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The Genetic Analysis of Repeated Measures. II The 
Karhunen-Loi ve Expansion 

Peter C. M. Molenaar  ~ and Dorret  I. B o o m s m a  2 

Received 22 July 1985--Final 10 May t986 

A new approach to the genetic analysis o f  time series o f  arbitrary length 
and with arbitrary covariance function is outlined. This approach is based 
on the simultaneous eigenvalue decomposition o f  the covariance matrices 
o f  the original time series obtained from monozygotic (MZ) and dizygotic 
(DZ) twins. The method is illustrated with computer-simulated twin data. 

KEY WORDS: time series; eigenvalue decomposition; genetic con'elations; environmental 
correlations; twin data. 

INTRODUCTION 

A genetic analysis of time series, i.e., long stretches of  repeated obser- 
vations such as typically encountered in psychophysiological  research,  
raises problems that are related to the proper  handling of  autocorrelat ion.  
Fo r  instance,  a standard univariate technique such as A N O V A  of  repeated 
measures  is based on the assumption of  compound symmetry  of  the au- 
tocorrela t ion function. This means that observations at different time 
points t and t' should always have the same correlat ion irrespective of 
the lag t' - t. Box (1954) indicated that even  moderate  deviations from 
compound  symmetry  in an ANOVA of  repeated measures lead to great 
distort ions in probabili ty levels for comparisons between time points. 

In general,  the autocorrelat ion of  a time series will be some decreas- 
ing funct ion of  the lag t' - t (cf. Box and Jenkins, 1976) and consequent ly  
will lack compound symmetry.  Such lag-dependent autocorrelat ions are 
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regularly found with psychophysiological time series (Lutzenberger et al., 
1980; Wastell, 1981). One therefore would like to have an alternative to 
the ANOVA of repeated measures that enables a robust genetic analysis 
of time series with arbitrary autocorrelation function. Preferably, such an 
alternative approach should identify the genetic and environmental au- 
tocorrelation structures underlying an observed time series and enable a 
complete description of the latent pattern of time-dependent genetic and 
environmental processes. 

An approach that is consistent with these aims of dynamic genetic 
analysis involves the use of MANOVA in combination with simplex-type 
analysis (Boomsma and Molenaar, 1987). However, this approach is not 
practically feasible with lengthy (psychophysiological) time series. Con- 
sequently, an alternative genetic analysis accommodating time series of 
arbitrary length is required. In the following, such an alternative ap- 
proach, based on the Karhunen-Lo~ve expansion (cf. Ahmed and Rao, 
1975), is outlined. The Karhunen-Lo~ve expansion involves the decom- 
position of a time series into uncorrelated projections on the eigenvectors 
of the autocorrelation function. Stated otherwise, the time series is trans- 
formed into a sequence of uncorrelated variables, thus enabling the use 
of standard univariate techniques. Moreover, the Karhunen-Lo~ve ex- 
pansion applies in situations where the number of repeated measures ex- 
ceeds the number of subjects. In such cases, the resulting covariance 
matrix of observations is singular, but its decomposition into genetic and 
environmental components may still be achieved using the proposed 
method. 3 

In the following sections a basic genetic model for arbitrary, i.e., 
stationary or nonstationary, time series is presented. Next, the dynamic 
genetic analysis based upon the Karhunen-Lo6ve expansion is discussed 
in some detail and illustrated by means of several applications to simulated 
data. In the closing section we consider several generalizations of the 
proposed analysis, particularly those related to spectral analysis. 

DEFINITIONS 

A univariate time series y(t) can be conceived of as a member of an 
ensemble of time-dependent functions which are generated by some ran- 
dom scheme (Brillinger, 1975). The mean function of y(t) is defined by 

ave [y(t)l = my(t), 

where the average is taken over members of the ensemble of random 

3 W e  w i s h  to  t h a n k  a n  u n k n o w n  r e v i e w e r  f o r  p o i n t i n g  th is  ou t .  
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funct ions at each t ime t. Similarly, the covar iance  function of  y(t)  is de- 
fined by  

cov [y(t), y(t ' ) ]  = Cy(t, t'). 

According  to these definitions both the mean function and the covar iance  
funct ion are t ime-varying or nonstat ionary.  

