
1

Journal of Heredity, 2020, 1–15

doi:10.1093/jhered/esaa015

Original Article

Advance Access publication June 1 2020

© The American Genetic Association 2020. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

Original Article

The Genetic Architecture of Plant Defense  

Trade-offs in a Common Monkeyflower

Nicholas J. Kooyers , Abigail Donofrio, Benjamin K. Blackman, and  

Liza M. Holeski

From the Department of Biology, University of Louisiana, Lafayette, LA 70503 (Kooyers); Department of Integrative 

Biology, University of South Florida, Tampa, FL 33620 (Kooyers and Donofrio); Department of Plant and Microbial 

Biology, University of California, Berkeley, CA 94720 (Blackman); and Department of Biological Sciences, Northern 

Arizona University, Flagstaff, AZ 86011 (Holeski)

Address correspondence to N. J. Kooyers at the address above, or e-mail: nkooyers@gmail.com

Received March 11, 2020; First decision May 12, 2020; Accepted May 25, 2020.

Corresponding Editor: Scott Hodges

Abstract

Determining how adaptive combinations of traits arose requires understanding the prevalence and 

scope of genetic constraints. Frequently observed phenotypic correlations between plant growth, 

defenses, and/or reproductive timing have led researchers to suggest that pleiotropy or strong 

genetic linkage between variants affecting independent traits is pervasive. Alternatively, these 

correlations could arise via independent mutations in different genes for each trait and extensive 

correlational selection. Here we evaluate these alternatives by conducting a quantitative trait loci 

(QTL) mapping experiment involving a cross between 2 populations of common monkeyflower 

(Mimulus guttatus) that differ in growth rate as well as total concentration and arsenal composition 

of plant defense compounds, phenylpropanoid glycosides (PPGs). We find no evidence that 

pleiotropy underlies correlations between defense and growth rate. However, there is a strong 

genetic correlation between levels of total PPGs and flowering time that is largely attributable to a 

single shared QTL. While this result suggests a role for pleiotropy/close linkage, several other QTLs 

also contribute to variation in total PPGs. Additionally, divergent PPG arsenals are influenced by a 

number of smaller-effect QTLs that each underlie variation in 1 or 2 PPGs. This result indicates that 

chemical defense arsenals can be finely adapted to biotic environments despite sharing a common 

biochemical precursor. Together, our results show correlations between defense and life-history 

traits are influenced by pleiotropy or genetic linkage, but genetic constraints may have limited 

impact on future evolutionary responses, as a substantial proportion of variation in each trait is 

controlled by independent loci.

Subject area:  Genomics and gene mapping, Quantitative genetics and Mendelian inheritance

Keywords:  Mimulus guttatus (common yellow monkeyflower), Erythranthe guttata, flowering time, plant functional strategies, 

phenylpropanoid glycosides, quantitative trait loci (QTL)

A commonly observed property of phenotypic diversity is that many 

traits tend to covary across individuals of a species creating complex 

multivariate phenotypes. Such phenotypic correlations may arise 

because certain combinations of traits are advantageous in speci�c 

environments (correlational selection; Brodie 1992; McGlothlin 

et al. 2005) or because developmental or genetic constraints prevent 
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independent evolution of each trait (Lande 1979; Arnold 1992; 

Gardner and Latta 2007). At the genomic level, genetic constraints 

can arise via pleiotropy, the ability of allelic variation in one gene 

to affect multiple phenotypes, or via genetic linkage that greatly re-

duces the independent assortment of alleles at linked loci affecting 

individual traits. The importance of pleiotropy or close linkage rela-

tive to correlational selection in creating phenotypic correlations 

is contentious (Gardner and Latta 2007; Stearns 2010; Paaby and 

Rockman 2013), but has important consequences for evolutionary 

responses of populations. That is, pleiotropy or linkage can either 

facilitate evolution by maintaining adaptive combinations of traits 

during the evolutionary process (e.g., Lowry and Willis 2010) or 

constrain evolution by limiting the achievable phenotypic param-

eter space, altering most likely evolutionary paths, or reducing the 

speed with which multiple traits keep pace in tracking �tness optima 

(Etterson and Shaw 2001; McKay et al. 2003). Thus, understanding 

how quickly and optimally populations are able to adapt to a par-

ticular environment depends on understanding the degree and direc-

tion of pleiotropy or linkage in ecologically important traits.

One place where genetic correlations caused by pleiotropy or 

linkage are likely to be important is in the evolution of growth, re-

productive timing, and defense strategies in plants. Trade-offs be-

tween plant defense and growth or reproduction arise because the 

allocation of resources to defense involves investment in the syn-

thesis of costly biochemical compounds or physical defenses that 

may come at the expense of allocating resources to growth and re-

production (Herms and Mattson 1992; Strauss et al. 2002; Stamp 

2003). Indeed, genetic covariation between growth or reproduction 

and constitutive levels of chemical defenses have been frequently ob-

served both within and among populations grown in common garden 

environments (Koricheva 2002; Kooyers et al. 2017; Defossez et al. 

2018; Lowry et  al. 2019). The presence of these correlations sug-

gests that either pleiotropic or linked variation underlies differences 

in resource allocation or that past correlational selection may have 

independently selected combinations of genotypes at unlinked loci 

that independently control variation in plant defense, growth, or 

reproductive rate.

Pleiotropy or linkage are also likely to be important factors in 

shaping the evolution of plant chemical defense arsenals, which 

warrant consideration as complex multivariate traits in and of 

themselves. Plants can produce an immense variety of secondary 

metabolites for defense against herbivores and pathogens, and in-

dividual species frequently produce multiple structurally similar 

compounds derived from a single biosynthetic pathway (Fraenkel 

1959; Keefover-Ring et al. 2014; Raguso et al. 2015). Because these 

compounds share a biochemical precursor, their individual and rela-

tive production levels are largely expected to covary (Berenbaum 

and Zangerl 1988). However, variation in arsenal composition be-

tween populations is common within species (Holeski et al. 2012, 

2013; Moore et al. 2014), and observations of covariation between 

multivariate defenses and �tness, sometimes even in response to 

site-speci�c herbivore communities, suggest that such variability 

in chemical arsenals is often adaptive (Berenbaum and Zangerl 

1998; Koricheva et  al. 2004; Carmona et  al. 2011; Prasad et  al. 

2012). Pleiotropy or linkage could affect the evolution of defense 

arsenals in 2 ways. First, a single locus could be positively associ-

ated with some defenses, but negatively associated with others, re-

�ecting potential allocation trade-offs. Second, a single locus could 

be positively associated with multiple defenses (positive pleiotropy) 

re�ecting total carbon allocated to defense rather than other func-

tional traits. Alternatively, pleiotropy or linkage may not come into 

play, and some loci may only in�uence variation in production of a 

single defense compound. Such modular genetic variants would be 

unconstrained by genetic correlations and allow selection to freely 

�ne-tune defense arsenals to herbivore communities.

