
1

The Genesis of Attribute Grammars

Donald E. Knuth, Stanford University

I have always been fascinated by the origin of ideas, so I am pleased that the
organizers of this conference have asked me to open the proceedings by taking a look
back at how the subject began. In other words, I’m glad that my job is to give this
conference a “history attribute.”

Attribute grammars were born in the exhilarating days of the mid-60s when a great
many fundamental principles of computer science were beginning to be understood.
An enormous number of ideas were floating in the air, waiting to be captured in just
the right combinations that would prove to be powerful sources of future energy.

The human mind is notoriously bad at reconstructing past experiences, so I have
tried to make my story as accurate as possible by digging up as many scraps of authentic
information from the early days as I could find. People say that nostalgia isn’t what
it used to be, but I hope that the participants of this conference will be able to share
some of the pleasure I have experienced while preparing this retrospective study.

Much of my story takes place in 1967, by which time a great many sophisticated
computer programs had been written all over the world. Computing machines had come
a long way since their invention in the 30s and 40s; for example, the recently announced
Burroughs B6500 was aptly called a “third generation” system [35], and J. P. Eckert
was noting a trend toward parallelism in new computer designs [37]. Yet many problems
without easy solutions made people well aware that the vast potential of computers was
only beginning to be tapped and that a great many important issues were not at all
well understood.

One of the puzzling questions under extensive investigation at the time was the
problem of programming language semantics: How should we define the meaning of
statements in algorithmic languages? Dozens of experts had gathered in Vienna in
1964 for a conference on formal language description, and the prevailing mood at that
conference is well summarized by the remarks of T. B. Steel, Jr.: “Improvements in pro-
gramming language description methods are imperative . . . I don’t fully know myself
how to describe the semantics of a language. I daresay nobody does or we wouldn’t be
here” [31]. Steel edited the proceedings of that meeting, which include lively transcrip-
tions of discussions among the participants [30]. None of the presented papers had much
connection with what we now call attribute grammars, although some hints could be
found in the explorations of Čuĺık [4]. At the closing session, Fraser Duncan remarked,
“We have not actually got all or perhaps any of the ultimate answers. But we have a
lot of ideas of where to look and where not to look” [6].

All of the known methods for defining the meaning of computer programs were
based on rather intricate algorithms having roughly the same degree of complexity as
compilers, or worse. This was in stark contrast to Chomsky’s simple and elegant method
of syntax definition via context-free grammars. As Dr. Caracciolo said, “How simple to
realize [semantic correctness] if you write a procedure. The problem is, however, to find
a metalanguage for doing that in a declarative way, not in an operational way” [3].

There was one bright light on the horizon, a notable exception to the perceived
difficulty of semantic definition: Comparatively simple languages such as arithmetic
expressions could be understood by a mechanism proposed in 1960 by Ned Irons [9; see



2

also 10, 11]. If we know the meaning of α and the meaning of β, then we know the
meanings of such things as α + β, α− β, α× β, α/β, and (α). Thus the meaning of an
arbitrarily large expression can be synthesized in a straightforward way by recursively
building up the meanings of its subexpressions.

Simple subexpressions like ‘x’ still remained problematical, because of their context-
dependent meaning. For example the ALGOL 60 program

begin real x; x := x end

was implicitly supposed to be parsed by treating the final appearance of x as an
〈arithmetic expression〉, while the analogous x in

begin Boolean x; x := x end

was to be parsed as a 〈Boolean expression〉. The official syntax in [28] allowed several
distinct parses for both programs, but only one of them was considered to be semanti-
cally valid. Furthermore, a program such as

begin real x; x := y end

could also be parsed in several ways, from a syntactic standpoint; but none of those
parse trees was legal from a semantic standpoint, because the undeclared variable y
was neither an 〈arithmetic expression〉 nor a 〈Boolean expression〉. Therefore Irons
developed his syntax-directed approach by including mechanisms to reject certain parse
trees based on declarations that the parser had found earlier [12].

The prevailing view (see [8]) was that strings of tokens like ‘begin real x; x :=
y end’ were not members of the language ALGOL 60, because such strings had no
semantically valid parse tree.

In retrospect, we can see why this approach had evolved; syntax was much better
understood than semantics, so it acquired additional responsibilities. People found
it convenient to incorporate semantical information, about such things as types, into
syntactic categories.