A t ime series y(t)  can be stat ionary in several  respects .  For  instance,  
y(t)  can have  a s tat ionary mean  function, 

my(t)  = my, 

or a s ta t ionary covar iance function, 

c(t ,  t') = c(O, t' - t) = c(u),  

or both.  Not ice  that a s tat ionary covar iance function depends only on the 
length of  the interval u = t' - t and therefore  is invariant under  a trans- 
lation along the t ime axis. 

A GENETIC MODEL FOR TIME SERIES 

Consider  the following basic genetic model  for an observed  t ime se- 
ries y(t): 

y ( t )  : G( t )  + E(t), 

where  G(t) and E(t)  are latent t ime series of  genetic and nonshared en- 
v i ronmenta l  influences, respect ively,  and where  G(t) and E(t)  are mu- 
tually uncorrelated.  The covar iance functions of  y(t),  G(t),  and E(t)  are 
deno ted  by cy(t,  t'), Cg(t, t'), and ce(t,  t'), respect ively.  For  the moment ,  
it is convenient  (although not necessary)  to assume that the corresponding 
mean  functions are stat ionary,  i.e., my(t)  = m g ( t )  = mr( t )  = m, where 
m = 0. With these provisions,  let y = [y(1) . . . . .  y(T)] '  be a T x 1 
vec to r  denoting y(t)  at a finite interval of  times t = 1 . . . . .  T. The T • 
T covar iance  matrix of  y is 

Sy = {Cy( / ,  t ' ) ;  t, t '  = 1 . . . . .  T}. 

Defining Sg and Se likewise, it then follows that 

S y  = Sg -~ -  S e . 

A GENETIC ANALYSIS OF TIME SERIES 

In this section we consider  a t ransformat ion of the original t ime series 
y(t)  into a sequence of uncorrelated variables,  which can be analyzed 



232 M o l e n a a r  and Boomsma 

independent ly  f rom each other  by means of  standard univariate tech- 
niques. The uncorrelated variables in question are similar to component  
scores as obtained with principal-components analysis and, accordingly, 
can  be conceived of  as projections of  y ( t )  on the principal components  
or  e igenvectors  of  Sy. A description o fy( t )  in terms of  a linear combination 
involving uncorrelated projections on the eigenvectors of  Sy is called the 
Karhunen-Lo~ve  expansion of y ( t ) .  

The  required transformation of  the original time series y ( t )  into a 
sequence  of  uncorrelated variables is obtained from the eigenvalue de- 
composi t ion of  Sy: 

S r = P D P ' ,  

where  D = diag [dl . . . . .  dT] is the T x Tdiagonal  matrix of  eigenvalues 
and P = [pl,  . . . , Pr] is the associated T x T matrix of orthogonal 
e igenvectors .  Accordingly,  

y*  = P ' y  = [y*a  . . . . .  y ' r ] '  

is a T x 1 vector  of  uncorrelated variables y ' i :  

cov [y'e, y*-] = P i '  S y p j  = 0 if i ~ j .  

Hence ,  a finite sample of  a time series y ( t )  with arbitrary covariance 
funct ion can be t ransformed into a sequence of  uncorrelated variables 
Y'i, i = 1, . . . , T.  The inverse transformation y ( t )  may be obtained by 

T 

y ( t )  = ~ y * i P i ( t )  
i = 1  

or, equivalently,  

y = py*. 

This inverse transformation is commonly called the Karhunen -Lorve  ex- 
pansion and is exploited in the analysis of  the basic genetic model.  

Consider  a sample of  4N finite sample paths of  y(t)  obtained with N 
monozygot ic  (MZ) and N dizygotic (DZ) twin pairs, i.e., 

ykmn(t) t = 1 . . . . .  T, 

k = 1 (MZ) or 2 (DZ), 

m = 1, 2 (members of  a pair), 

n = 1 . . . . .  N (number of  pairs). 
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From the usual assumption that Sy~m. = Sy, for all k, m, n, and that 
my~m, = my = 0, it follows that the estimator of  the covariance function 
of  y(t) is 

e y ( t ,  t ' )  = ~ ~ ~ ,  y k m , ( t ) y k m n ( t ' ) / 4 N ,  t, t '  = 1 . . . . .  T. 
k m n 