Here we examine the genetic architecture of phenotypic correl-

ations between growth, reproductive rate, and the total abundance 

and composition of chemical defenses in the ecological genetic model 

plant, Mimulus guttatus. Distributed from Mexico to Alaska across 

a broad range of ecological conditions, M. guttatus populations pos-

sess exceptionally high levels of genetic diversity and also exhibit 

tremendous diversity in morphology, phenology, and chemical and 

physical defense (Holeski 2007; Wu et al. 2008; Flagel et al. 2014; 

Friedman et al. 2015; Puzey et al. 2017). Across this range, annual 

populations of M. guttatus inhabit sites that differ dramatically in 

the yearly timing and duration of the growing season. These habi-

tats include seeps, thin-soiled meadows, and rock walls with ephem-

eral water supplies where the local growing season is de�ned by the 

relative timing of spring rains or snow melt and summer terminal 

droughts. Thus, optimal phenological timing appears to be a crit-

ical determinant of �tness in this species, and consequently, spatially 

and temporally variability in the growing season maintains variation 

in phenological timing within and between populations (Hall and 

Willis 2006; Mojica et al. 2012; Kooyers et al. 2015; Monnahan and 

Kelly 2017; Troth et al. 2018; Nelson et al. 2019).

Differences in allocation of resources to chemical defense are an-

other key axis of variation in the evolution of adaptive strategies in 

M. guttatus. Annual M. guttatus populations invest between 3.4% 

and 37.1% of dry leaf mass to defending their young leaves with 

diverse arsenals of phenylpropanoid glycosides, or PPGs (Holeski 

et al. 2013; Keefover-Ring et al. 2014; Kooyers et al. 2017). PPGs 

are synthesized via the shikimic acid pathway and have been docu-

mented as generalist herbivore feeding deterrents and specialist 

feeding stimulants in several plant species, including M.  guttatus 

(Molgaard 1986; Holeski et  al. 2013, 2014; Rotter et  al. 2018). 

A previous range-wide population survey of >30 annual M. guttatus 

populations detected dramatic among-population differentiation in 

the total constitutive level of PPGs and in the compositions of PPG 

arsenals (Kooyers et al. 2017). Variation in defense compound abun-

dance is strongly correlated with variation in both growing season 

length and �owering time suggesting that there are trade-offs be-

tween chemical defenses and reproductive timing that underlie adap-

tation among populations. Whether these trade-offs are caused by 

genetic correlations or correlational selection is unknown, but could 

profoundly impact how these populations respond to changing cli-

mates (Kooyers et al. 2019).

In this study, we take a quantitative trait locus (QTL) mapping 

approach to ask whether loci that in�uence variation in growth, 

reproduction, constitutive chemical defense levels, and individual 

defense metabolite abundances colocalize; thus, testing whether 

phenotypic correlations among combinations of these phenotypes 

could be caused by pleiotropy or close linkage. Leveraging a cross 

derived from California and Oregon parents distinguished by diver-

gent growth rates, constitutive PPGs levels, and PPG arsenal com-

positions, we characterize the genetic architecture underlying this 

variation to investigate the following 3 questions. First, do the gen-

etic correlations between traits in this F
2
 mapping population par-

allel the phenotypic correlations observed among parents and/or 

wild populations? Second, do QTLs underlying variation in growth 

rate, reproductive rate, and constitutive PPGs colocalize? Finally, 

do QTLs underlying variation in individual PPG levels re�ect “de-

fense” loci where one allele is associated with increases in levels of all 
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PPGs, do they re�ect “allocation” loci where one allele is associated 

with increases in levels of some PPGs but not others, or do different 

PPGs have entirely independent QTLs? Together, our analyses sug-

gest that trade-offs between growth, defense, and reproduction re-

�ect the combined in�uence of genetic correlations and correlational 

selection.

Methods

An F
2
 mapping population was generated from an initial cross be-

tween a parental line from a low elevation inland annual popula-

tion found north of Fresno, CA (BEL: 37.039833, −119.77382; 

elevation = 188 m) and a parental line from a high elevation an-

nual population found on Iron Mountain, OR (IM62: 44.402389, 

−122.15325; elevation = 1358 m) followed by sel�ng of a single F
1
 

plant. For simplicity, we refer to these lines as the CA and OR par-

ental lines below. Parental lines were inbred via single seed descent 

for multiple generations prior to generating the mapping population 

(CA: 2 generations, OR: >5 generations). The parent lines for this 

cross were chosen because they differed dramatically in PPG arsenal, 

PPG total level, and growth rate under common garden greenhouse 

conditions (Kooyers et al. 2017).

Plant Growth and Experimental Design

We conducted a QTL mapping experiment using the above lines 

in a walk-in environmental chamber at the University of South 

Florida (Environmental Growth Chambers custom model). Parental, 

F
1
, and F

2
 seeds were sown in Fafard 3b potting media (Sun Gro 

Horticulture; Agawam, MA) in 2.5” square pots within 1020 �ats 

with humidity domes and strati�ed at 4 °C for 7 days. Flats were 

then moved to the growth chamber, and germination occurred under 

humidity domes for 7  days. Seedlings were thinned to 1 plant in 

each pot (16 CA parental lines, 10 OR parental lines, 21 F
1
, and 

400 F
2
 plants germinated). Plants were raised in the growth chamber 

under 16 h day:8 h night cycles at a constant temperature of 18 °C, 

bottom-watered as necessary, and rotated every 2–3  days to min-

imize �ne-scale spatial effects. No supplemental fertilizer was ap-

plied until after all phenotypes were collected. This chamber had 

never been previously used to grow plants, and we observed no evi-

dence of herbivory during the experiment.

We scored each plant for a suite of morphological, phenological, 

and plant defense phenotypes. Germination and �owering status 

were surveyed daily to quantify �owering time as the number of days 

between the germination date and day of �rst �ower. On the day of 

�rst �ower, we recorded several growth traits including plant height, 

�owering node, branch number, and leaf width and leaf length of 

the larger second true leaf. Growth rate before �owering was calcu-

lated as plant height divided by �owering time. At �owering, we also 

removed a single second true leaf, dried it at 65 °C for 4 days be-

fore weighing to obtain dry leaf weight. Because most morphological 

phenotypes were highly correlated and the results from each were 

repetitive, we report only plant height in the main text and report 

results from a supplementary principal component analysis (PCA) 

on morphological phenotypes in Supplementary Table S1. Previous 

studies have shown strong correlations between total above grown 

biomass and plant height (Rotter et al. 2019). Sampling for phyto-

chemical analysis consisted of �ash freezing the other second true 

leaf as well as the third and fourth true leaves in liquid nitrogen 

after full expansion of the �fth true leaves. All leaf material was 

freeze-dried using a pre-chilled Freezemobile freeze drier system 

(SP Scienti�c FM25XL-70). Nearly all plants had �owered prior to 

tissue collection for phytochemical analyses. Following phenotyping, 

�oral buds were collected for DNA extraction and downstream gen-

etic analysis.

