
The Generic Graph Component Library

Lie-Quan Lee Jeremy G. Siek Andrew Lumsdaine
Laboratory for Scientific Computing

Department of Computer Science and Engineering
University of Notre Dame
Notre Dame, IN 46556

Tel: (219) 631-3906 Fax: (219) 631-9260
llee1@lsc.nd.edu jsiek@lsc.nd.edu lums@lsc.nd.edu

ABSTRACT
In this paper we present the Generic Graph Component Library
(GGCL), a generic programming framework for graph data struc-
tures and graph algorithms. Following the theme of the Standard
Template Library (STL), the graph algorithms in GGCL do not
depend on the particular data structures upon which they operate,
meaning a single algorithm can operate on arbitrary concrete repre-
sentations of graphs. To attain this type of flexibility for graph data
structures, which are more complicated than the containers in STL,
we introduce several concepts to form the generic interface between
the algorithms and the data structures, namely,Vertex, Edge, Vis-
itor, andDecorator. We describe the principal abstractions com-
prising the GGCL, the algorithms and data structures that it pro-
vides, and provide examples that demonstrate the use of GGCL to
implement some common graph algorithms. Performance results
are presented which demonstrate that the use of novel lightweight
implementation techniques and static polymorphism in GGCL re-
sults in code which is significantly more efficient than similar li-
braries written using the object-oriented paradigm.

1 INTRODUCTION
The graph abstraction is widely used to model a large variety of
structures and relationships in computer science. Graph algorithms
are extremely important in such diverse application areas as design
automation, transportation, optimization, and databases. Conse-
quently, the implementation of graph algorithms is an important
enterprise that can be greatly facilitated by the availability of high-
quality software for realizing graph algorithms. (By “high-quality”
in this case we take to mean, such attributes as functionality, relia-
bility, usability, efficiency, maintainability, and portability [15].)

There are several existing general purpose graph libraries, such as

LEDA [14], the Graph Template Library (GTL) [5], Combinator-
ica [21], and Stanford GraphBase [11]. Sources such as Netlib [1]
and [22] represent repositories of graph algorithms. These libraries
and repositories represent a significant amount of potentially re-
usable algorithms and data structures. However, none of these li-
braries faithfully follows thegeneric programmingparadigm [3]
(also see Section 1.1) and are therefore far more rigid (and much
less reusable) than necessary.

These libraries are inflexible in several respects. First, the user is re-
stricted to the graph data structures provided by the library. Second,
the graph algorithms often do not provide explicit mechanisms for
extension, making it difficult or impossible for users to customize
vanilla algorithms to meet their needs. Finally, the manner in which
these libraries associate graph properties (such as color or weight)
with a graph data structure is often inflexible and hard coded into
the algorithms or data structures. Ultimately, these (and other) li-
braries are fundamentally limited in terms of their flexibility by
their design and implementation.

1.1 Generic Programming
Recently, generic programming [3] has emerged as a powerful new
paradigm for library development. The fundamental principle of
generic programming is to separate algorithms from the concrete
data structures on which they operate based on the underlying ab-
stract problem domain concepts, allowing the algorithms and data
structures to freely interoperate. That is, in a generic library, al-
gorithms do not manipulate concrete data structures directly, but
instead operate on abstract interfaces defined for entire equivalence
classes of data structures. A single generic algorithm can thus be
applied to any particular data structure that conforms to the require-
ments of its equivalence class. In the celebrated Standard Template
Library (STL) [12], the data structures are containers such as vec-
tors and linked lists.Iterators form the abstract interface between
algorithms and containers. Each STL algorithm is written in terms
of the iterator interface and as a result each algorithm can operate
with any of the STL containers. In addition, many of the STL al-
gorithms are parameterized not only on the type of iterator used
for traversal, but on the type of operation that is applied during the
traversal. For example, thetransform() algorithm has a param-
eter for aUnaryOperator function object (functor). Likewise,
some of the STL containers are parameterized with function ob-
jects, such as theCompare template parameter for thestd::map

andstd::set classes.

Concepts The GGCL library is developed using terminology sim-
ilar to that of the SGI STL [3]. In the parlance of the SGI STL,
the set of requirements on a template parameter for a generic algo-
rithm or data structure is called aconcept. (Generic programming is
sometimes referred to as “programming with concepts.”) Types that
fulfill the requirements of a concept are said tomodelthat concept.
For example, pointer types such asint* model (or, are models of)
the conceptRandomAccessIterator as defined by the STL. The
class typesstd::vector<T> andstd::list<T> are models
of the Container concept. Concepts can extend other concepts,
which is referred to asrefinement. We use abold sans serif font
for all concept identifiers.

For example, one version of the STLaccumulate() algorithm
is prototyped as follows:

template <class InputIterator, class T>
T accumulate(InputIterator first,

InputIterator last, T init);

For proper operation ofaccumulate() , we require that the type
of the argumentsfirst and last be models of the conceptIn-
putIterator. We note that the C++ language does not provide sup-
port for concept checking. That is, although we give the tem-
plate parameter toaccumulate() the name ofInputIterator, the
name is merely a placeholder. The C++ language does not enforce
that the arguments passed toaccumulate() actuallybea model
of InputIterator. Naturally, if the arguments do not model (or re-
fine) InputIterator, it is likely that an error will occur when compil-
ing that particular instantiation ofaccumulate() , but that is not
the same (semantically) as identifying that the instantiation itself is
in error.

1.2 A Generic Graph Library
The domain of graphs and graph algorithms is a natural one for
the application of generic programming. There are many kinds of
graph representations, such as adjacency matrix, adjacency list, and
dynamic pointer-based graphs and there also numerous graph algo-
rithms. In a generic graph library, we should be able to write each
algorithm only once and use it with any graph data structure.