The  eigenvalue decomposit ion of Sy = {dy ( t ,  t ' ) ;  t, t' = 1 . . . . .  T} yields 
a T x T matrix P of orthogonal eigenvectors 15i, i = 1 . . . . .  T. Consec- 
utively,  the 4N finite sample paths Y~mn(t) a r e  t ransformed into 4N se- 
quences  of  mutually uncorrelated variables 

y*i,kmn = Pi'Ykmn, i = 1, . . . , T ,  

where  Ykmn = [ykm,,(1), �9 �9 �9 , y k m n ( T ) ] ' .  For  a given eigenvector  lb;, then, 
we obtain 4N variables Y*i,kmn, which can be analyzed independently from 
the remaining variables * y j, kmn corresponding to eigenvectors l~j,J r i. 

In a nutshell, the genetic analysis of  4N time series y~mn( t ) ,  t = 1, 

. . . .  T, has been transformed into T independent  genetic analyses of 4N 
variables y*i,kmn. AS the latter variables do not depend upon time t any 
more,  each of the ensuing genetic analyses can be carried out by means 
of  standard univariate techniques. Specifically, for i = 1 . . . . .  T maxi- 
mum-likelihood estimates of  the proportions of  genetic and environmental  
variance based upon the mean squares of  {Y*i.*mn} between and within 
monozygot ic  and dizygotic twin pairs may be obtained by 

EMS = [Crg, cry] = ~r~ ' 

where  

qz = 2 f o r M S B ( M Z ) ,  

= 0 for MSW (MZ), 

= 1.5 for MSB (DZ), 

= 0.5 for MSW (DZ). 

The likelihood function of these structural equations for the mean squares 
can be numerically optimized by means of  standard methods. Thus,  we 
obtain estimates of  the proportion of genetic variance [h; 2 = crzg,/(CrZgi + 

o'2e,)] and environmental  variance [ei z = O'2ei/(O'2gi "~- O'2e / ) ]  associated with 
each eigenvector  IGi. Notice that at this point in the analysis any plausible 
genetic model for y * ( t )  can be tested. For  instance, the presented ap- 
proach can accommodate  a model including genetic, common-family en- 
vironmental ,  and within-family environmental  components .  

From the eigenvalue decomposit ion of a covariance matrix Sy, it fol- 
lows that 



234 Molenaar and Boomsma 

v a r  [Y*i, kmn] = p i ' S y p i  = di, a n d  

T T 

traceSy = ~ G(t, t) = ~ d~. 
t = l  i = 1  

Hence, the proportion of genetic variance in the total variance of y(t) is 
estimated by 

T 

~2 = Z hi2di" 
i=1 

In addition, the following estimates of the covariance functions of the 
genetic series G(t) and the environmental series E(t) are obtained: 

Se = PI)~P', I)~ = diag [ e 1 2 d l  . . . . .  e T 2 d T ] .  

The estimates s 02, ~g, and S~ pertain to the original time series y(t). 
The corresponding estimators combine results obtained with transforms 
y*i and, consequently, can be conceived of as inverse transformations 
back to the original data. 

Summarizing, we have presented a general approach to the genetic 
analysis of time series with arbitarary, i.e., possibly nonstationary, co- 
variance function. The proposed analysis yields robust estimates of the 
portion of genetic variance to the total variance of y(t) in addition to 
estimates of the underlying genetic and environmental autocorrelation 
structures. Moreover, the analysis applies in situations where the number 
T of repeated measures exceeds the number 4N of subjects. In such cases 
Sy is singular, but its decomposition into Sg and S~ can still be obtained 
from standard genetic analysis of projections Y*i associated with nonzero 
eigenvalues. In general, the estimated autocorrelation structures given by 
Sg and Se enable a further characterization of the genetic and environ- 
mental processes in terms of parametric dynamic models. These results 
can be amplified and generalized in several ways, some of which are 
discussed shortly. But first we turn to a concise presentation of parametric 
models for G(t) and E(t) and then proceed with a few illustrative appli- 
cations of the proposed analysis. 