Extraction of PPGs and analysis of quantitative PPG content via 

high-performance liquid chromatography followed previously estab-

lished procedures (Holeski et al. 2013, 2014; Kooyers et al. 2017). 

PPG quantities were calculated as verbascoside equivalents using a 

standard solution of pure verbascoside as in Holeski et al. (2013). 

Our methods were not fully robust for samples with less than 3 mg 

of freeze-dried tissue; therefore, we excluded apparent outlier sam-

ples. We also excluded a single individual from the California parent 

line that was an outlier for nearly all phenotypes. Because its pot 

was adjacent to several OR parental line individuals in the experi-

ment, we suspect an OR plant that somehow made it into this pot 

on accident.

Summary statistics including mean, standard deviation, and 

standard error were calculated for all growth, �owering time, and 

PPG phenotypes. We assessed differences among parent lines with 

Welch 2 sample t-tests assuming equal variance. To determine 

whether genetic correlations exist between chemical defenses and 

growth rate, reproductive rate, or trichome density, we calculated 

Pearson correlations between total PPGs and growth rate, as well 

as between total PPGs and �owering time in the F
2
 population. We 

also assessed Pearson correlations between constitutive production 

of different PPGs to examine whether different PPGs were genetic-

ally correlated. Because we observed extensive correlations in the 

abundances of different PPGs, we conducted a PCA with imputation 

of missing phenotypes via the pcaMethods package version 1.74 

(Stacklies et al. 2007) to summarize variation in PPG arsenals. Traits 

were z-score transformed prior to the PCA.

Genotyping and QTL Mapping

We extracted DNA from buds sampled from each plant using a 

modi�ed CTAB extraction procedure (Kelly and Willis 1998). DNA 

was quanti�ed using a �uorescent plate reader (Molecular Devices 

Gemini XS Plate Reader) and Quant-iT dsDNA broad-range assay 

kits (ThermoFisher Scienti�c; Waltham, MA). Plants were genotyped 

via a custom multiplex shotgun genotyping procedure (Andolfatto 

et al. 2011; Ferris et al. 2017). Brie�y, we performed an AseI (NEB; 

Ipswich, MA) restriction digest on input 50-ng DNA from each 

sample. One of 40 custom-barcoded adaptors was ligated onto each 

sample, and groups of products with unique barcodes were pooled. 

We size selected each of the 10 resulting pools using a PippenHT 

instrument (Sage Science, Beverly, MA). Each pool was then amp-

li�ed with a primer set containing a unique index (initial denatur-

ation: 30 s at 98 °C; ampli�cation: 10 s at 98 °C, 15 s at 60 °C, and 

15 s at 72 °C for 16 cycles; �nal extension: 7 min at 72 °C). Thus, 

each sample could be distinguished by a unique adaptor barcode: 

sequencing index combination. Indexed libraries were combined in 

normalized pools and sequenced on a single lane of Illumina HiSeqX 

(paired-end, 150 bp reads; Novogene; Sacramento, CA).

We used TASSEL 5 GBS V2 pipeline for identi�cation of SNPs, 

SNP calling, and quality �ltering (Glaubitz et al. 2014). Alignment 

of tags to the M.  guttatus reference genome v2.0 (Hellsten et  al. 

2013) was performed with Bowtie2 v2.3.2 (Langmead and Salzberg 

2012) with the very sensitive option. Potential SNPs were discarded 

if minor allele frequency was <10%, if the minor allele appeared 

was not homozygous in 1% of individuals, or if the minor allele did 

not appear in >10% of depth at a locus. We also discarded all SNPs 
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that did not map to scaffolds 1–14 (corresponding to chromosomes 

1–14). This data were further �ltered to exclude any individuals that 

had SNPs called for <25% sites and to include only sites where CA 

and OR parent were homozygous for alternative alleles. A custom 

perl script was used to create genotype calls for 40-SNP wide win-

dows across the genome resulting in 683 windows. This method pro-

duced an excess of heterozygotes relative to homozygotes for most 

window-based markers.

We used the scripts documented in GOOGA for calculating error 

rates, �ltering individuals, producing a linkage map, and calculating 

genotype probabilities (Flagel et al. 2019). Three different measures 

of genotyping error rate were calculated for every individual: error 

due to the probability that a homozygote is mistakenly called a het-

erozygote, the probability that a homozygote is mistakenly called 

the alternative homozygote, and the probability that a true heterozy-

gote is called either homozygote. Individuals with greater than 20% 

error in any of these categories were dropped from linkage map cre-

ation. Linkage maps were generated with the remaining individuals 

(N = 113). Any window-based markers with the maximum recom-

bination distance between them were dropped from the analysis (12 

markers dropped), and both the error rate analysis and linkage map 

construction were rerun without these markers. This process de-

creased linkage map size to 1614 cM, similar to other linkage maps 

constructed for M. guttatus (Flagel et al. 2019). Using these errors 

rates and linkage maps, we assessed genotype posterior probabil-

ities for each marker for each individual including those previously 

dropped from the linkage map construction. Any genotype calls with 

posterior probability under 90% were designated as missing data.

The rQTL v1.41–6 package (Broman et al. 2003) was used to per-

form single- and multiple-locus QTL mapping. The data set used for 

interval mapping consisted of 241 F
2
 individuals and 671 markers. 

Genotyping coverage was 94% and phenotype coverage ranged 

from 81% to 100% depending on phenotype. Thus, the number of 

observations used in QTL analysis ranges from 194 to 234 indi-

viduals (Supplementary Table S2). Conditional genotype probabil-

ities were calculated based on a genotyping error rate of 1% and a 

step of 1 cM. To detect single QTLs, the scanone function with the 

EM algorithm was used (Lander and Botstein 1989). Using the same 

function with the Haley–Knott regression in rQTL produced nearly 

identical results (Haley and Knott 1992). We used a permutation 

test (randomly assigning phenotypes to different genotypes) to de-

termine an appropriate signi�cance threshold for QTLs. We report 

the 10%-LOD permutation thresholds below, but nearly all QTLs 

surpass the 5% thresholds as well. Additive (a = (μ 
BB

 − μ 
AA

)/2) and 

dominance (d = μ 
AB

 − (μ 
AA

 + μ 
BB

)/2) effects of each QTL were es-

timated via genotype means for the marker nearest the estimated 

center of the QTL. To estimate the variance associated with each 

individual QTL as well as all QTLs detected for a phenotype, we 

created multiple QTL models. We �rst created multiple QTL models 

for each trait using the makeqtl function including all QTLs detected 

by the single-locus models as additive variables. We then summarize 

the variance associated with each QTL using the �tqtl function. We 

also constructed models that include epistatic interactions when 

multiple QTLs were detected for a trait, but these models were prob-

ably underpowered as our data set contained only 241 individuals.