In addition, the algorithms should be flexible, so that algorithmpat-
ternssuch as Depth First Search (DFS) can be reused. For example,
one may want to use DFS to traverse a graph and calculate whether
vertices are reachable. In another situation, DFS could be used to
record the order of vertices. In yet another situation, one may want
to use DFS to calculate reachabilityandthe order of vertices. These
requirements are similar to those of most general purpose libraries,
which would perhaps suggest that the generic programming style
of the STL might be directly applicable to the creation of a graph
library.

However, there are important (and fundamental) differences be-
tween the types of algorithms and data structures in STL and the
types of algorithms and data structures in a generic graph library.
In particular, there are numerous ways in which edge and vertex
properties (such as color and weight) are implemented and asso-
ciated with vertices and edges. One way is to store properties in

an array indexed by vertex ID. Another method, suitable for graphs
with explicit storage for each vertex, is to store the properties inside
the vertex data structure. Rather than imposing one approach over
another, a generic graph library should provide an generic means
for accessing the properties of a vertex or edge, regardless of the
manner in which the properties are stored.

To accommodate the unique properties of graphs and graph algo-
rithms, we introduce several concepts upon which the interface be-
tween graphs and graph algorithms will be built:Vertex, Edge,
Visitor, andDecorator. The latter two concepts are similar in spirit
to the “Gang of Four” [6] patternsVisitor andDecorator but are
quite different in terms of implementation techniques.

In the following sections we describe the design and implemen-
tation of the Generic Graph Component Library (GGCL). This li-
brary was designed and implemented from the ground up with gen-
eric programming as its fundamental paradigm. In the next sec-
tion, we define the abstract graph interface and concepts used by
GGCL in more detail. The generic graph algorithms in GGCL are
described in Section 3, and Section 4 discusses the main implemen-
tation issues. Experimental results demonstrating the performance
of GGCL (and comparing the performance to several other graph
libraries) are given in Section 5. Finally, our conclusions are pro-
vided in Section 6.

2 ABSTRACT GRAPH INTERFACE
The domain of graph data structures and algorithms is in some re-
spects more complicated than that of containers. The abstract it-
erator interface used by STL is not sufficiently rich to encompass
the numerous ways that graph algorithms may traverse a graph. In-
stead, we formulate an abstract interface that serves the same pur-
pose for graphs that iterators do for basic containers (though iter-
ators still play a large role). Figure 1 depicts the analogy between
the STL and the GGCL.

STL Algorithms

STL Containers

(a) (b)

Graph Algorithms

Graph
Data Structures

Vertex, Edge,
Visitor, Decorator

Iterator
Functor

Figure 1: The analogy between the STL and the GGCL.

2.1 Formal Graph Definition
The appropriate abstract graph interface can be derived directly
from the formal definition of a graph [4]. A graphG is a pair(V,E),
whereV is a finite set andE is a binary relation onV. V is called
avertex setwhose elements are calledvertices. E is called anedge
setwhose elements are callededges. An edge is an ordered or un-
ordered pair(u,v) whereu,v2 V. If (u,v) is and edge in graphG,

Expression Return Type Description
X::vertex type A model ofVertex
e.source() vertex type Thesourcevertex of edgee
e.target() vertex type Thetargetvertex of edgee

Table 3: The specification of theEdge concept.

then vertexv is adjacentto vertexu. Edge(u,v) is anout-edgeof
vertexuand anin-edgeof vertexv. In adirectedgraph edges are or-
dered pairs while in aundirectedgraph edges are unordered pairs.
In adirectedgraph an edge(u,v) leaves from thesourcevertexu to
thetargetvertexv.

2.2 Graph Concepts
The three main concepts necessary to define our graph interface are
Graph, Vertex, andEdge. Each of our concept definitions derives
directly from the formal graph definition. By design we have tried
to keep the interface close to that of existing graph libraries and to
the common graph algorithm notations.

Graph TheGraph concept merely contains a set of vertices and
a set of edges and a tag to specify whether it is a directed graph or an
undirected graph. Table 1 lists theGraph requirements, including
its associated types. Note that the specific types of the sets are
not specified. The only requirement is thatvertex setbe a model
of ContainerRef and itsvalue type a model ofVertex. The
edge setmust be a model ofContainerRef and itsvalue type
a model ofEdge. 1

Vertex TheVertex concept provides access to the adjacent ver-
tices, the out-edges of the vertex and optionally the in-edges. Ta-
ble 2 lists theVertex requirements, including its associated types.

Edge An Edge is an ordered or unordered pair of vertices. The
elements comprising theEdge are thesourcevertex and thetarget
vertex. In the unordered case it is just assumed that the position
of thesourceandtargetvertices are interchangeable (and, corresp-
dondingly, that theGraph is undirected). Table 3 lists theEdge
requirements.

Decorator As mentioned in the introduction, we would like to
have a generic mechanism for accessing vertex and edge properties
of a graph (e.g., color or weight) from within an algorithm. The
generic access method is necessary to support the numerous ways
in which the properties can be stored as well as the numerous ways
in which access to that storage can be implemented. We give the
nameDecorator to this concept since it is similar to the intent of
the “Gang of Four” Decorator pattern [6], (which dynamically add
properties to an object).

1TheContainerRef concept is very similar to theContainer con-
cept of the STL, except that theContainerRef concept lacks the
notion of “ownership”, so making a copy of aContainerRef ob-
ject merely creates an alias to the same underlying container. Ob-
viously, a reference to aContainer object satisfies this require-
ments.

Table 4 gives the definition of theDecorator concept. ADeco-
rator is very similar to a functor, or function object. We use the
method ofoperator[] instead ofoperator() since it is a
better match for the commonly used graph algorithm notations.

Visitor In the same way that function objects or functors are
used to make STL algorithms more flexible, we can use functor-
like objects to make the graph algorithms more flexible. We use
the nameVisitor for this concept because the intent is similar to
the well known visitor pattern [6]. We wish to add operations to be
performed on the graph without changing the source code for the
graphs or for the generic algorithms.