My own private opinion was different; I regarded ALGOL 60 as a context-free
language defined solely by ordinary productions. To me the “meaning” of a program
like

begin real x; x := y end

was clearly defined: “Improper assignment of an undeclared variable named y to the
real variable named x.” But I had no good ideas about how to define such meanings in
a simple and systematic way that would generalize nicely.

Besides, I was far too busy with another project; I couldn’t think about doing
anything new. In the summer of 1962 I had begun to write a book called The Art

of Computer Programming [14], and I had finished the hand-written draft (some 2500
pages) in June of 1965. By October of that year I had typed the first of its 12 chapters,
and at the rate I was going it seemed almost certain that I would be finished typing the
entire manuscript by the summer of 1968.

And indeed, I would have finished by then if Computer Science had only cooperated
and stood still; and if I hadn’t tried to maintain a complete coverage of new ideas as they
were developing. I failed to anticipate the fact that the field would grow explosively,
that thousands of brilliant people would continually be inventing ever deeper and more
important ideas, faster than I could type.

I did realize, of course, that a lot was going on; therefore I agreed to be on the
editorial boards of both Journal of the ACM and Communications of the ACM. In fact,



3

I plunged into those jobs with enthusiasm, because editorial work gave me a chance to
learn the new ideas as they were being born. I wrote numerous lengthy critiques of
articles that were submitted, trying to improve the quality of the publications as best
I could; during the first nine months of 1966 I refereed 21 papers, and I’m sure that the
hours I devoted to that work were well spent. My “territory” at the time was called
Programming Languages [36]. In March, 1966, I wrote a letter to Communications of

the ACM editor Gerry Salton making it plain that I was enjoying myself. I said: “The
job of being editor in a subject area that is rather new and not too clearly defined is
very educational since I am forced to do a lot of reflection on goals and motives which
I would never otherwise have done.” Thus I had plenty of opportunity to think about
thorny issues such as semantics that were much discussed at the time.

Still, I made absolutely no attempt to solve those problems myself. I was plenty
busy completing old tasks and keeping up with what other people were doing. When
I was on campus at Caltech I had classes to teach and a backlog of editorial work
to process; when I came home at the end of the day, there was plenty of typing and
revising to do on The Art of Computer Programming. At the beginning of 1967 I was
beginning to type Chapter 4, which by then was scheduled to appear as the second half
of Volume 2 in a projected seven-volume series; the galley proofs of Volume 1 were due
to begin arriving in March. Moreover, I was the proud father of a 17-month-old son
and a 19-day-old daughter. Research was the farthest thing from my mind.

But I was an ACM Lecturer that year [38], and I spent the middle of February
visiting nine campuses and giving sixteen lectures. During that trip I had some fateful
encounters; and presto! Attribute Grammars were born.

My first stop was Cornell, and I spent the first weekend staying at Peter Wegner’s
home in Ithaca, New York. Many details of those two days (February 4–5, 1967) still
remain fresh in my mind. For example, I went with Peter to a synagogue on Saturday,
and he went with me to a church on Sunday. We hiked outside the city in a beautiful
river valley that contained many frozen waterfalls. But mostly we talked Computer
Science.

Peter asked me what I thought about formal semantics, and I said I liked Iron’s
idea of synthesizing an overall meaning from submeanings. I also said that I liked the
way other people had combined Irons’s approach with a top-down or “recursive-descent”
parser; Irons had used a more complex parsing scheme. In particular, I was impressed
by the metacompiler of Val Schorre [29] and by the more powerful (though less elegant)
“transmogrifier” of Bob McClure [27]. I told Peter about my draft manuscript for
Chapter 12 of The Art of Computer Programming, which included an example system
of a similar kind, called TROL (“Translation-Oriented Language”). Programs in TROL

were, in essence, collections of recursive subroutines corresponding to the definitions of
nonterminal symbols in a given language whose compiler was being described. Every
such nonterminal could have a variety of attributes of types integer, Boolean, string,
or link (i.e., reference); the values of these attributes would be synthesized as parsing
proceeded. Context-dependent aspects of semantics were handled in the traditional
brute-force way by maintaining global data structures, including symbol tables that
allowed dynamic insertion and deletion of 〈identifier, value〉 pairs as parsing proceeded.
I had prepared two examples of TROL programs for the book, one for a procedural



4

language called 3.5-TRAN and another for TROL itself. (The first of these compiled 3.5-

TRAN source programs into MIX code; the second compiled TROL source programs into
TROLL, an internal representation of TROL code used by a special interpretive routine.)

