diagonal.
For any k′, there is only one choice for Q1 since it is a fixed number of (0, r) steps

followed by a (1, 0) step. There are T (r)(jr + s − 1, k′r − s + 1) choices for Q2 since it is
a T (r)-path from (0,−(k′r − s + 1)) to (jr + s− 1, 0). Summing on all the possible k′, we
get a formula for |Bs(i, j)|.

|Bs(i, j)| =
i
∑

k′=1

T (r)(jr + s − 1, k′r − s + 1). (79)

A similar computation shows that

∞
∑

i,j=0

|Bs(i, j)|xiyj = CT ts−1

∞
∑

j=0

αjyj

∞
∑

k′=1

βk′

xk′
∑

i≥k′

xi−k′

= CT ts−1 1

1 − αy

(

1

1 − βx
− 1

)

1

1 − x

= CT ts−1 1

(1 − αy)(1− βx)(1 − x)
− CT ts−1 1

(1 − αy)(1− x)

= CT ts−1 1

(1 − αy)(1− βx)(1 − x)
− δs,1

1

(1 − y)(1 − x)
.

To compute the two generating functions does not seem easy, but their difference has a
simple form.

CT ts
1

1 − αy

1

1 − βx

1

1 − x
− CT ts−1 1

1 − αy

1

1 − βx

1

1 − y

= CT ts−1 t − ty − 1 + x

(1 − x)(1 − y)(1 − αy)(1− βx)
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Direct computation shows that

t − ty − 1 + x

(1 − αy)(1− βx)
= − x

tr(1 − βx)
− 1 − y − t

1 − αy

It is easy to see that −1 − y − t

1 − αy
, belonging to Q[t][[y]], has constant term constant term

−1 in t, and − x

tr(1 − βx)
, belonging to t−1Q[t−1][[x]], has constant term 0. Hence

CT ts−1 t − ty − 1 + x

(1 − x)(1 − y)(1 − αy)(1− βx)
= −δs,1

1

(1 − x)(1 − y)
.

Put the above altogether, we obtain

∞
∑

i,j=0

(|As(i, j)| − |Bs(i, j)|)xiyj = 0.

Lemma 9.4.

∑

i,j≥0

T (r)(ri, rj)xiyj =
x(1 − x)r−1 − y(1 − y)r−1

x(1 − x)r − y(1 − y)r
. (80)

Proof. Let x = uv and y = v. Then

∑

i,j≥0

T (r)(ri, rj)xiyj =
∑

i,j≥0

T (r)(ri, rj)uivi+j

=
∑

n≥i≥0

T (r)(ri, r(n − i))uivn

=
∑

n≥i≥0

CT
αn

tri
uivn

= CT
1

1 − ut−r

1

1 − αv
.
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We have

1

1 − αv
=

1 − t

(1 − t) − v(1 − tr+1)

=
1

1 − v

1 − t

1 − t
1 − trv

1 − v

=
1

1 − v

(1 − t)

(

1 + t
1 − trv

1 − v
+ · · · +

(

t
1 − trv

1 − v

)r−1
)

1 − tr
(

t
1 − trv

1 − v

)r

=
1

1 − v

1 − tr
(

1 − trv

1 − v

)r−1

1 − tr
(

t
1 − trv

1 − v

)r + other terms

Since the other terms contain only terms like arm+st
rm+s for 1 ≤ s ≤ r − 1, they do not

contribute to the constant term in t. Let z = tr. Then we have

CT
1

1 − ut−r

1

1 − αv
= CT

z

1

1 − uz−1

1

1 − v

1 − z

(

1 − zv

1 − v

)r−1

1 − z

(

1 − zv

1 − v

)r ,

where CTz means to take the constant term of a function in z. Since the other part of
the right side of the above equation is a formal power series in z, it is straightforward to
obtain

CT
1

1 − ut−r

1

1 − αv
=

1

1 − v

1 − u

(

1 − uv

1 − v

)r−1

1 − u

(

1 − uv

1 − v

)r .

Replacing u with x/y and v with y, we get formula (80)

Theorem 9.5.

det
(

g
(r)
i+j

)

0≤i,j≤n−1
= det

(

T (r)(ri, rj)
)

0≤i,j≤n−1
= det

(

T (r−1)(rj − i, ri − j)
)

0≤i,j≤n−1
.