Table 5 shows the definition of theVisitor concept. In the table,v is
a visitor object,u ands are vertices, ande is an edge. OurVisitor
is somewhat more complex than a function object, since there are
several well defined entry points at which the user may want to in-
troduce a call-back. For example,discover() is invoked when
an undiscovered vertex is encountered within the algorithm. The
process() method is invoked when an edge is encountered. The
Visitor concept plays an important role in the GGCL algorithms.

TheDecorator andVisitor concepts are used in the GGCL graph
algorithm interfaces to allow for maximum flexibility. Below is
the prototype for the GGCL depth first search algorithm, which in-
cludes parameters for both aDecorator and aVisitor object. There
are two overloaded versions of the interface, the first one in which
there is a defaultColorDecorator. The default decorator accesses
the color property directly from the graph vertices. This is anal-
ogous to the STL algorithms. For example, there are two over-
loaded versions of thelower bound() algorithm. The default
uses whatever less-than operator is defined for the element type,
while the other version takes an explicitBinaryOperator functor
argument.

template <class Graph, class Visitor >

void dfs(Graph& G, Visitor visit);

template <class Graph, class Visitor, class ColorD >

void dfs(Graph& G, Visitor visit, ColorD color);

3 GENERIC GRAPH ALGORITHMS
The generic graph algorithms are written solely in terms of the ab-
stract graph interface defined in the previous section. They do not
make assumptions about the actual graph type or the underlying
data structure. This enables a high degree of reuse for the algo-
rithms.

Breadth First Search Our first example is the classic Breadth
First Search (BFS) algorithm. As a starting point, we will look at
an adaptation of the textbook [4] algorithm, written in terms of the
GGCL interface (Figure 2). This algorithm calculates the distance
from a source vertex to all other reachable vertices in the graph. It
also records the predecessor, or parent, of each vertex. The color
decorator is used by the algorithm to keep track of which vertices
have been visited (in case there are cycles). This algorithm is pro-
vided as a straw man — it is not the BFS that is actually provided
by GGCL.

Expression Return Type Description
X::vertex type A model ofVertex
X::edge type A model ofEdge
X::vertices type A ContainerRef of vertices
X::edges type A ContainerRef of edges
X::direct tag A tag of either directed or undirected
g.vertices() vertices type Thevertex setof graphg
g.edges() edges type Theedge setof graphg

Table 1: The specification of theGraph concept.

Expression Return Type Description
X::edge type A model ofEdge
X::vertexlist type A ContainerRef of vertices
X::edgelist type A ContainerRef of edges
u.adj() vertexlist type The adjacent vertices of vertexu
u.out edges() edgelist type The out edges of vertexu
u.in edges() edgelist type The in edges of vertexu (optional)

Table 2: The specification of theVertex concept.

Expression Return Type Description
return type A type of object accessed by the decorator
d[u] return type The decorating propertyd of Vertex u

Table 4: The specification of theDecorator concept.

Expression Return Type Description
v.initialize(u) void Invoked during initialization.
v.start(s) void Invoked at the beginning of algorithms.
v.discover(u) void Invoked when an undiscovered vertex is encountered.
v.finish(u) void Invoked when algorithms finish visiting a vertex.
v.process(e) bool Invoked when an edge is traversed.

Table 5: The specification of theVisitor concept.

template <class Graph, class Color, class Distance, class Predecessor >

void textbook BFS(Graph& G, typename Graph::vertex type s,
Color color, Distance d, Predecessor p)

f
typedef typename Graph::vertex type Vertex;
typename Graph::vertices type::iterator ui;
typename Vertex::edgelist type::iterator ei;

//initialization
for (ui = G.vertices().begin(); ui != G.vertices().end(); ++ui) f

color[*ui] = WHITE;
d[*ui] = INF;

g

//starting from vertex s
color[s] = GRAY;
d[s] = 0;
std::queue <Vertex > Q;
Q.push(s);

//main algorithm
while (! Q.empty()) f

Vertex u = Q.front();
for (ei = u.out edges().begin(); ei != u.out edges().end(); ++ei) f

Vertex v = (*ei).target();
if (color[v] == WHITE) f

color[v] = GRAY;
d[v] = d[u] + 1;
p[v] = u;

g
g
Q.pop();
color[u] = BLACK;

g
g

Figure 2: The textbook Breadth First Search algorithm.

As it stands, this algorithm is quite useful, but in many ways it is
not sufficiently general. In GGCL we capture the essence of the
Breadth First Search pattern in a generic generalized BFS algo-
rithm, as shown in Figure 3. Thevisitor parameter provides
flexibility in the kinds of actions performed during the BFS. There
are several call-back points associated with the visitor, including
start() , discover() , process() , and finish() . The
Q parameter allows for different kinds of queues to be used. The
visited functor was added for algorithms that would like to per-
form an action on subsequent encounters with a vertex after it is
discovered. The initialization steps were moved to a separate func-
tion to accomodate the need for certain type-specific initializations
(e.g., a graph consisting only of edge lists without explicit vertex
storage).

In the generalized BFS() algorithm we use the expression
u.out edges() to access the list of edges leaving vertexu. Iter-
ators of this list are used to access each of the edges. TheVisitor is
used to parameterize the operations performed on each edge as it is
discovered. The algorithm also inserts each discovered vertex onto
Qor, if the vertex has already been visited, invokes thevisited
functor. Target vertices are accessed throughe.target() .

The generalized BFS() algorithm is ideal for reuse in other
algorithms. Figure 4 gives an overview of the algorithms we have
constructed so far using thegeneralized BFS. A variation on
the UML [10, 16] notation is used to represent the algorithms, vis-
itor classes, and concepts. A solid box stands for an algorithm or
a class. Dotted boxes are template arguments or concepts. The
classes within a concept box are models of the concept. The nota-
tion <<bind >> indicates the binding of formal template argu-
ments to concrete types. Unbound template arguments are marked
with underscores, giving a notation for partial specialization.