I probably also told Peter about a significant paper by Lewis and Stearns that
I had recently been handling for Journal of the ACM. That paper [25] extended the
automata-based theory of languages from syntax to semantics, under the assumption
that semantics was defined by combination of synthesized string-valued attributes.

Thus, in general, my answer to Peter’s question was that the best way I knew to
define semantics was to use attributes whose values could be defined on a parse tree
from bottom to top. And I said that, unfortunately, we also needed to include some
complicated ad hoc methods, in order to get context-dependent information into the
tree.

So Peter asked, “Why can’t attributes be defined from the top down as well as from
the bottom up?”

A shocking idea! Of course I instinctively replied that it was impossible to go
both bottom-up and top-down. But after some discussion I realized that his suggestion
wasn’t so preposterous after all, if circular definitions could somehow be avoided. (The
title of my present paper should really be, “The Revelation of Attribute Grammars.”)

Well, we didn’t pursue the matter, because we had many other things to talk about.
But in retrospect, it is clear that a large share of the credit for inventing attribute
grammars should be attributed to Peter Wegner, because he was the one who first
suggested the concept of inherited attributes. (I’ve often been kicking myself for failing
to acknowledge his important contribution in my first papers on the subject.)

I kept thinking about the combination of inherited and synthesized attributes at
odd moments as my trip continued, but I never had a chance to write anything down on
paper. A few days later—I think it was on Wednesday, February 15—I found myself at
Stanford University, in a conference room with half a dozen or so graduate students of
Computer Science. This was a “meet the students” session scheduled after my regular
lecture. And one of the students (probably Sue Graham) asked me what I thought was
the best way to define the semantics of programming languages. Wow! This was a
chance to try out the thoughts I’d been formulating, after Peter had planted that idea
in my mind. And there was a blackboard at hand, with plenty of chalk. So I marched
up to the board and started to write down a definition of a language very much like
what later became Turingol [15]. I have no idea if what I said made any sense to the
students, since I must have had to go back and erase a lot of things before getting them
right; and I doubt that anybody took notes that day. But I do recall that the first time
I ever constructed a nontrivial attribute grammar was during that on-line meeting with
students.

Soon I was back home in Southern California, and of course there was no time to
write down any of these thoughts. I did, however, take a few minutes to mail a copy of
my curriculum vitæ to George Forsythe, the chairman of Stanford’s department, since
I had enjoyed my visit there most of all. (I also wrote a letter to Bob Floyd, who was
then at Carnegie-Mellon, saying that I was seriously considering a move to Stanford, or
perhaps Cornell; I was hoping that he felt the same way, so we could be together.)

The next chapter in the story of attribute grammars took place in France, of all
places. My recollections here are somewhat hazy, because I haven’t been able to find



5

any of the related correspondence. But I know that I came to France in May, a week
before going to the Simulation Languages conference in Norway [2]. Maurice Nivat had
invited me to speak at the Institute Blaise Pascal, and someone (probably Louis Bolliet)
had arranged for me to spend two days in Grenoble. On one of those two days—I think
it was Friday, May 19—I was once again asked my opinion about semantics, and I made
an informal presentation of a definition for Turingol to about a dozen people. That was
the second time I had had occasion to write down an attribute grammar.

On the following day I went to Zandvoort, Holland, where a meeting of the IFIP
ALGOL working group was being held. About 50 people were sitting around a large
round table, making decisions about ALGOL X (which had previously been called AL-

GOL 66 and which eventually became ALGOL 68); as you know, this language was an
extensive development of ALGOL 60, based on Aad van Wijngaarden’s method of se-
mantic definition via recursive interpretation of texts [33]. My main impression of that
meeting was that Chris Strachey’s prediction from 1964 was unfortunately being ful-
filled: He had said, “In anything like a complicated language . . . , the process of defining
a compiler for it is extremely elaborate. The details of the special compiler written by
the committee are bound to be confined to the people who wrote it, and they will be
the only people who understand it” [32].