To assess the role of pleiotropy or close genetic linkage in 

producing phenotypic and genetic correlations, we examined 

colocalization between QTLs for different traits. We determined that 

2 QTLs for different traits colocalized when their 1.5-LOD support 

intervals overlapped. To determine the multitrait in�uence of each 

shared QTL, we examined the allelic effects on each phenotype and 

compared the direction of these effects to divergence between par-

ental lines.

Results

Ample Phenotypic Divergence Between Parental, F
1
, 

and F
2
 Plants

Parental lines from California and Oregon differed signi�cantly in 

morphology, growth rate, and total PPG levels (Table 1; Figure 1). 

The CA parental line had lower levels of total PPG production, was 

taller at �owering, and had a higher growth rate prior to �owering 

than the OR parental line (Table 1; Figure 1A,C,D). Parental plants 

did not differ signi�cantly in �owering time. Both parental lines 

�ower rapidly in permissive day lengths compared with other annual 

M. guttatus populations throughout the range (Figure 1B), but not-

ably, they differ in how they manifest early �owering. CA parental 

line plants grow and add new nodes rapidly prior to �owering while 

OR parental line plants �ower do not accelerate vegetative growth 

and accumulate fewer nodes prior to �owering than CA (Kooyers 

Table 1. Summary statistics for parental, F
1
 and F

2
 accessions

Trait CA OR F
1

F
2

Student’s t P

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Ability to �ower 0.733 0.6 0.57 0.838 — 0.67

Flowering time 25.2 (2.82) 28.67 (5.79) 33 (7.82) 32.19 (7.33) 1.63 0.127

Plant height 7.07 (2.7) 2.8 (0.76) 3.94 (1.15) 5.64 (2.45) −3.35 0.005

Growth rate 0.29 (0.11) 0.1 (0.03) 0.13 (0.05) 0.18 (0.08) 3.34 0.005

Unknown PPG 10 0.41 (0.17) 0.15 (0.06) 0.34 (0.08) 0.31 (0.14) −3.21 0.007

Calceolarioside A 23.59 (4.73) 11.06 (1.55) 23.9 (6.58) 20.61 (8) −5.68 <0.001

Conandroside 34.03 (11.38) 53.24 (12.29) 72.52 (20.25) 56.63 (36.37) 3.01 0.010

Verbascoside 3.37 (1.09) 1.93 (0.47) 3.65 (1.27) 3.2 (2.56) −2.78 0.016

Calceolarioside B 0.25 (0.08) 0.47 (0.29) 0.51 (0.2) 0.39 (0.3) 2.22 0.045

Mimuloside 0.91 (0.39) 3.25 (0.39) 2.31 (0.71) 1.98 (1.62) 11.02 <0.001

Unknown PPG 16 3.95 (1.32) 11.93 (3.18) 6.21 (2.09) 4.39 (3.68) 7.02 <0.001

Total PPGs 66.51 (8.93) 82.03 (9.63) 109.45 (20.95) 87.23 (41.25) 3.10 0.009

Ability to �ower is the proportion of plants that �owered during the experiment. Student’s t and P-value correspond to a Welch’s t-test, assessing signi�cant 

differences between parental lines. All Welch’s t-tests had 13 degrees of freedom except for plant height, which had 14 degrees of freedom. Statistics examining 

differences in the ability to �ower between parental lines are Fisher’s exact tests rather than t-tests.
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et  al. 2015, 2019). PPG arsenals also differed between parental 

lines (Figure 2; Supplementary Figure S1). The California parental 

line produced higher constitutive levels of calceolarioside A, un-

known PPG 10, and verbascoside, whereas the Oregon parental line 

produced higher constitutive levels of conandroside, calceolarioside 

B, mimuloside, and unknown PPG 16 (Table 1).

Patterns of trait variation in the F
1
 and F

2
 plants varied greatly 

among traits. F
1
 plants produced higher constitutive total levels of 

PPGs and �owered later on average than either parental line, and 

this overdominant trait expression may indicate heterotic effects 

or transgressive segregation (Figure 1; Table 1). The mean growth 

rate for the F
1
 plants was intermediate to the parental line means 

but somewhat closer to the Oregon parent line mean, suggesting in-

complete dominance (Figure 1). Different PPGs exhibited different 

patterns of dominance (Supplementary Figure S1). The average con-

centration of calceolarioside B in F
1
 plants was similar to the OR 

parental line, whereas the average concentrations of calceolarioside 

A, verbascoside, and unknown 10 were similar to the CA parental 

line. Concentrations of conandroside in the F
1
 plants exceeded either 

parent, and concentrations of unknown PPG 16 and mimuloside 

were intermediate to the parents. For every trait surveyed, F
2
 popu-

lations were highly variable, often exceeding the minimum and max-

imum trait values for the parental and F
1
 lines, and thus indicative 

of transgressive segregation (e.g., Figure 1). The F
2
 trait means for all 

traits except �owering time and conandroside were intermediate to 

the parental line means (Table 1; Supplementary Figure S1).

Genetic Correlations Often but Not Always Align 

With Parental Trait Differences

Genetic correlations between traits in the F
2
 generation generally 

paralleled the phenotypic divergence observed between the parental 

lines. For instance, total levels of PPGs were moderately correlated 

with �owering time where plants that produced lower total PPG 

Figure 1. Variation in California (CA) and Oregon (OR) parental lines, F
1
 individuals, and F

2
 mapping population for (A) total PPGs, (B) flowering time, (C) plant 

height at flowering, and (D) growth rate prior to flowering. In each boxplot, the bottom and top of the box represent first and third quartiles and the center line 

is the median. Whiskers represent the less extreme value of either the minimum/maximum value or 1.5 times the interquartile range.
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Figure 2. Principal component analysis of PPG arsenals for CA parents, OR 

parents, F
1
 lines, and F

2
 lines. The PPG PC1 axis (41.6% of variation) loads 

on all PPGs where higher levels are correlated with greater amounts of all 

PPGs beside calceolarioside A. The PPG PC2 axis (24.0% of variation) loads 

on calceolarioside A and unknown PPG 10 where lower values correspond to 

greater levels of both of these PPGs.
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levels typically �owered earlier (r2 = 0.35; Figure 3A; Table 2), con-

sistent with phenotypic correlations and suggestive of a trade-off be-

tween these traits observed among annual populations range-wide 

(Kooyers et al. 2017). However, genetic correlations between total 

PPG level and plant height (r2 = 0.003; Figure 3B) or growth rate 

(r2 = 0.10; Figure 3C) were absent or weak, respectively, suggesting 

that parental divergence for these phenotypes probably arose via 

changes at independent genetic loci.