In Figure 4 we can see how particular parameters are chosen in
the creation the different algorithms. First, with regards to the
queue type, the BFS algorithm in Figure 5 is constructed by using
the STLqueue , while Dijkstra's single-source shortest path and
Prim's minimum spanning tree algorithms are constructed with a
mutable priority queue (a priority queue with a decrease-key op-
eration [4]). Implementation of the textbook BFS algorithm using
generalized BFS() is shown in Section 4.3. A customized
queue is used with BFS in the Reverse Cuthill McKee sparse ma-
trix ordering algorithm [8, 17].

Looking at theVisitor parameter, we see that the normal BFS
algorithm uses thebfs visitor which keeps track of the vertex
colors. Dijkstra's and Prim's algorithms both use theweighted-
edge visitor , the only difference between them being the op-

erator that is bound toBinaryOp parameter. Dijkstra's algorithm is
implemented using aplus functor, and Prim's is implemented us-
ing theproject2nd functor, which is just a binary operator that
returns the 2nd argument. Figure 6 shows the GGCL implemen-
tation of Prim's minimum spanning tree algorithm while Figure 7
shows the GGCL implementation of Dijkstra's single source short-
est path algorithm. The algorithms consist simply of some setup
declarations, initialization and a call togeneralized BFS. The
only difference between the two algorithms is the function object
used insideweighted edge visitor .

The Visited parameter is simply a null operation for the nor-
mal BFS algorithm, while in the Dijkstra's and Prim's algorithms

it provides queue update by invoking the mutable priority queue'
decrease-key operation.

Depth First Search The Depth First Search is another fundamen-
tal traversal pattern in graph algorithms, and is a second source
for reuse. Figure 8 depicts some algorithms that can be either di-
rectly derived from DFS, or that make use of it. The code example
in Figure 9 gives the implementation of the topological sort algo-
rithm, a classic example DFS algorithm reuse. Thetopo sort-
visitor merely outputs the vertex to theOutputIterator inside

thefinish(u) callback.

The concise implementation of algorithms such as Prim's Mini-
mum Spanning Tree and Topological Sort is enabled by the gener-
icity of the GGCL algorithms, allowing us to exploit the reuse that
is inherent in these graph algorithms in a concrete fashion.

Currently, the GGCL includes a basic set of algorithms: DFS, BFS,
Dijksta's algorithm for the Shortest Path problem, Prim and Kruskal
algorithms for Minimum Spanning Tree, topological sort, and con-
nected components. In addition we have implemented several graph
algorithms for sparse matrix ordering, including the Reverse Cuthill
McKee and the Minimum Degree algorithms. GGCL is an ongoing
project and a number of generic graph algorithms are in the process
of being implemented.

4 GGCL IMPLEMENTATION

4.1 Graph Data Structure Implementation
The GGCL graph data structures are constructed in a layered man-
ner to provide maximum flexibility and reuse. The layered archi-
tecture also provides several different points of customizability. At
one end of the spectrum one can use the graphs provided by GGCL
and make small modification with little effort. In the middle of the
spectrum are graph types that can be pieced together from standard
components such as lists and vectors. At the far end of the spec-
trum the user may already have their own data structure, and they
just need to create a GGCLGraph compliant interface to his or her
data structure.

Interfacing with external graph types To test the difficulty of
creating a GGCL interface for non-GGCL graph types, we con-
structed aGraph interface for LEDA graphs. The interface code is
1 1/2 pages and took approximately 1 man-hour to develop.

Composing Graphs from standard containers The GGCL pro-
vides a framework for composing graphs out of standard containers
such as STLstd::vector , std::list , and matrices from the
Matrix Template Library (MTL) [19], another generic component
library we have developed. Of course, the composition mechanism
will work for any STL Container compliant components, so this
provides another avenue for extensibility by the user.

The set of graph configurations currently provided by GGCL are
listed in Figure 10.

Below is an example of defining an adjacency-list graph type whose
vertices have an associated color and whose edges have an associ-
ated weight.

template <class Vertex, class QType, class Visitor, class Visited >

void generalized BFS(Vertex s, QType& Q, Visitor visitor, Visited visited)
f

typedef typename Vertex::edgelist type::value type Edge;
typename Vertex::edgelist type::iterator ei;
visitor.start(s);
Q.push(s);
while (! Q.empty()) f

Vertex u = Q.front();
Q.pop();
visitor.discover(u);
for (ei = u.out edges().begin(); ei != u.out edges().end(); ++ei) f

Edge e = *ei;
if (visitor.process(e))

Q.push(e.target());
else

visited(visitor, Q, ei);
g
visitor.finish(u);

g
g

Figure 3: The generalized Breadth First Search algorithm.

generalize_BFS

dijkstra

Graph Visitor DistanceWeight

<<bind>>(_, rcm_queue, _)
<<uses>>

MST_prim

Graph Visitor DistanceWeight

reverse_Cuthill_McKee

Graph Color Degree OuputIterator

QType

queue

priority_queue

mutable_queue

bfs

Graph Visitor Color

weighted_edge_visitor

Weight BinaryOp

dijkstra_visitor

prim_visitor

<<bind>>(_, plus)

<<bind>>(_, project2nd)

dfs_visitor

predecessor_visitor

disjoint_set_visitor

components_visitor

timestamp_visitor

topo_sort_visitor

Visitor

bfs_visitor

VisitorPlugin
Graph QType Visitor

dijkstra_visitor)
<<bind>>(_, mutable_queue,

prim_visitor)
<<bind>>(_, mutable_queue,

<<bind>>(_, queue,
bfs_visitor)

Figure 4: The BFS family of algorithms and the predefined set of visitors provided in GGCL.