Back home in California, I once again was completely preoccupied by editorial work
and by fatherhood; there was no question of looking any further into semantics and such.
I was getting into some very difficult parts of Volume 2 that I decided were necessary
additions to my first draft. (For example, I had gone to a combinatorics conference in
April [1], where I had learned about Berlekamp’s amazing new method for factoring
polynomials modulo 2.) Still, I returned a batch of galley proofs to Addison–Wesley on
June 5 saying, “I had a very nice rest on this trip to Europe and I am ready to dive
into work this summer.”

But those months of June and July, 1967, were the worst of my entire life. While
I was working out the answer to a new exercise for my book (exercise 4.5.2–18), I sud-
denly had to make an unscheduled trip to the hospital. The ensuing dark days are best
summarized by quoting from a letter I sent to my publishers at the end of July:

. . .my “iron stomach” sprung a leak. I was forced to go five weeks without
doing any work (all I could do was eat Jello, plain, and read Agatha Christie
stories). After this I began to feel fine again, probably since I have always
liked Agatha Christie. So then like a fool I began to work once more at a
strenuous pace, and in two more days I was down again. It is clear that I have
been trying to do more concentrated work than my body will stand, so I will
have to systematically decrease my work load. In the immediate future (say
the next month) I should relax except for about five hours a day when I can
concentrate on my writing, etc.; after this I should be knit together enough to
work say nine or ten hours a day, but never go back to the 14-hour schedule
I had been keeping.

On September 11, 1967, I reluctantly resigned from my position on the ACM Journal

editorial board.
Meanwhile, other responsibilities were still in place. I had agreed to give a week’s

lectures at a NATO Summer School near Copenhagen in August, and my plan was to
come a week early so that I would have time to figure out what to say. Well, I arrived in



6

Denmark on August 6 as planned, only to learn that Klaus Wirth had become seriously
ill and was forced to cancel his lectures; therefore I was asked to take his place. I agreed
to begin on Wednesday afternoon, although that gave me only 2.5 days to prepare. My
announced title was “Top-Down Syntax Analysis,” and I was hoping that I would be
able to prove some useful new theorems in time to present them in the lectures. In
order to keep my stomach calm, I decided to work outdoors, sitting under some stately
pine trees in the woods near the campus at Lyngby. Thank goodness, my luck held;
the concepts of LL(k) took shape as I had hoped they would, during those 2.5 days
in the Danish woods. I lectured all day Thursday and Friday without serious side
effects, stomachwise; but a bug in the theory surfaced on Friday afternoon, just as I was
finishing. I fixed everything on Saturday morning, and finally began to enjoy the sights
of Denmark. (Notes from those lectures were eventually published in [19].)

You might think that I now had a week free to think about semantics, but that was
not the case. I was on my way to another conference at Oxford, where I was scheduled
to speak about another topic entirely. I had stumbled across this other idea (which
has become known as the “Knuth-Bendix algorithm”) while teaching an undergraduate
class in 1966. Peter Bendix (a student in the class) had implemented the method and
we had carried out numerous experiments; so the research was all done and I merely
had to write up the paper [16]. That was how I spent my “free” week in Denmark.

I remember talking to John McCarthy about sensory overload during my visit to
Stanford in February. I said I was in a dilemma because I was sitting on two ideas
I thought were going to be important (namely, the Knuth-Bendix algorithm and the
definition of attribute grammars), but I couldn’t investigate either one carefully because
I had to devote all my spare time to The Art of Computer Programming. I asked his
advice: Should I publish them in embryonic form (and let other people have the fun
of developing them), or should I hold back awhile until I had time to study them
thoroughly, then present more mature concepts? John said I should wait until I had
time to work everything out personally, otherwise there was a danger that the ideas
would be misunderstood and distorted. I guess I didn’t follow his advice very well, but
I did at least take time to explain the ideas as well as I could when I did publish them.
And I’ve been lucky that both ideas seem to have inspired many other people to do
things I could never have accomplished.