Patterns of covariation among different PPGs in the F
2
 panel 

closely mirrored the differences that we observed between the parent 

lines and observed in past population surveys (Kooyers et al. 2017). 

There are strong correlations between conandroside, calceolarioside 

B, unknown PPG 16, mimuloside, and verbascoside (0.38 < r < 0.73; 

Table 2). Together these PPGs make up a single principal component 

axis (PPG PC1; 46.2% of variance) where larger values of PC1 are as-

sociated with greater concentrations of each compound. The concen-

tration of unknown PPG 10 is moderately correlated with the above 

PPGs (0.24 < r  < 0.41) and with PPG PC1 (Supplementary Table 

S3). However, it is more strongly correlated with calceolarioside 

A (r = 0.67, P < 0.0001), and these 2 PPGs load strongly on a second 

principal component axis (PPG PC2; 24% of variance) with higher 

concentrations of each PPG associated with lower PPG PC2 scores. 

Calceolarioside A is weakly or negatively correlated with all other 

PPGs. The similarity of the PCA in the present study to the PCA in 

our previous population survey (Kooyers et al. 2017) suggests that 

the 2 parents used here may adequately represent the genetic con-

straints across the range (Supplementary Table S3).

A Single QTL Explains Variation in Both Flowering 

Time and Total PPGs

As with the genetic correlations, results from QTL analyses support 

the role for pleiotropy or close linkage accounting for some of the 

phenotypic correlations among parental plants. We detected QTLs 

for total PPG concentration on chromosomes (chr.) 1, 10, 13, and 

14 (Table 3; Figure 4) whose additive effects together accounted for 

32% of the total variation in total PPG levels. When epistatic inter-

actions between QTLs are incorporated into this model, these 4 QTLs 

account for up to 60% of variation in total PPGs (Supplementary 

Tables S4 and S5). The directions of QTL effects were consistent 

with the polarity of the parental line differences, i.e. constitutive PPG 

levels increased with the number of OR alleles an individual carried 

at each QTL. Although no �owering time QTLs were detected at 

our chosen LOD score threshold, one QTL very close to meeting 

that threshold (LOD = 2.98 vs. 3.29) colocalized with the QTL for 

total PPG level on chr. 10 (Table 3; Figure 4). Plants with more OR 

alleles at this QTL �owered later and had higher total PPG concen-

trations (Figure 5). Given that our mapping panel sampled a limited 

number of recombination events, the 1.5 LOD support intervals sur-

rounding these QTLs are broad (ranging from 6.9 to 17 million bp) 

and lack the resolution to distinguish whether pleiotropy or linkage 

is the mechanism that explains the covariation of �owering time and 

concentration of total PPGs accounted for by this region.

A nontrivial portion of the F
2
 mapping panel never �owered (28 

of 241), and we detected a single minor effect QTL on chr. 14 that 

explained variation whether or not plants �owered in our experi-

ment (Figure  6). Although this QTL does not colocalize with the 

total PPG QTL on chr. 14, allelic variation does signi�cantly cor-

relate with both phenotypes at best estimate markers for each QTL. 

No QTLs associated with variation in growth rate or plant height at 

�owering were detected, suggesting variation in these traits is prob-

ably highly polygenic. The marker with the highest LOD score for 

both growth rate and plant height at �owering was on chr. 8 and 

did not colocalize with any other QTLs in the study. Taken together 

these results suggest that both pleiotropy and close linkage play 

some role in shaping phenotypic correlations between reproductive 

timing and chemical defense production.

Divergent PPG Arsenals Are Largely Controlled by 

Independently Segregating QTLs

Our QTL analyses detected sets of loci that explained variation 

in the concentrations of most individual PPGs, and there was 

colocalization for several QTLs found for different PPGs. One to 6 

QTLs explained variation in each individual PPG level; single locus 

QTL models explained 6–22% of variation; and additive multiple 

locus models explained 9.8–43.7% of variation. The only excep-

tion was for calceolarioside B, for which no QTLs were detected 

that exceeded the signi�cance threshold. For conandroside and 

mimuloside, we detected QTLs located in the same region of chr. 10 

that explains variation in both �owering time and total PPG levels 

(Table 3; Figure 5). Plants with more CA alleles have lower levels of 

each of these PPGs on average. QTLs for several PPGs—including 

conandroside, verbascoside, unknown PPG 10, and unknown PPG 

16—had overlapping 1.5 LOD support intervals on chr. 13 (Table 3; 

Figure  7), and this region also overlapped with a QTL for total 

PPGs. Another set of PPGs (conandroside, calceolarioside A, and un-

known PPG 10) have individual QTLs with overlapping 1.5 LOD 
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individual in the F
2
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support intervals on chr. 14 (Table 3; Figure 6). On both chr. 13 and 

chr. 14, CA alleles are associated with lower levels of each of these 

PPGs (Figures 6 and 7) and both colocalize with total PPG QTLs.

There are also several QTLs associated with constitutive pro-

duction of just a single PPG. For instance, QTLs for conandroside 

occur on chr. 1, chr. 7, and chr. 11 (Figure 7). Notably, OR alleles 

are associated with higher production of this defense compound for 

the QTLs on chr. 1 and chr. 7, but CA alleles are associated with 

higher defense production for the QTL on chr. 11. There are add-

itional QTLs for unknown PPG 10 on chr. 3 and for calceolarioside 

A on chr. 4 (Figure 7). For each of these QTLs, plants with CA al-

leles had higher levels of each PPG. These compound-speci�c QTLs 

accounted for similar amounts of variation as the multicompound 

QTLs above (7%–14%, average = 10.6%), although allelic effects at 

each of these did not necessarily match expectations from the par-

ental lines (Tables 1 and 3).