template <class Graph, class Visitor, class ColorDecorator >

void bfs(Graph& G, Graph::vertex type s, Visitor visit, ColorDecorator color)
f

typedef typename Graph::vertex type Vertex;
std::queue <Vertex > Q;

bfs visitor <ColorDecorator, Visitor > visitor(color, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, null operation());

g

Figure 5: The BFS algorithm in GGCL.

template <class Graph, class Visitor, class Distance, class Weight, class ID>
void prim(Graph& G, Graph::vertex type s, Visitor visit, Distance d, Weight w, ID id)
f

typedef typename Graph::vertex type Vertex;
typedef typename Distance::return type D;
typedef functor less <Distance > Compare;

Compare c(d);
mutable queue<Vertex, std::vector <Vertex >, Compare, ID > Q(G.num vertices(), c, id);

weighted edge visitor <Weight, Distance, Visitor, project2nd <D,D> > visitor(w, d, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, queue update());

g

Figure 6: The GGCL implementation of the Prim Minimum Spanning Tree algorithm as a call togeneralized BFS() . The Di-
jkstra's Single-Source Shortest Path algorithm can be realized in the same way simply by using a different function object in place of
project2nd<D,D> .

template <class Graph, class Visitor, class Distance, class Weight, class ID>
void dijkstra(Graph& G, Graph::vertex type s, Visitor visit, Distance d, Weight w, ID id)
f

typedef typename Graph::vertex type Vertex;
typedef typename Distance::return type D;
typedef functor less <Distance > Compare;

Compare c(d);
mutable queue<Vertex, std::vector <Vertex >, Compare, ID > Q(G.num vertices(), c, id);

weighted edge visitor <Weight, Distance, Visitor, plus <D> > visitor(w, d, visit);

generalized init(G, visitor);
generalized BFS(s, Q, visitor, queue update());

g

Figure 7: The GGCL implementation of the Dijkstra's Single-Source Shortest Path algorithm as a call togeneralized BFS() .

generalized_DFS

Graph QType Visitor

topological_sort

Graph Color OutputIterator

cycle_detection

Graph Color Visitor

connected_components

Graph Color FinishTime

transitive_closure

Graph1 Graph2

dfs

Graph Color Visitor

<bind>>(_, stack, dfs_visitor)

<<bind>>(_, _, topo_visitor)

<<bind>>(_, color, cycle_detect_visitor)

<<use>>

<<use>>

<<use>>

Figure 8: The family of DFS algorithms.

template <class Graph, class OutputIterator, class Visitor, class Color >
void topological sort(Graph& G, OutputIterator result, Visitor visitor, Color color) f

topo sort visitor <OutputIterator, Visitor > topo visit(c, visitor);
dfs(G, topo visit, color);

g

template <class OutputIterator, class Super >
struct topo sort visitor : public Super f

//constructors . . .

template <class Vertex >

void finish(Vertex u) f
*result = u; ++result;
Super::finish(u);

g
OutputIterator result;

g;

Figure 9: The GGCL implementation of the topological sort algoritm using DFS.

LEDA_graph graph

VertexPlugin EdgePlugin

slistT

flistT

vecT

ggcl_vecT

mapT

hash_mapT

listT

slistT

flistT

vecT

ggcl_vecT

mapT

hash_mapT

listT

AdjacencyMatrix

vecT

ggcl_vecT

Graph

Directedness

GraphRepresentation

GraphRep.

DynamicGraphRepAdjacencyList

Figure 10: The Graph Components Provided By GGCL.

typedef graph<adjacency_list<vecT>, undirected,
color_plugin<>, Weight<int> > myGraph;

Graph Representation The implementation framework centers
around the maingraph interface class and theGraphRepresen-
tation concept. Thegraph interface class constructs the full graph
interface based on the minimized interface exported by theGraph-
Representation concept. This allows full fledge GGCLGraphs
to be constructed out of standard container components with very
little work.

The GraphRepresentation concept is basically a 2DContainer
(aContainer of Containers) coupled with four helper functions:

Iter2D get_target(Iter2D b, Iter1D i);
stored_edge& get_edge(Iter1D i);
bool add(EdgeList& elist, size_type vertex_num,

const stored_edge& e);
void remove(EdgeList& elist, size_type vertex_num);

A 1D Container within a GraphRepresentation corresponds to
the out-edge list for a particular vertex. In addition, there is a one-
to-one correspondence between the 2DIterator and the vertices of
the graph.

The get target() helper function is necessitated because the
GGCL graph must be able to derive the target vertex from an
edge object, through the information provided by theGraphRep-
resentation. Theget edge() function provides a generic access
method to the extra edge properties stored within an edge list, and

the add() and remove() methods provide a generic interface
for adding and removing edges from a vertex.

The GraphRepresentation is further refined into three sub con-
cepts, theAdjacencyList, AdjacencyMatrix, andDynamicGraph-
Rep.

The AdjacencyList concept corresponds to a “sparse” or “com-
pressed” representation of a graph. As such, further requirements
are added to the 2DContainer of theGraphRepresentation. For
a model ofAdjacencyList the inner container must be a variable-
sizedContainer whosevalue type is the size type for a
vertex if the graph has no extra edge-associated data, or astd::-
pair<size type,stored edge> where thestored edge
is the type of an object containing any extra edge-associated data
such as weight.

TheAdjacencyMatrix concept corresponds to a “dense” represen-
tation of a graph, with boolean values for all vertex pairs, to mark
them as connected or not.

The DynamicGraphRep concept requires its models to have a
head pointer and explicitly stored vertex objects. Through the stored
vertex it is able to access adjacent vertices.

Custom Graph Representations As an example of constructing
customized models ofGraphRepresentation, we show how one
can build anAdjacencyList usingstd::vector andstd::-
list . The various parts of theGraphRepresentation are in-
jected into the GGCLgraph class by constructing a graph rep-
resentation class. Figure 11 lists the implementation. One merely

has to compose a couple of container types and fill in a few short
functions. Theadd() andremove() methods are not depicted,
but they are each approximately 5 lines.