Although attribute grammars remained at the back of my mind for several months,
my next chance to think seriously about them didn’t come until I was away from home
again—this time at a SIAM conference in Santa Barbara, California, at the end of
November. Although the conference record lists me as one of the participants [39], the
truth is that I spent almost the whole time sitting on the beach outside the conference
hotel writing a paper about “semantics of context-free languages” [15]. That paper
explained everything I knew (or thought I knew) about attribute grammars. I spent
the first day working on a test for circularity; after rejecting three obviously false starts,
I thought I had found a correct algorithm, and I didn’t try too hard to find fault with it.

So that’s the story of my paper [15], which was effectively written in Ithaca, Stan-
ford, Grenoble, and Santa Barbara. (The published paper [15] says ‘Received 15 Novem-
ber 1967’; that must be a misprint for December.) I’ve presented this background infor-
mation in some detail because it suggests that research institutes may not be the best
places to do research. Perhaps new ideas emerge most often from hectic, disorganized



7

activity, when a great many sources of stimulation are present at once—when numerous
deadlines need to be met, and when other miscellaneous activities like child-rearing are
also mixed into the agenda. (On the other hand I’m quite content to be leading a much
more orderly life nowadays. One attack of ulcers is enough for me.)

I moved to Stanford and began teaching there in the fall of 1969. Now I was
officially a computer scientist instead of a mathematician. Several Stanford students
asked me to give them further examples of attribute grammars, and in February 1970
I received a letter from Erwin Engeler requesting the same thing. In April and May,
I taught a graduate course about compilers based on my notes for Volume 7 of The Art of

Computer Programming ; it was the one and only time in my life that I have ever taught
such a course. My class notes give no indication that I lectured at all about attribute
grammars; there was very little time, less than nine weeks altogether, because classes
were often disrupted by political crises in those exciting days. I did, however, devote
a number of lectures to the TROL language, which was the basis of the main homework
assignments. (Two of the students submitted an interesting term paper containing a
critique of TROL and a suggested successor called STROL. Their names? Ron Rivest and
Bob Tarjan.)

My work pattern in 1970 was somewhat different from the frenetic pace of 1967.
At home, I continued to type away at The Art of Computer Programming; I was then
finishing up the treatment of Shellsort, in Section 5.2.1 of Volume 3. But I would go
to sleep when I got tired. At school, I was now expected to do some original work, in
addition to classroom teaching, in order to please my research sponsors. Thus, I was
no longer confining my research activities to odd moments when I was away from home
(although it is true that paper [17] was written on another California beach).

It was hard for me to do anything creative in my office, with the phone ringing and
people dropping in all the time; so I found a few quiet hideaways on the Stanford campus.
In particular, I spent three or four pleasant days sitting under an oak tree near Lake
Lagunita, writing the requested chapter for Engeler’s book [18]. Sitting under this tree
in springtime was an ideal way to get into the right mood to write about an intermediate
language TL/I for Turing machines, and to come up with the philosophical discussions
in that paper. (I had previously corresponded with Clem McGowan of Cornell about
the semantics of lambda expressions, hence that part of [18] could be gleaned from older
notes.) Incidentally, Stanfordians will appreciate the fact that baby caterpillars kept
falling on me as I was sitting under the oak tree.

A tree that was the source of

many attributes. (Reenactment in

1990 of a scene from 1970, when this

area was still undeveloped. A stu-

dent residence, now visible behind

the tree, was built here about 1980.)



8

It is clear from reading [18] that I was still unaware of the serious error in the
circularity test of [15] when I wrote the new paper. Indeed, I returned the galley
proofs of [18] to the printer on July 28; then on August 6, I received a letter from Stein
Krogdahl in Norway, containing an elegantly presented counterexample to my circularity
algorithm. (His letter had come by surface mail, taking six weeks to reach me, otherwise
I could have alluded to the problem in [18].) I soon found a way to patch up the difficulty,
but the worst-case running time of the new algorithm was now exponential instead of
polynomial. I immediately sent an errata notice [20] to the publishers of my original
article, including also a correction to equation (2.4); Jǐŕı Kopřiva had written to me in
1968, pointing out an oversight in that formula.

Alas, it is impossible to get everything right, even when (or especially when?) we
are writing about how to make careful definitions.