Discussion

Patterns of correlated differentiation of multiple traits among popu-

lations may re�ect evolution either constrained by pleiotropy or close 

physical linkage of variants affecting each trait or through the as-

sembly of allelic variation at multiple unlinked loci into co-adapted 

genotypes. Our analyses reveal genetic architectures that are con-

sistent with both these possible explanations for explaining correl-

ations between growth, reproductive timing, and defense traits in 

annual populations of the common monkey�ower, M. guttatus. The 

2 parental lines for our F
2
 mapping panel differed substantially in 

total levels of chemical defense (PPGs), chemical defense arsenal, and 

growth rate, re�ective of joint patterns of divergence observed across 

populations in a previous study (Table 1; Figures 1 and 2; Kooyers 

et al. 2017). We observed strong genetic correlations between total 

concentration of PPGs and reproductive timing as well as between 

Table 2. Genetic correlations between phenylpropanoid glycosides

Flowering time Plant height Unk. PPG 10 Calc. A Conand. Verb. Calc. B Mimul. Unk. PPG 16 Total PPGs

Flowering time  0.072 0.004 0.005 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001

Plant height 0.1  0.919 0.192 0.214 0.689 0.430 0.474 0.018 0.325

Unk. PPG 10 0.16 −0.01  >0.001 >0.001 >0.001 >0.001 >0.001 >0.001 >0.001

Calc. A −0.16 0.07 0.67  0.060 0.052 0.259 0.001 0.030 0.104

Conand. 0.62 −0.07 0.25 −0.1  >0.001 >0.001 >0.001 >0.001 >0.001

Verb. 0.38 0.02 0.41 −0.1 0.52  >0.001 >0.001 >0.001 >0.001

Calc. B 0.41 −0.05 0.25 −0.06 0.6 0.57  >0.001 >0.001 >0.001

Mimul. 0.54 −0.04 0.24 −0.17 0.73 0.44 0.4  >0.001 >0.001

Unk. PPG 16 0.46 −0.14 0.3 −0.12 0.59 0.44 0.38 0.59  >0.001

Total PPGs 0.59 −0.06 0.41 0.09 0.98 0.56 0.61 0.73 0.64  

Pearson correlations are found below the diagonal, while P-values are found above the diagonal. Bold values indicate statistical signi�cance at P < 0.01. Calc. 

A, Calceolarioside A; Calc. B, Calceolarioside B; Conand., Conandroside ; Verb., Verbascoside; Mimul., Mimuloside.

Table 3. Description of QTL position, percent variance explained, and additive/dominance effects for all traits

Phenotype Chr pos 

(cM)

LOD PVE 

(r2)

Low estimate 

(bp)

Peak estimate 

(bp)

High estimate 

(bp)

a d Degree of 

dominance

Ability to �ower 14 93.3 3.91 0.09 16 476 214 21 044 473 23 055 805 0.15 0.09 0.63

Flowering timea 10 20 2.97 0.06 833 345 1 662 700 7 744 804 3.36 1.82 0.54

11 53.6 2.9 0.06 5 246 106 5 465 507 13 500 702 0.57 4.95 8.63

Growth ratea 8 116 3.03 0.07 250 460 16 809 793 21 293 147 0.04 0.02 0.56

Total PPGs 1 78.7 4.54 0.04 7 023 196 12 888 609 12 888 609 11.66 24.84 2.13

10 47.1 4.75 0.04 833 345 16 390 815 17 879 741 13.55 7.38 0.54

13 44 7.37 0.06 7 238 546 10 848 557 13 111 267 17.79 14.64 0.82

14 68.2 6.14 0.09 8 500 856 14 297 905 15 366 375 17.49 5.11 0.29

Calceolarioside A 4 81.1 5.99 0.09 5 152 877 13 656 532 14 771 636 4.49 0.56 0.12

14 89.3 4.21 0.06 7 653 586 20 677 142 22 471 653 2.82 0.75 0.26

Conandroside 1 78.7 4.61 0.04 7 023 196 12 888 609 12 888 609 11.29 22.33 1.98

7 29 3.86 0.07 740 073 3 022 495 4 858 091 13.88 6.38 0.46

10 47.1 4.57 0.04 833 345 16 390 815 17 879 741 12.37 4.55 0.37

11 32 4.21 0.08 1 487 823 2 681 614 15 544 490 15.50 2.84 0.18

13 44 6.39 0.05 7238546 15 424 857 13 111 267 14.26 11.46 0.80

14 68.2 4.52 0.07 8 500 856 14 297 905 15 366 375 14.23 4.64 0.33

Verbascoside 13 40 5.6 0.10 7 238 546 7 692 903 13 111 267 0.96 0.90 0.94

Unknown PPG 10 3 7.21 3.42 0.06 388 849 3 619 813 15 750 736 0.06 0.02 0.27

13 74.65 3.76 0.05 715 805 15 912 621 26 451 320 0.05 0.00 0.03

14 59 4.31 0.06 7 399 949 8 500 856 21 721 424 0.04 0.02 0.39

Mimuloside 10 21 10.81 0.22 1 175 820 1 662 700 7 7448 04 1.33 0.96 0.72

Unknown PPG 16 13 41.3 4.8 0.10 7 238 546 9 981 252 16 681 094 2.07 1.52 0.74

Abbreviations for chromosome (chr) and peak position on the genetic map (pos) are used. Estimates refer to the center window position of the closest loci to 

low, peak, or high 1.5-LOD support intervals. Parameters r2, a, and d are calculated from makeqtl models where best estimates of peaks are used to construct 

multiple QTL models for each trait.
aA particular QTL did not meet the LOD threshold for statistical signi�cance.
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the abundances of individual PPGs, suggesting that pleiotropy or 

linkage of alleles causing variation in multiple traits contributes to 

the patterns of phenotypic correlation observed in nature (Figure 3). 

Total levels of PPGs and �owering time share only one QTL. 

However, this QTL has moderate to large effects relative to pheno-

typic differences between parental means, and the allelic effects are 

consistent with the direction of phenotypic differentiation between 

the parental lines (Figures 4 and 5). Pleiotropy or linkage also ap-

pears to play some role in the construction of PPG defense arsenals 

(Figures 5–7). Allelic variation at QTLs on chr. 13 and 14 is associ-

ated with increases in nearly all PPGs (Figures 6 and 7). However, 

the divergence in arsenals between parental plants also depends on 

several small- to moderate-effect QTLs that modify levels of indi-

vidual PPGs that are spread across the genome (Figure  7). Below 

we discuss these results and their implications within the context 

of other genomic studies examining plant growth-defense trade-offs 

and evidence for pleiotropy in shaping patterns of diversity.