4.2 Decorator Implementation
In some situations the particular property of vertices or edges is
strongly associated with the graph and exists for the lifetime of the
graph. For instance, the distance property could fall into this cate-
gory. In other situations the property is only needed for a particu-
lar algorithm. Typically one would want to store a color property
externally, since it may only be needed for a particular algorithm
invocation. Thus there are two categories of decorators,interior
decoratorsand exterior decorators. For exterior decorators, the
decorating properties are stored outside of the graph object (they
are passed directly to the GGCL algorithm) and the decorator will
access the externally stored data indexed by the vertex or edge ID.
On the other hand, if the decorating properties are stored inside
of the graph object, the decorator consults the vertex or the edge
objects to obtain the decorating property. Figure 12 shows the pre-
defined modelsDecorator in GGCL.

Internally Stored Properties: Vertex and Edge Plugins For in-
ternal properties, the graph class provides optional parameterized
storage plugins for both vertices and edges. This allows the user
to plug in storage for an arbitrary set of decorating properties. For
example, a graph with internally stored edge weights and color and
distance properties for vertices could be defined as follow:

typedef color_plugin<distance_plugin<> > VPlugins;
typedef graph<adjacency_list<>, undirected,

VPlugins, Weight<int> > myGraph;

The mixin technique [18] of templated inheritance is used to im-
plement the layering of vertex and edge plugins. Figure 12 shows
the decorators that are provided in GGCL. We have also created
a mechanism so that users can easily create new custom storage
plugins for decorating properties with user-defined names.

4.3 Visitor Implementation
To implement a model ofVisitor one defines a class conforming
to theVisitor concept and fills in the call-back methods (disco-
ver() , process() , etc.). Figure 13 shows the model ofVisi-
tor used to create the normal BFS algorithm from thegenera-
lized BFS. This class is reponsible for keeping track of the ver-
tex colors.

As in the decorator plugins, the mixin technique [18] is used to
make visitors more extensible. This is the reason for theBase tem-
plate argument, which allows visitors to be layered through inher-
itance, giving an arbitrary number of visitors a chance to perform
actions during the algorithm (each call-back method must invoke
in inherited call-back in addition to performing its own actions). If
one wished to recreate the textbook BFS algorithm shown previ-
ously, which calculates distances and predecessors, one would call
bfs with a distance and predecessor visitor. The GGCL has helper
functions defined for creating the standard visitors.

bfs(G, s, visit_distance(d, visit_predecessor(p)));

whereG is a graph object,s the starting vertex,d an instance of
distance decorator, andp an instance of predecessor decorator.

Decorator

finishtime_decorator

predecessor_decorator

discovertime_decorator

id_decorator

color_decorator

weight_decorator

distance_decorator

Figure 12: The predefined models ofDecorator in GGCL.

5 PERFORMANCE
Efficiency is typically advertised as yet another advantage of gen-
eric programming — and these claims are not simply hype. The
efficiency that can be gained through the use of generic program-
ming and high-level performance optimization techniques (which
themselves can be expressed in a generic fashion) is astonishing.
For example, the Matrix Template Library, a generic linear algebra
library written completely in C++, is able to achieve performance
as good as or better than vendor-tuned math libraries [19].

For many of the efficient graph data structures in GGCL, vertex
and edge objects that model the GGCL interface concepts are not
explicitly stored. Rather, only partial information is stored. The
GGCL interface layer constructs full vertex and edge objects on
the fly from this information. These objects are extremely light-
weight, and have been designed so that a modern C++ compiler
will optimize the small objects away altogether.2

Additionally, the flexibility within the GGCL is derived exclusively
from static polymorphism, not from dynamic polymorphism. As
a result, all dispatch decisions are made at compile time, allow-
ing the compiler to inline every function in the GGCL graph in-
terface. Hence the “abstraction penalty” of the GGCL interface
is completely eliminated. The machine instructions produced by
the compiler are equivalent to what would be produced from hand-
coded graph algorithms in C or Fortran.

5.1 Comparison to General Purpose Libraries
Using a concise predefined implementation of adjacency list graph
representation in GGCL following the concepts we described in
Section 4, we compare the performance ofbfs , dfs , anddijk-
stra algorithms with those in LEDA(version 3.8), a popular ob-
ject-oriented graph library [14], and those in GTL [5]. We did not

2We call a light-weight object such as this aMayfly because of its
very short lifetime. We discuss theMayfly as a design pattern for
high performance computing in [20].

//Define a tag for the custom graph representation.
struct my graphrep tag f g;

template < class stored edge >

class graph representation gen< stored edge, my graphrep tag > f
typedef std::list <pair <size t, stored edge> > EdgeList;
typedef EdgeList::iterator Iter1D;
typedef std::vector <EdgeList >::iterator Iter2D;

public:
typedef adjacency list <my graphrep tag > rep tag;
typedef vector <EdgeList > graphrep type;

static Iter2D get target(Iter2D b, Iter1D i)
f return b + (*i).first; g

static stored edge* get edge(Iter1D i)
f return &((*i).second); g

static bool add(EdgeList& elist, size t vertex num, const stored edge& e);
static void remove(EdgeList& elist, size t vertex num);

g;

//Use the above representation to create a graph type.
typedef graph < adjacency list < my graphrep tag > > Graph;

Figure 11: An example of constructing a GGCL Graph out of STL vector components.

perform comparison between GGCL and Combinatorica [21] we
mentioned previously because it is written in Mathematica.

Our experiments compare the performance of three algorithms:
bfs , dfs , anddijkstra . Thebfs algorithm calculates the dis-
tance and the predecessor for every reachable vertex from a starting
vertex. Thedfs algorithm calculates the discovery time and fin-
ishing time of vertices. Thedijkstra algorithm calculates the
distance and the predecessor of every vertex from a starting vertex.