PARAMETRIC MODELING 

One of the outcomes of the proposed analysis is a pair of T x T 
matrices Sg and Se describing the covariance function of G(t) and E(t), 
respectively. Up to this point it is immaterial to the proposed genetic 
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analysis whether these covariance functions are stationary or nonsta- 
tionary. Consequently, these covariance functions can be used in order 
to obtain estimates of the time course of G(t) and E(t), t = 1 . . . . .  T 
[so-called Wiener filtering (cf. Ahmed and Rao, 1975)]. On the other hand, 
Sg (similar remarks pertain to Se) can serve as a starting point for the 
identification of a parametric model for G(t). The identification of such 
a parametric model yields a minimal description of the dynamic process 
underlying G(t) and thus constitutes a much more economical and inter- 
pretable representation than Sg itself (remember that T can be quite large). 

A complete description of the identification of parametric time-series 
models cannot be given within the scope of this article. The interested 
reader is refered to the substantial literature on this subject (e.g., Box 
and Jenkins, 1976; Kashyap and Rao, 1976). We discuss only some basic 
steps in the identification of a parametric model for G(t) [again, similar 
remarks pertain to parametric modeling of E(t)]. First, one has to ascertain 
whether the parameters in a model for G(t) are time-varying or constant. 
We do not consider models with time-varying parameters but, for the 
sake of clarity, restrict ourselves to a consideration of an important subset 
of time-series models with constant parameters. This subset is charac- 
terized by stationarity of the covariance function. Remember that the 
covariance function of G(t) is stationary if 

c~(t, r )  = cg(u) = c ~ ( - u ) ,  

where u = t' - t. If Sg is stationary, then its expected pattern ~g is given 
by 

-Cg(0) " 
Cg(1) Cg(0) 

Cg(2) Cg(1) Cg(0) 
Cg(3) Cg(2) Cg(1) Cg(0) 

Stationarity of Sg can be tested by 

X z = [(4N - 1) - 1/6(2T + 1 - 2/(T + 1))] 

* [ln ] ~g ] - ln lSg ] + tr(1~g -1 gg) - T], 

~ g  = {~g (u) ;  t, r = 1 . . . .  , r } ,  

~ = { a . ( t ,  t ' ) ;  t, r = 1 . . . . .  T},  

T 
ag(U) = 1/(T - u) ~ eg( t ,  t - u),  

t = u + l  
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where 4N is the number of individuals. As 4N ~ ~, X z has a distribution 
with T ( T  - 1)/2 degrees of freedom (Morrison, 1976, p. 248). 

IfSg is stationary, then one suitable type of time-series model is given 
by the general p(h-order autoregressive model: 

P 

G(t )  = ~ f3(u)G(t - u) + 7 ( t ) ,  
U = I  

where cv(u) = 0 if u ~ 0, i.e., 7(t) lacks autocorrelation. It can be shown 
(cf. Box and Jenkins, 1976) that the covariance function cg(u),  u = O, 1, 

. . . .  T - 1, is sufficient for the identification of the order p and the 
determination of initial estimates of the parameters [3(u), u = 1 . . . . .  p, 
and the variance cv(0) of 7(t). 

In conclusion, then, the above remarks indicate that a dynamic ge- 
netic analysis can be supplemented with a stationarity test of Sg and Se. 
In case stationarity holds, a pth-order autoregressive model can be iden- 
tified which yields an economical and interpretable description of the 
covariance function in question. These supplementary steps can be im- 
planted in a fully algorithmic procedure. 

APPLICATIONS TO SIMULATED DATA 

In this section we present a few illustrative applications of the pro- 
posed analysis. A computer program 4 has been written that (1) generates 
simulated data according to the basic genetic model for time series, (2) 
carries out the dynamic genetic analysis based on the Karhunen-Lo~ve 
expansion, and (3) determines stationarity tests and autoregressive 
models. In the following we concentrate upon the generation of simulated 
data and the dynamic genetic analysis. We do not discuss stationarity 
tests and consider only stationary first-order autoregressive models for 
G ( t )  and E( t ) .  Notice, however, that these restrictions are not inherent 
to the proposed analysis. 

For the basic genetic model 

ykmn( t )  = Gkmn(t)  + Ekmn(t ) ,  

it holds that across MZ twins (i.e., k = 1) 

cot [Gl~,,(t), G12n(t)] = 1, t = 1 . . . . .  T, 

whereas across DZ twins (i.e., k = 2) 

4 On request, a listing of the computer program that generates the data series and carries 
out the principal-components analysis can be obtained from the authors. 
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cor [G21n(t), Gz2n(t)] = 0.5, t = 1 . . . .  T. 