Note that the identities in this theorem appeared in (72) and (73).

Proof. We use the technique of Section 4. The generating function for the first determi-
nant is

xg(r)(x) − yg(r)(y)

x − y
.
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Since f (r)(x) = g(r)(x) − 1 is a formal power series in x satisfying

f (r)(x) = x/
(

1 + f (r)(x)
)r+1

,

we make the substitution x → x/(1+x)r+1 and y → y/(1+y)r+1. The generating function
becomes

x(1 + x)−r−1(1 + x) − y(1 + y)−r−1(1 + y)

x(1 + x)−r−1 − y(1 + y)−r−1
=

x(1 + x)−r − y(1 + y)−r

x(1 + x)−r−1 − y(1 + y)−r−1
.

Normalizing and dividing by (1 + x)(1 + y), we get

x(1 − x)r−1 − y(1 − y)r−1

x(1 − x)r − y(1 − y)r
. (81)

The first equality hence follows from Lemma 9.4.
To show the second equality, we compute the generating function for the third deter-

minant.
∑

i,j≥0

T (r−1)(rj − i, ri − j)xiyj

=
∑

i,j≥0

T (r−1)((r − 1)j + (j − i), (r − 1)i − (j − i))xiyj

=
∑

i,j≥0

CT tj−i(1 + t + · · ·+ tr−1)j(1 + t−1 + · · ·+ t−r+1)ixiyj

= CT
∑

i,j≥0

(t−1 + t−2 · · · + t−r)ixi(t + t2 + · · ·+ tr)jyj

= CT
1

1 − (t−1 + t−2 · · ·+ t−r)x

1

1 − (t + t2 + · · ·+ tr)y
(82)

Similarly, the generating function for the second determinant is

CT
1

1 − (1 + t−1 + t−2 · · ·+ t−r)x

1

1 − (1 + t + t2 + · · · + tr)y
. (83)

The following computation shows that the (83) can be obtained from (82) by making
the substitution x → x/(1 − x) and y → y/(1 − y), and then dividing by (1 − x)(1 − y).
This yields the second equality.

CT
1

1 − (1 + t−1 + t−2 · · ·+ t−r)x

1

1 − (1 + t + t2 + · · · + tr)y

= CT
1

1 − x − (t−1 + t−2 · · ·+ t−r)x

1

1 − y − (t + t2 + · · ·+ tr)y

= CT
1

(1 − x)(1 − y)

1

1 − (t−1 + t−2 · · ·+ t−r) x
1−x

1

1 − (t + t2 + · · ·+ tr) y
1−y

.
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[6] Ö. Eğecioğlu, T. Redmond, and C. Ryavec, From a polynomial Riemann hypothesis

to alternating sign matrices, Electron. J. Combin. 8 (2001), no. 1, R36, 51 pp.

[7] G. P. Egorychev, Integral Representation and the Computation of Combinatorial

Sums, Translations of Mathematical Monographs, vol. 59, American Mathematical
Society, Providence, RI, 1984.

[8] I. M. Gessel, Solution to part (B) of Problem 6151, Partitions of finite sets, Amer.
Math. Monthly 86 (1979), 64–65. Proposed by Clarence H. Best, Amer. Math.
Monthly 84 (1977), 391.

[9] , A factorization for formal Laurent series and lattice path enumeration, J.
Combin. Theory Ser. A 28 (1980), 321–337.

[10] , A probabilistic method for lattice path enumeration, J. Statist. Plann. Infer-
ence 14 (1986), 49–58.

[11] I. M. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae,
Adv. Math. 58 (1985), 300–321.

[12] I. P. Goulden and L. G. Serrano, Maintaining the spirit of the reflection principle

when the boundary has arbitrary integer slope, J. Combin. Theory Ser. A 104 (2003),
317-326.

[13] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Dover Publications
Inc., Mineola, NY, 2004. Reprint of the 1983 original.

[14] W. B. Jones and W. J. Thron, Continued Fractions: Analytic Theory and Applica-

tions, Encyclopedia of Mathematics and its Applications, vol. 11, Addison-Wesley,
Reading, MA, 1980.

[15] C. Krattenthaler, An alternative evaluation of the Andrews-Burge determinant,
Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr.
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