Figure 14, Figure 15 and Figure 16 show the results for those algo-
rithms applied to randomly generated graphs having a varying num-
ber of edges and a varying number of vertices. Because of lacking
Dijkstra' a algorithm in GTL, it is not in Figure 16. All results were
obtained on a Sun Microsystems Ultra 30 with the UltraSPARC-II
296MHz microprocessor. For these experiments, GGCL is 5 to 7
times faster than LEDA.

5.2 Comparison to Special Purpose Library
In additionn, we demonstrate the performance of a GGCL-based
implementation of the multiple mininum degree algorithm [13] us-
ing selected matrices from the Harwell-Boeing collection [9] and
the University of Florida's sparse matrix collection [2]. Our tests
compare the execution time of our implementation against that of
the equivalent SPARSPAK Fortran algorithm (GENMMD) [7]. For
each case, our implementation and GENMMD produced identical
orderings. Note that the performance of our implementation is es-
sentially equal to that of the Fortran implementation and even sur-
passes the Fortran implementation in a few cases.

5.3 Template Issues
There are several issues that often come up in libraries that make
heavy use of C++ templates and advanced language features, such
as code size, compile times, ease of debugging, and compiler porta-
bility. For template libraries such as GGCL, code size is very much

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of Edges

T
im

e

500 vertices (GTL)
1000 vertices (GTL)
2000 vertices (GTL)
500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 14: Performance comparison of thebfs algorithm in
GGCL with that in LEDA and in GTL. Every curve represents a
graph with fixed number of vertices and with varied number of
edges.

template < class ColorDecorator, class Base = null visitor >

class bfs visitor : public Base f
typedef typename ColorDecorator::return type color type;

public:
// constructors . . .

template <class Vertex >

void initialize(Vertex u) f
color[u] = color traits <color type >::white();
Base::initialize(u);

g

template <class Vertex >

void start(Vertex u) f
color[u] = color traits <color type >::gray();
Base::start(u);

g

template <class Vertex >

void finish(Vertex u) f
color[u] = color traits <color type >::black();
Base::finish(u);

g

template <class Edge>
bool process(Edge e) f

typedef Edge::vertex type Vertex;
Vertex v = e.target();
if (is undiscovered(v)) f

color[v] = color traits <color type >::gray();
Base::process(e);
return true ;

g
return false ;

g

template <class Vertex >

bool is undiscovered(Vertex u) f
return (color[u] == color traits <color type >::white());

g
protected:

ColorDecorator color;
g;

Figure 13: An example model of theVisitor concept.

Matrix n nnz GENMMD GGCL

BCSPWR09 1723 2394 0.00728841 0.007807
BCSPWR10 5300 8271 0.0306503 0.033222
BCSSTK15 3948 56934 0.13866 0.142741
BCSSTK18 11948 68571 0.251257 0.258589
BCSSTK21 3600 11500 0.0339959 0.039638
BCSSTK23 3134 21022 0.150273 0.146198
BCSSTK24 3562 78174 0.0305037 0.031361
BCSSTK26 1922 14207 0.0262676 0.026178
BCSSTK27 1224 27451 0.00987525 0.010078
BCSSTK28 4410 107307 0.0435296 0.044423
BCSSTK29 13992 302748 0.344164 0.352947
BCSSTK31 35588 572914 0.842505 0.884734
BCSSTK35 30237 709963 0.532725 0.580499
BCSSTK36 23052 560044 0.302156 0.333226
BCSSTK37 25503 557737 0.347472 0.369738
CRYSTK02 13965 477309 0.239564 0.250633
CRYSTK03 24696 863241 0.455818 0.480006
CRYSTM03 24696 279537 0.293619 0.366581
CT20STIF 52329 1323067 1.59866 1.59809
PWT 36519 144794 0.312136 0.383882
SHUTTLE EDDY 10429 46585 0.0546211 0.066164
NASASRB 54870 1311227 1.34424 1.30256

Table 6: Test matrices and ordering time in seconds, for GENMMD (Fortran) and GGCL (C++) implementations of minimum degree
ordering. Also shown are the matrix order (n) and the number of off-diagonal non-zero elements (nnz).

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Number of Edges

T
im

e

500 vertices (GTL)
1000 vertices (GTL)
2000 vertices (GTL)
500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 15: Performance comparison of thedfs algorithm in
GGCL with that in LEDA and in GTL. Every curve represents a
graph with fixed number of vertices and with varied number of
edges.

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Number of Edges

T
im

e

500 vertices (LEDA)
1000 vertices (LEDA)
2000 vertices (LEDA)
500 vertices (GGCL)
1000 vertices (GGCL)
2000 vertices (GGCL)

Figure 16: Performance comparison of thedijkstra algorithm
in GGCL with that in LEDA. Every curve represents a a graph with
fixed number of vertices and with varied number of edges.

dependent on how the library is used. If a particular code only
uses a few GGCL algorithms and graph types, then the executable
size will actually be much smaller than it would be using typical
libraries. With a template library, only the functions that are ac-
tually used are included. On the other hand, with a traditional li-
brary, the whole object module will be linked in even though only
one function in the module may be used. To demonstrate these
effects, we compare the size of sample executables ofbfs , dfs ,
anddijkstra algorithms in GTL, LEDA, and GGCL in Table 7.
All are compiled by egcs1.1.2 using the same compilation options.
(Similar results are obtained for other compilers and architectures.)
Of course, with a template library like GGCL it is very easy to in-
stantiate redundant functionality which may unnecessarily increase
the executable size, so users with large projects should be cognizant
of this issue. There are techniques one can use to reduce this effect
by explicity instantiating template functions in object files that can
be shared.

Executable Size (KBytes)
Package Name bfs dfs dijkstra

GTL 151 151 /
LEDA 842 841 857
GGCL 33 30 30

Table 7: Comparison of executable sizes forbfs , dfs , and
dijkstra implemented with GTL, LEDA and GGCL.