In addition, for t = 1 . . . . .  T, 

cor [Ekmn(t),  Ek'm'n'(t)] -= O, k # k ' ,  m # m ' ,  or n # n' .  

With these provisions a data set can be generated if process models for 
G(t )  and E( t )  have been specified. For  illustrative purposes we choose 
first-order autoregressive models for G(t)  and E(t): 

G(t)  = fS(g)G(t - 1) + "y(t), 

E(t )  = f3(e)E(t - 1) + ~(t), 

c~(t,  t ') = B(t' - t) o-~ 2, 

c~(t, t ' )  = 8 ( t '  - t)o-~ 2, 

where 8(-) is the Kronecker  delta. Letting I f - t I = u, it then follows 
(cf. Box and Jenkins, 1976) that 

Cg(t, t ') = cg(0, u) = Cg(U) = ~3"(g)Cg(0), 

c~(O) = cr~?/[l - 132(g)], 

ce(t ,  t ')  = ce(O, u) = ce(u) = [3"(e)c~(0), 

Ce(0) = O-~2/[1 -- ~2 (e ) ] .  

Accordingly, G(t)  and E(t )  are completely specified by fixing 13(g), [3@) 
E [ -  1, 1] and o-~ 2, O'~ 2 ~ [0~ ~) ,  respectively. Notice that 

Cg(1)/cg(O) = f~(g)c~(O)/cg(O) = f~(g) ,  

ce(1)/cr = ~(e)c~(O)/c~(O) = ~(e). 

In addition, notice that for B(g) r 0 the covariance function of  G(t)  is a 
decreasing function of lag u, whence Sg lacks compound symmetry.  Also, 
if [3@) # 0, then c~(u) is a decreasing function of lag u, and consequently 
Se lacks compound symmetry.  

The I M S L  Library  (IMSL, Inc., 1979) contains a useful subroutine 
(FTGEN) that generates time series according to various process models. 
This subroutine was used for the simulation of a data set according to the 
above specifications which can be summarized as follows: 

(1) Choose N and T; 
(2) choose h 2; 
(3) choose [3(g) and [3@); 
(4) choose O'-y 2 and compute o', 2 such that h 2 = Cg(O)/[cg(O) + Ce(0)]  

given by step 2 obtains; 
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(5) for each pair of MZ twins n = 1 . . . . .  N generate, respectively, 
Gl.n(t), Elln(t)  and E ~ z n ( t )  , t = I . . . . .  T, with parameter spec- 
ifications given by steps 3 and 4, then compute y~mn(t) = G~.n(t) 
+ Eaton(t), m = 1, 2; 

(6) for each pair of DZ twins n = 1 . . . . .  N, for t = 1 . . . . .  T and 
m = 1, 2 and with parameter specifications given by steps 3 and 
4, generate Gzmn(t) under the restriction that cor [Gz~n(t), 
Gzzn(t)] = 0.5, genera te  E2mn(t), and compute Y2mn(t) = Gzmn(t) 
+ Ezmn(t). 

Four  distinct types of data are considered: 
(I) [3(g) = 0 and [3(e) = 0; consequently,  an observed series y(t) 

lacks autocorrelation, i.e., Cy(U) = 0 if u ~ 0 and Sy has com- 
pound symmetry because it is a diagonal matrix; 

(II) [3(g) = 0.75 and [3(e) = 0; y(t) now has an intricate pattern of 
autocorrelation (cf. Granger and Morris, 1976); 

(III) [3(g) = 0 and 13(e) = 0.75; again, y(t) has an intricate pattern 
of  autocorrelation; and 

(IV) 13(g) = 0.75 and 13(e) = 0.75; the pattern of autocorrelation of 
y(t) is still more involved than with types II and III. 