Sometime during 1970—I cannot recall whether it was in the winter, spring, or
fall—John McCarthy challenged me to a public debate about how semantics ought to
be defined.* (John did this for fun; he loves to debate things. See, for instance, [26].)
Unfortunately, I saved no notes of what happened during our friendly hour-long con-
frontation; but I do recall that our main point of disagreement concerned inherited
attributes, which John thought were unnecessary. His recommended alternative was,
in essence, to associate parameters with the nonterminal symbols of a grammar; these
parameters could bring contextual information down to the leaves of the tree. For ex-
ample, instead of a nonterminal symbol E for expressions, we could have E(s), where s
was an appropriate symbol table for declared identifiers allowed within the expressions.
I had never given much thought to such an approach, so I had no counterexamples
handy to show why inherited attributes would be more powerful and/or more natural
than a parameter mechanism. I don’t think either of us “won” the debate; but I do
remember promising myself afterward never to engage in such a thing again, because
I have never enjoyed verbal argumentation.

My own work on attribute grammars had to become dormant soon afterward,
because there were too many other things to do. (My chief activity during the summer
of 1970, besides the ongoing work on Volume 3 of The Art of Computer Programming,
was an empirical study of FORTRAN programs [21] carried out with the help of a dozen
students and other volunteers.) I gave a talk that November to the participants in a
Research Workshop in Grammar and Semantics of Natural Languages that Pat Suppes
had organized at Stanford. I’m not sure exactly what I said, nor have I any evidence
that my talk made a great impression on anybody in the audience, but my views at the
time can be faithfully summarized by the following abstract I sent to the participants
in September:

* While preparing this paper, I tried to discover the date of our debate by looking
at John’s computer files from that era. Thanks to the modern-day wizardry of Martin
Frost and Joe Weening, it is still possible to reconstruct many of his electronic files
from 1969 and 1970; but all we could find relevant to attribute grammars was an entry
within a file called TOREAD, last updated 26 October 1970, in which my paper [18] was
listed sixth from the top.



9

My motivation for this work was entirely directed to semantics of computer
programming languages, but there is reason to believe that the approach is
useful for natural languages as well.

The enclosed pages introduce the idea, which is essentially very simple. For
natural languages the “synthesized attributes” would be things like number,
gender, denotation, etc., while the “inherited attributes” would be things like
the meaning of prepositions based on context. This approach to semantics
also seems to make it possible to simplify the syntax of a language in a fairly
natural way.

During my first years at Stanford I supervised two students whose Ph.D. theses
explored the large-scale application of attribute grammars [7, 34]. But I soon discovered
that I could no longer participate adequately in widely different parts of Computer
Science all at once, so I began to concentrate on mathematical analysis of algorithms [22].

Of course it’s been a treat for me to see how attribute grammars have grown
in popularity during the past 20 years. When I first learned about the astonishing
results of Jazayeri, Ogden, and Rounds [13]—that circularity can always be tested in
An steps and that every correct algorithm needs to perform at least Bn/ log n steps on
infinitely many examples—it blew my mind. This made circularity testing one of the
first “natural” problems to have provably exponential complexity. Never would I have
dared to conjecture such a remarkable theorem. Then I learned that even my incorrect
circularity algorithm was turning out to be useful, because it provides a test for “strongly
non-circular” grammars (see [5, page 18]).

In 1977 I began to work on a language for computer typesetting called TEX, and you
might ask why I didn’t use an attribute grammar to define the semantics of TEX. Good
question. The truth is, I haven’t been able to figure out any good way to define TEX
precisely, except by exhibiting its lengthy implementation in Pascal [23]. I think that
the program for TEX is as readable as any program of its size, yet a computer program
is surely an unsatisfying way to define semantics. Still, it’s the best I have been able to
do. Moreover, I don’t know any way to define any other language for general-purpose
typesetting that would have an easily defined semantics, without making it a lot less
useful than TEX. The same remarks apply also to METAFONT. “Macros” are the main
difficulty: As far as I know, macros are indispensable but inherently tricky to define.
And when we also add a capability to change the interpretation of input characters,
dynamically, we get into a realm for which clean formalisms seem impossible.

During the ten years I was working intensively on TEX, I occasionally ran into
people who said that they were interested in attribute grammars. But when I saw the
book Attribute Grammars by Deransart, Jourdan, and Lorho [5], I was astonished.
I could hardly believe the fact that its bibliography cited about 600 relevant papers.
Wow; surely I would never have predicted such dramatic growth.