Long compilation times are often cited as a drawback to template
libraries, especially those that use expression templates [23]. Since
GGCL does not use expression templates, and the overall code size
of GGCL is moderate, we have not experienced severe problems
in this regard. In addition, many compilers provice precompiled
header mechanisms to improve compile times for template libraries
such as GGCL.

Another concern for users of template libraries are the almost im-
penetrable error messages that occur when the library is misused
(e.g., when a template parameter type does not model the appropri-
ate concept). We haved recently addressed this problem with some
template techniques that cause the arguments to a library call to be
checked up front with regards to the type requirements. With this
mechanism the resulting error messages are much more informa-
tive.

Lastly, compiler portability is currently an issue for libraries that
use the more advanced features of C++. GGCL currently com-
piles with egcs, Metrowerks CodeWarrior, Intel C++, SGI MIP-
Spro, KAI C++, and other Edison Design Group based compilers.
We foresee some difficulty porting to Visual C++ because of its
lack of standards conformance. Since the C++ standard has been
finalized, we fully expect that language conformance problems will
cease to be a significant issue in the near future.

6 CONCLUSION
In this paper, we applied the emerging paradigm of generic pro-
gramming to the important problem domain of graphs and graph al-
gorithms. Our resulting framework, the Generic Graph Component
Library, is a collection of generic algorithms and data structures
that interoperate through the abstract graph interface comprised

of Vertex, Edge, Visitor, andDecorator concepts. The generic
GGCL algorithms allow basic algorithm patterns to be applied in
different ways to build up more complicated graph algorithms, re-
sulting in significant code reuse. Similarly, since GGCL algorithms
are independent of the underlying graph representation, custom
graph representation implementation can be mixed and matched
with GGCL graph algorithms. Since our C++ implementation of
the generic programming paradigm makes heavy use of static (com-
pile-time) polymorphism, there is no run-time overhead associated
with the powerful abstractions provided by GGCL. Experimen-
tal results demonstrate that the GGCL executes significantly faster
than LEDA, a well-known object-oriented graph library, and can
even compete with high performance Fortran codes.

Current work with the GGCL focuses on the implementation and
inclusion into GGCL of other important (classical) algorithms. In
addition, we are extending the GGCL based on application-specific
needs. For instance, one of the motivations behind the development
of GGCL was the need for highly-efficient graph-based algorithms
for sparse matrix orderings in the Matrix Template Library.

7 AVAILABILITY
The source code and complete documentation for the GGCL can
be downloaded from the GGCL home page at

http://www.lsc.nd.edu/research/ggcl.

ACKNOWLEDGMENTS
This work was supported by NSF grants ASC94-22380 and CCR95-
02710.

REFERENCES
[1] Netlib repository. http://www.netlib.org/.

[2] University of Florida sparse matrix collection.
http://www-pub.cise.ufl.edu/�davis/sparse/.

[3] Austern, M. H. Generic Programming and the STL.
Addison Wesley Longman, Inc, October 1998.

[4] Cormen, T. H., Leiserson, C. E., and Rivest, R. L.In-
troduction to Algorithms. The MIT Press, 1990.

[5] Forster, M., Pick, A., and Raitner, M.
Graph Template Library. http://www.fmi.uni-
passau.de/Graphlet/GTL/.

[6] Gamma, E., Helm, R., Johnson, R., and Vlissides,
J. Design Patterns: Elements of Reusable Object-
Oriented Software. Addiaon Wesley Publishing Com-
pany, October 1994.

[7] George, A., and Liu, J. W. H. User's guide for
SPARSPAK: Waterloo sparse linear equations pack-
ages. Tech. rep., Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada,
1980.

[8] George, A., and Liu, J. W.-H.Computer Solution of
Large Sparse Positive Definite Systems. Computational
Mathematics. Prentice-Hall, 1981.

[9] Grimes, R. G., Lewis, J. G., and Duff, I. S. User's guide
for the harwell-boeing sparse matrix collection. User's
Manual Release 1, Boeing Computer Services, Seattle,
WA, October 1992.

[10] Jacobson, I., Booch, G., and Rumbaugh, J.Uni-
fied Software Development Process. Addison-Wesley,
1999.

[11] Knuth, D. E.Stanford GraphBase: a platform for com-
binatorial computing. ACM Press, 1994.

[12] Lee, M., and Stepanov, A. The standard template li-
brary. Tech. rep., HP Laboratories, February 1995.

[13] Liu, J. W. H. Modification of the minimum-degree al-
gorithm by multiple elimination.ACM Transaction on
Mathematical Software 11, 2 (1985), 141–153.

[14] Mehlhorn, K., and Naeher, S.LEDA. http://www.mpi-
sb.mpg.de/LEDA/leda.html.

[15] Meyer, B. Object-Oriented Software Construction.
Prentice Hall, 1997.

[16] Object Management Group. UML Nota-
tion Guide, version 1.1 ed., September 1997.
http://www.rational.com/uml/.

[17] Saad, Y.Iterative Methods for Sparse Minear System.
PWS Publishing Company, 1996.

[18] Samaragdakis, Y., and Batory, D. Implementing lay-
ered designs with mixin layers. InThe Europe Confer-
ence on Object-Oriented Programming(1998).

[19] Siek, J. G., and Lumsdaine, A. The matrix template
library: A generic programming approach to high per-
formance numerical linear algebra. InInternational
Symposium on Computing in Object-Oriented Parallel
Environments(1998).

[20] Siek, J. G., and Lumsdaine, A. Mayfly: A pattern
for light-weight generic interfaces. InPLOP99(1999).
Accepted.

[21] Skiena, S. Implementing Discrete mathematics.
Addion-Wesley, 1990.

[22] Skiena, S. S.The Algorithm Design Manual. Springer-
Verlag New York, Inc, 1998.

[23] Veldhuizen, T. L. Expression templates.C++ Report
7, 5 (June 1995), 26–31. Reprinted in C++ Gems, ed.
Stanley Lippman.