A type IV data set [i.e., [3(g) = [3(e) = 0.75] has been generated 
with N = 100, T = 10, and h 2 = 0 .5 .  c ~ ( 0 )  and c,(0) have been chosen 
in such a way that Cg(0) = ce(0) = 100. This data set has been analyzed 
according to the proposed method. First, we consider the maximum-like- 
lihood parameters in the structural models for the mean squares of y*; 
(i.e., the projections on each eigenvector 0i, i = 1 . . . . .  10). Estimates 
of O-g and o-e corresponding to genetic and environmental influences are 
given in Table I. Combined • of fit = 8.70 (df = 20, i.e., 2 
df  for each y'i) .  These parameter estimates enable computation of the 
portion of  genetic variance in the total variance ofy(t):  ]~2 = 0.47. Second, 
estimates of the underlying genetic and environmental correlation func- 
tions Sg and S~ are determined. These estimates are shown in Table II. 
As a last step first-order autoregressive models were fitted t o  Sg and 
Se, yielding estimates of [3(g) and 13(e). The resulting average estimates 
were [3(g) = 0.58 and [3(e) = 0.66. In view of the rather short length T 
= 10 of  the simulated time series, these results seem quite satisfactory. 

Next,  letting N = 100, T = 50, and h 2 = 0 . 5 ,  types I, II, III, and 
IV data sets have been generated and analyzed according to the proposed 
method.  The results thus obtained are shown in Table III. For  reasons 
of  conciseness,  estimates of Sg (50 x 50) and Se (50 X 50) are not shown. 
Instead,  we computed 

T 

?g(0) = 1/T ~ Cg(t, t) and 
t = l  
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Table I. Maximum-Like l ihood  Es t imates  of  Ge- 
netic and Envi ronmenta l  Standard Deviat ions for 

Projections on Each  Eigenvector  
l~i, i = 1 . . . . .  10 

O'g O" e 

1 4.250 4.736 
2 5.083 4.684 
3 5.343 5.642 
4 6.067 5.598 
5 6.308 6.410 
6 8.666 6.828 
7 8.577 9.318 
8 12.412 12.024 
9 14.890 14.706 

10 16.038 20.510 

Table II. Genetic and Envi ronmenta l  Correlation Matr ices 

Genetic correlations 

1 
0.588 1 
0.281 0.610 1 
0.202 0.281 0.518 1 
0.174 0.121 0.301 0.586 1 
0.041 0.036 0.132 0.316 0.572 1 
0.068 0.059 0.134 0.193 0.329 0.591 1 
0.028 0.038 0.053 0.010 0 A l l  0.265 0.591 1 
0.056 0.033 0.034 0.034 0.014 0.145 0.289 0.596 1 
0.016 0.008 0.059 0.035 0.009 0.065 0.197 0.417 0.630 1 

Envi ronmmenta l  correlations 

1 
0.653 1 
0.463 0.672 1 
0.289 0.370 0.638 1 
0.222 0.296 0.500 0.681 1 
0.076 0.132 0.335 0.419 0.618 1 
0.105 0.127 0.282 0.300 0.464 0.661 1 
0.139 0.179 0.199 0.148 0.291 0.413 0.655 1 
0.070 0.147 0.192 0.160 0.200 0.287 0.424 0.634 1 
0.038 0.131 0.137 0.137 0.165 0.197 0.291 0.480 0.698 
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Table III. True and Estimated Parameter  Values for Types I - I V  Data Series 

True Estimated 

h z ~(g) [3(e) cr.~ 2 o-, 2 h ~ 13(g) ~(e) dv 2 6"~ 2 

I 0.5 0 0 1 1 0.482 -0 .040  -0 .016  0.966 1.040 
II 0.5 0.75 0 0.438 1 0.476 0.640 0.065 0.570 1.057 
III 0.5 0 0.75 1 0.438 0.527 0.104 0.569 1.045 0.640 
IV 0.5 0.75 0.75 0.438 0.438 0.511 0.692 0.658 0.531 0.533 

T 

C g ( l )  = 1 / T -  1 ~ Cg(t, t -  1), whence 
t=2  

f3(g) = Fg(1)/Fg(O) and 
(~,,/2 = [1 --  ~ 2 ( g ) ] F g ( 0 ) .  

Similar computations yield ~(e) and b2.  
Inspection of Table III shows that the proposed analysis manages to 

recover the underlying genetic structure of the time series. Consider, for 
instance, the results obtained with type III data. Here, the observed series 
y(t) have substantial autocorrelation, whereas the genetic series are un- 
correlated across time. Consequently, it would seem difficult to identify 
correctly the lack of genetic autocorrelation, yet our method succeeds in 
doing so. The same remarks can be made with respect to type II data, 
where the observed series y(t) have considerable autocorrelation, but the 
environmental series are uncorrelated across time. In conclusion, then, 
the proposed method would seem to constitute a viable approach to the 
genetic analysis of time series. 