Genetic Basis of Trade-offs Between Growth/

Reproduction and Levels of Defense

The phenotypic differences between parental lines largely matched 

population averages from our earlier population-level assessments of 

total PPG levels, PPG defense arsenals, and �owering time (Kooyers 

Figure 5. Phenotypic effects of the chromosome 10 QTL. The effects of allelic variation at marker 1662700 (window centered at 1 662 700 bp in the Mimulus IM62 

V2 genome) on chr. 10 on (A) flowering time, (B) total PPGs, (C) growth rate, (D) conandroside, (E) calceolarioside A, and (F) mimuloside. This marker was the 

best estimate for QTLs associated with both flowering time and mimuloside and was within the 1.5 LOD support interval of all other collocated QTL. Every point 

is an individual in the F
2
 mapping population, and hash markers represent the average and standard error within each genotype.
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Figure 4. QTL map plotting of genome wide LOD scores for total PPGs (blue) and flowering time (green). Dotted line represents the statistical significance 

threshold determined via permutation test for the total PPGs analysis at α = 0.05. The statistical significance threshold determined via permutation test for the 

flowering time analysis at α = 0.05 was 3.78.

8 Journal of Heredity, 2020, Vol. XX, No. XX

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/jh
e
re

d
/a

rtic
le

-a
b
s
tra

c
t/d

o
i/1

0
.1

0
9
3
/jh

e
re

d
/e

s
a
a
0
1
5
/5

8
4
9
8
4
2
 b

y
 N

o
rth

e
rn

 A
riz

o
n
a
 U

n
iv

e
rs

ity
 u

s
e
r o

n
 2

3
 J

u
ly

 2
0
2
0



et al. 2017). The CA parental line grew faster, produced lower total 

levels of PPGs, and also produced a substantially different arsenal 

of PPGs (including higher calceolarioside A and lower conandroside 

levels) than the OR parental line, although the mean difference in 

total PPG levels was not as dramatic (Kooyers et al. 2017: CA 43.7 

vs. OR 89.8 mg/g; current study: CA 71.5 vs. OR 82.0 mg/g). It is 

possible that inadvertent selection during the additional 1–2 gen-

erations of inbreeding that occurred between these 2 studies (and 

after F
1
 production) may have reduced the differentiation. Notably, 

the variation in the F
2
 generation exceeds both the parental lines in 

this experiment, recapturing the breadth of variation previously ob-

served and thus making for an excellent genetic mapping resource.

The positive genetic correlations we observe between �owering 

time and constitutive defense levels suggest that increasing chemical 

defense production in annual monkey�owers comes at the expense of 

allocating fewer resources toward rapid reproduction. Thus, adapta-

tion to high herbivore pressure could impose a trade-off on achieving 

optimal reproduction timing, which is extremely important for an-

nual plants that experience short growing seasons. Colocalizing 

QTLs for total PPG production and �owering time on chr. 10 

(Figure 3) indicate that the correlation between total PPGs levels and 

�owering time is rooted in the genetic architecture of the variation 

in these traits. The allelic effects at this shared QTL matches expect-

ations for a locus that controls allocation of resources to primary 

versus secondary metabolism; alleles that promote earlier �owering 

are associated with lower levels of constitutive defense. Results in 

other annual species suggest this may be widespread pattern. For 

example, a single locus underlies a trade-off between rapid develop-

ment and herbivore resistance in Cardamine hirsuta (Rasmann et al. 

2018). Determining whether trait relationships in M. guttatus stem 

from pleiotropy or close physical linkage of multiple loci will require 

determining the genetic basis of these phenotypes through �ne map-

ping, assessment of candidate genes, and functional studies.

Growth rate and levels of total PPGs (Figure 3) were only weakly 

correlated in the F
2
 mapping panel, suggesting little overlap in the 

loci that control defense and plant growth. Indeed, we did not detect 

any QTLs shared by total PPG levels and growth rate, and perhaps 

surprisingly, we did not �nd any signi�cant QTLs for growth rate. 

Since there is reasonably high broad sense heritability in this trait, 

we expect the lack of detectable growth rate QTLs re�ects a highly 

polygenic architecture with many loci of small effect underlying the 

difference observed between the parental lines, and we may have 

the power to detect these with a larger mapping population. The 

few other studies that have examined genetic correlations between 

growth and defense have reached mixed conclusions (Koricheva 

2002; Züst and Agrawal 2017). For instance, Oenothera biennis 

has slightly positive genetic correlations between total phenolics 

and growth in roots and shoots (Parker et al. 2012), while Asclepias 

syriaca exhibits a negative genetic correlation between cardenolide 

concentration and growth rate (Züst et al. 2015). These mixed re-

sults in studies of genetic correlations do not necessarily suggest that 

costs of defense do not exist, but indicate that studies may need to 

assess growth and defensive traits in more detail (e.g., by tissue, de-

velopmental stage, environment, or type of defense) to determine 

how any such trade-offs manifest in different species (Züst and 

Agrawal 2017). One important factor may be accounting for ma-

ternal provisioning in calculating relative growth rate as has been 

demonstrated in Arabidopsis RIL lines (Paul-Victor et al. 2010).

Several recent studies have found trade-offs between growth and 

plant defense at the level of a single pleiotropic locus. In Arabidopsis, 

Figure 6. Phenotypic effects of the chromosome 14 QTL. The effects of allelic variation at marker 14297905 (window centered at 14 297 905 bp in the Mimulus 

IM62 V2 genome) on chr. 14 on (A) ability to flower, (B) conandroside, (C) calceolarioside A, and (D) unknown PPG 10. This marker was the best estimate for QTLs 

associated with both total PPGs and conandroside and was within the 1.5 LOD support interval for calceolarioside A and unknown PPG 10. This marker was ~1.5 

Mbp outside of the 1.5 LOD support intervals for a QTL underlying the ability to flower. Every point is an individual in the F
2
 mapping population. In the online 

version of this paper, black points are observed values and red points are inferred values for F
2
 individuals with missing data at this marker. Hash markers 

represent the average and standard error within each genotype.
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Todesco et al. (2010) �nd a single locus that has pleiotropic effects 

on plant defense and plant growth (as well as resistance to microbes). 

The allele conferring increased defense but slower growth segregates 

at intermediate frequencies throughout the range, suggesting that 

it does have some �tness advantage that allows persistence. Other 

studies in Arabidopsis have found trade-offs at loci between either 

growth rate and herbivory (Gloss et al. 2017) or �owering time and 

herbivore resistance (Weinig et al. 2003; Gloss et al. 2017). In these 

studies, differences in herbivory or herbivore resistance are measured 

rather than chemical defenses. Such differences in herbivory may be 

caused not only by an unmeasured plant defense but also by differ-

ences in plant apparency or differences in phenology.