I’m delighted, above all, to see that people not only use attribute grammars, and
prove deep results about them, they have fun doing so. I looked at about dozen of the
papers cited in [5], and in each case I noticed the authors’ evident enthusiasm for the
work they were doing. Nothing could make me happier.

My own contribution obviously amounts to only a minuscule portion of the many
things that have been discovered. Attribute grammars would not have become so



10

widespread so quickly if the concept had not been quite a natural one. Therefore some-
body would surely have invented attribute grammars even if Ned Irons, Peter Wegner,
and I had never existed. Yet as a writer I’m extremely pleased to have written a few
papers that people have found inspiring.

Let me close by taking this opportunity to correct a few residual errors in those
papers. First, in [15]: On page 137, line 10, ‘from (Xp0, α

′)’ should be ‘from (Xp0, α) to
(Xp0, α

′)’. There should be more space after paragraph (3) on page 139. There should
be another sentence added to the fourth-last line of page 142: ‘The idea of inherited
attributes was suggested to the author by Peter Wegner.’ And the name ‘birgitta’ should
be ‘birgitte’ in two of the examples on page 141. (Those identifiers were named after
Peter Naur’s daughter Birgitte Naur, whom I met during that summer of 1967.)

Next, in [20]: On page 95, in the second correction for page 141, the words ‘newsym-
bol’, ‘include’, and ‘in’ should be boldface. In the displayed equation for S(L), the
labels ‘1’ should be ‘l’. On both pages 95 and 96, the notation ‘Xpo’ should be ‘Xp0’
(five places). In the statement of the theorem on page 96, ‘roles’ should be ‘rules’ and
‘Xnp

’ should be ‘Xpnp
’.

And in [18]: Change ‘quadruples’ to ‘quintuples’ on line 2 of page 213. Insert quote
marks around ‘address’ in the description of label(σ) on page 221. Change ‘situtation’
to ‘situation’ on line 2 of page 225. Change the second semantic rule of 4.1 on page 232
to ‘fin(S):=fin(L)’. And append the following to page 235: ‘Acknowledgment. I wish to
thank Clement L. McGowan III for several stimulating discussions, especially for point-
ing out errors in my original attempts to define the semantics of lambda expressions.’

Finally, change ‘which’ to ‘that’ in about 100 places, throughout the articles (see
[24, §38]).

Bibliography

[1] R. C. Bose and T. A. Dowling (editors), Combinatorial Mathematics and its Ap-

plications, Proceedings of a conference held at Chapel Hill, North Carolina, April
10–14, 1967; University of North Carolina Monograph Series in Probability and

Statistics 4 (1969).
[2] J. N. Buxton (editor), Simulation Programming Languages, Proceedings of an IFIP

Working Conference held at Oslo, Norway, May 22–26, 1967 (Amsterdam: North-
Holland, 1968).

[3] A. Caracciolo di Forino, “On the concept of formal linguistic systems,” in [30], 37–51.
[4] Karel Čuĺık, “Well-translatable grammars and Algol-like languages,” in [30], 76–85.
[5] Pierre Deransart, Martin Jourdan, and Bernard Lorho, “Attribute Grammars,” Lec-

ture Notes in Computer Science 323 (1988), ix+232 pp.
[6] F. G. Duncan, “Our ultimate metalanguage: An after dinner talk,” in [30], 295–299.
[7] Isu Fang, FOLDS, a declarative formal language definition system. Ph.D. thesis,

Stanford University, 1972; also report STAN-CS-72-329.
[8] Robert W. Floyd, “On the nonexistence of a phrase structure grammar for AL-

GOL 60,” Communications of the ACM 5 (1962), 483–484.
[9] Edgar T. Irons, “A syntax-directed compiler for ALGOL 60,” Communications of the

ACM 4 (1961), 51–55.
[10] Edgar T. Irons, “The structure and use of the syntax-directed compiler,” Annual

Review in Automatic Programming 3 (1962), 207–227.



11

[11] Edgar T. Irons, “Towards more versatile mechanical translators,” Proceedings of

Symposia in Applied Mathematics 15 (American Mathematical Society, 1963), 41–
50.