DISCUSSION 

The Karhunen-Lo~ve transformation constitutes a descriptive ap- 
proach to time-series analysis. It involves a general one-to-one mapping 
as a means to ease the genetic analysis under consideration. In contrast, 
a simplex analysis of longitudinal data (Boomsma and Molenaar, 1987) 
hinges upon the choice of a particular time-series model and thus con- 
stitutes a modeling approach. This implies that any misspecifications of 
the time-series model in question will lead to erroneous results, whereas 
no such errors can arise in a Karhunen-Lo~ve analysis. Of course, the 
increased generality of the latter approach is gained at the cost of a de- 
crease in power. In a sense, this state of affairs is analogous to the dis- 
tinction between parametric and nonparametric approaches to statistical 
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analysis [cf. Jenkins and Watts (1968) for a similar point of view]. Only 
after a dynamic genetic analysis based upon the Karhunen-Lo6ve expan- 
sion has been carried out can time-series models be fitted to the obtained 
genetic and environmental covariance functions. These supplementary 
steps leave the nonparametric character of the Karhunen-Lo6ve analysis 
intact. 

Notwithstanding the intended nonparametric character of the present 
approach, the standard genetic analysis carried out with respect to pro- 
jections y*i on each eigenvector yields both appropriate likelihood-ratio 
tests and standard errors of the estimated genetic and environmental 
parameters. Furthermore, standard errors of the estimated eigenvalues 
and eigenvectors of Sy can be regularly obtained (cf. Morrison, 1976). 
However,  h ~2, ~2, gg, and Se are derived from these original estimates by 
means of (inverse) transformation, and at present, the associated standard 
errors are unknown. We plan to address this issue in the near future. 

The Karhunen-Lo6ve transformation has been described for the case 
in which each observed series has a constant mean function. Although 
these examples may have some psychophysiological relevance, it is im- 
portant to note that the proposed genetic analysis remains valid if the 
observed time series has a time-varying mean function. Obviously, one 
should then take Sy to be the matrix of second-order moments about zero. 
No additional principles are being involved save for the rather strong 
requirement that the time-varying mean function is invariant across dif- 
ferent subjects. 

If it is assumed that the covariance function of the observed series 
is stationary, then Sy has a particularly regular form and is called a Toeplitz 
matrix (Brillinger, 1975). The assumption of a stationary covariance func- 
tion can be tested as described earlier. The Karhunen-Lo6ve transfor- 
mation of a sufficiently long covariance stationary time series converges 
to the discrete Fourier transformation (Brillinger, 1975). Stated otherwise, 
the eigenvectors of a high-dimensional Toeplitz matrix converge to the 
Fourier axes. This result has enormous computational advantage, as the 
Fourier axes are analytically given and a numerical determination of the 
eigenvalue decomposition of Sy becomes superfluous. In addition, the 
discrete Fourier transformation has several additional advantages which 
relate to its robustness against time shifts of, e.g., the underlying genetic 
and environmental series. However,  in view of the various technical in- 
tricacies inherent to a quantitative genetic spectral analysis of time series, 
this approach will be elaborated in a separate publication. 

Until now we have considered the genetic analysis of univariate time 
series. The Karhunen-Lo6ve transformation cannot be generalized to mul- 
tivariate time series because the sets of eigenvectors obtained with at 
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least three matrices Of auto- and cross-covariances generally will be dif- 
ferent. Thus, it is impossible to arrive at a single space in which each 
component series of a multivariate time series has uncorrelated projec- 
tions on the base vectors. Instead, one could proceed with a generalized 
Karhunen-Lo~ve transformation in which a reduced set of base vectors 
with required properties is constructed according to a recursive procedure 
(Molenaar, 1981; Stobberingh, 1972). On the other hand, one could invoke 
dynamic factor analysis of multivariate time series (Molenaar, 1985) or 
discrete Fourier transformation leading to complex-valued spectral an- 
alysis. The latter approach is quite appealing, as it allows for frequency- 
dependent structural modeling in a way that resembles the usual genetic 
covariance models proposed by, e.g., Martin and Eaves (1977). 
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