Within our study species, work by Lowry et al. (2019) demon-

strates that a trade-off between annual and perennial M. guttatus 

ecotypes exhibiting opposite patterns of growth, constitutive de-

fense, and reproductive rate is associated with a single inversion 

polymorphism. This inversion stretches over hundreds of genes and 

suppresses recombination making it dif�cult to determine whether 

the observed phenotypic correlations are a product of pleiotropy 

or multiple linked genes. Notably, this inversion is in the “annual” 

orientation in both of our parental lines. However, the trade-offs 

between these annual and perennial ecotypes are analogous in 

some ways to those in our annual comparison, for example, rapid 

reproduction is associated with lower levels of PPGs. Despite the 

difference in study systems within M. guttatus (annual only vs. an-

nual/perennial comparisons), both our study and Lowry et al.’s study 

suggest that pleiotropy or linkage underlies variation in total de-

fense and reproductive rate, and thus genetic constraints may limit 

which phenotypic combinations may evolve, or how rapidly they can 

evolve, in nature.

Genetic Basis of Phytochemical Defense Arsenals

Divergence in the overall chemical defense levels and chemical de-

fense arsenal appears to derive from segregating variation in at least 

3 loci with effects shared across nearly all PPGs as well as several 

loci solely affecting individual defense metabolites. QTL analyses for 

almost all the PPGs detected moderate effect QTLs at overlapping 

regions of chr. 13 and 14 (Table 3) that are not signi�cantly associ-

ated with growth or �owering time. Thus, these loci have pleiotropic 

effects on different chemical defense traits but do not necessarily 

affect resource allocation to primary metabolism. This result may be 

partly due to low power to detect an association between genotype 

and phenotype as there was a peak underlying variation in the ability 

to �ower in the same region of chr. 14 that did not quite overlap 

with QTL (Figures 4 and 5); however, alternatively, the power gained 

from increased mapping panel size could also narrow LOD intervals. 

At the peak marker for the ability to �ower QTL on chr. 14, the 
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Figure 7. Genetic map for the CA × OR F
2
 mapping population with QTL for different PPGs represented in different colors. The length of the line segments 

represents the 1.5 LOD support intervals for each QTL.
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OR allele is associated with higher concentration of all PPGs, which 

is consistent with the direction of the parental line difference for 

the majority of PPGs. That allelic variation could have pleiotropic 

impacts on all PPGs is not unexpected given that all PPGs share 

a biochemical precursor (Fraser and Chapple 2011; Keefover-Ring 

et al. 2014), and any mutation that alters enzymatic function or �ow 

of metabolites in the shikimate or phenylpropanoid pathways prior 

to compounds diverting into the PPG biochemical pathway would 

affect levels of all PPGs. We thus might expect pleiotropy to be a 

major contributor to overall concentration with this closely related 

family of compounds (Berenbaum and Zangerl 1988; Zangerl and 

Berenbaum 1990).

While PPGs have some shared underlying genetic architecture, 

we also detected several small-effect QTL associated with variation 

in just 1 or 2 individual PPGs (Figure 6). These independent variants 

may contribute to the unique defense arsenals of the parental lines. 

For instance, the QTL on chr. 3 that is associated with variation 

in calceolarioside A and the QTL on chr. 4 that is associated with 

Unknown PPG 10 both do not overlap with any other QTLs. Each 

CA allele at the loci on chr. 3 and chr. 4 is associated with 23% or 

36%, respectively, of the amount of divergence between the parental 

lines for levels of each of these 2 compounds, but these loci have little 

to no effect on the levels of the other PPGs (Supplementary Table 

S4). Notably, these 2 PPGs exhibited weaker correlations with other 

PPGs across populations in our previous study (Kooyers et al. 2017).

A previous QTL analysis in an annual × perennial M. guttatus 

cross-examining the genetic basis of PPGs found similar results with 

single, small-effect, independently segregating QTL underlying vari-

ation in 3 different PPGs (Holeski et  al. 2014). A  single QTL for 

Unknown PPG 16 on chr. 13 overlaps between that study and ours, 

but the effect sizes of this QTL in the annual × perennial cross ac-

counted for less of the divergence between parental lines. These re-

sults suggest that a number of small to moderate effect genes control 

variation in related defense compounds to modify chemical arsenals 

rather than single QTLs associated with increases in some defense 

compounds but decreases in others (i.e., an “allocation” locus). 

This type of genetic architecture can lead to defense arsenals that 

are evolutionarily �exible, with the ability to respond to selection 

on individual compounds. Although few other studies have exam-

ined the genetic basis of variation in multiple closely related defense 

compounds, our results are not typical. In Boechera stricta, the pro-

portion of methionine- versus branched-chain amino acid-derived 

glucosinolates is controlled by duplications and 2 nonsynonymous 

substitutions in the BCMA loci (Schranz et al. 2009; Prasad et al. 

2012), limiting the evolutionary �exibility of this defense arsenal. 

The lack of “allocation” loci in our study may suggest that the causa-

tive mutations affects a gene upstream or at the base of the PPG 

branch of the phenylpropanoid pathway.

Conclusions

Here we �nd evidence that pleiotropy or genetic linkage may be 

important factors in producing some, but not all phenotypic cor-

relations observed between defense and reproductive traits in nat-

ural populations. Colocalization of a single QTL between total 

PPGs and �owering time suggests pleiotropy or linkage contrib-

utes to correlations between these traits; however, this shared QTL 

explains a limited amount of variation in either trait. Because this 

level of genetic correlation alone is unlikely to explain fully the 

strong phenotypic correlations we have observed across natural 

populations between total PPGs and �owering time, we infer that 

correlational selection probably plays some role in generating 

these multivariate patterns. The presence of weak genetic cor-

relations also suggests that there will be limited genetic con-

straint on future evolutionary responses. There may be a larger 

role for pleiotropy or close linkage in generating correlations 

between the concentrations of different PPGs as colocation of 

QTLs underlying the concentration of multiple PPGs is common. 

This may not be surprising as compounds that share a biochem-

ical precursor are often highly correlated. While shared genetic 

architecture indicates that PPG arsenals have limited future evo-

lutionary �exibility, there are a few QTLs that control levels of 

1 or 2 PPGs each, suggesting some potential exists for �ne-scale 

adaptation of defense arsenals to particular herbivore commu-

nities. Notably, the correlations between PPG concentrations in 

this single cross are similar to the correlations observed across 

the range of annual M. guttatus and thus may re�ect widespread 

trade-offs. We anticipate that QTL mapping on a series of similar 

F
2
 crosses within and between populations may corroborate this 

inference and reveal the extent and impact of genetic correlation, 

pleiotropy, and close linkage in generating range-wide patterns of 

phenotypic correlation.
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Phenotype data in a .csv �le 

Raw sequencing reads in fastq. �les 

rQTL input in a .csv �le 

A custom perl script designed to group SNPs into 40bp win-

dows can be found at https://github.com/BlackmanLabUCB/

Genotyping-by-Sequencing
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