[12] Edgar T. Irons, “ ‘Structural connections’ in formal languages,” Communications

of the ACM 7 (1964), 67–72.
[13] Mehdi Jazayeri, William F. Ogden, and William C. Rounds, “The intrinsically

exponential complexity of the circularity problem for attribute grammars,” Com-

munications of the ACM 18 (1975), 691–706.
[14] Donald E. Knuth, The Art of Computer Programming (Reading, Mass.: Addison–

Wesley). Volume 1, 1968; Volume 2, 1969; Volume 3, 1973; Volume 4, in progress.
[15] Donald E. Knuth, “Semantics of context-free languages,” Mathematical Systems

Theory 2 (1968), 127–145.
[16] Donald E. Knuth and Peter B. Bendix, “Simple word problems in universal al-

gebras,” in John Leech (editor), Computational Problems in Abstract Algebra,
Proceedings of a conference held at Oxford, England, August 29–September 2,
1967 (Oxford: Pergamon Press, 1970), 263–297.

[17] Donald E. Knuth, “The analysis of algorithms,” Actes du Congrès International
des Mathématiciens 1970, 3 (Paris: Gauthier-Villars, 1971), 269–274.

[18] Donald E. Knuth, “Examples of formal semantics,” in E. Engeler (editor), Sympo-
sium on Semantics of Algorithmic Languages, Lecture Notes in Mathematics 188

(1971), 212–235.
[19] Donald E. Knuth, “Top-down syntax analysis,” Acta Informatica 1 (1971), 79–110.
[20] Donald E. Knuth, “Semantics of context-free languages: Correction,” Mathematical

Systems Theory 5 (1971), 95–96.
[21] Donald E. Knuth, “An empirical study of FORTRAN programs,” Software—

Practice & Experience 1 (1971), 105–133.
[22] Donald E. Knuth, “Mathematical analysis of algorithms,” Proceedings of IFIP

Congress 1971, 1 (Amsterdam: North-Holland, 1972), 19–27.
[23] Donald E. Knuth, TEX: The Program. (Reading, Mass.: Addison–Wesley, 1986),

xv+594 pp.
[24] Donald E. Knuth, Tracy Larrabee, and Paul M. Roberts, Mathematical Writing,

MAA Notes 14 (Mathematical Association of America, 1989), v+115 pp.
[25] P. M. Lewis II and R. E. Stearns, “Syntax-directed transduction,” Journal of the

ACM 15 (1968), 465–488.
[26] John McCarthy, in “General discussion,” Communications of the ACM 7 (1964),

134–136.
[27] Robert M. McClure, “TMG–A syntax-directed compiler,” Proceedings of the ACM

National Conference 20 (1965), 262–274.
[28] Peter Naur (editor) et al., “Report on the algorithmic language ALGOL 60,” Com-

munications of the ACM 3 (1960), 299–314.
[29] D. V. Schorre, “META II–A syntax-directed compiler writing language,” Proceed-

ings of the ACM National Conference 19 (1964), D1.3.1–D.3.11.
[30] T. B. Steel, Jr. (editor), Formal Language Description Languages for Computer

Programming, Proceedings of an IFIP Working Conference held at Vienna, Austria,
September 15–18, 1964 (Amsterdam: North-Holland, 1966).



12

[31] T. B. Steel, Jr., “A formalization of semantics for programming language descrip-
tion,” in [30], 25–36.

[32] Christopher Strachey, comment on paper by J. V. Garwick, ‘The definition of
programming languages by their compilers,” in [30], 139–147.

[33] A. van Wijngaarden, “Recursive definition of syntax and semantics,” in [30], 13–24.
[34] Wayne Theodore Wilner, A declarative semantic definition. Ph.D. thesis, Stanford

University, 1971; also report STAN-CS-71-233.
[35] “Burroughs announces B6500,” Communications of the ACM 9 (1966), 541.
[36] “Salton announces new departments, editors for Communications,” and “Journal

changes are outlined by Gotlieb,” Communications of the ACM 9 (1966), 825.
[37] “On FJCC 66 at the Golden Gate,” Communications of the ACM 9 (1966), 885.
[38] “ACM National Lecturers 1966–7,” Communications of the ACM 10 (1967), 68–69.
[39] “SIAM 1967 Fall Meeting,” SIAM Review 10 (1968), 260–280.

The preparation of this paper was supported in part by NSF grant CCR–8610181.


