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Huntington's disease (HD) is a dominantly inher-
ited, untreatable neurodegenerative disorder in-
volving progressive chorea, psychiatric changes,
and intellectual decline (1). The most character-
istic feature of HD is its peculiar movement dis-
order which begins subtly and progresses to ex-
aggerated dance-like motions that consume the
entire body. HD occurs equally in both sexes and
is found in all races, but most frequently (-1 in
10,000) in people of Western European descent
(2). Although symptoms may begin at any age,
they are usually first manifested between the
ages of 30 and 55 and they progressively worsen
until death 12-18 years later.

The clinical progression of HD is paralleled
by neuronal degeneration in the brain. The hall-
mark of HD is the loss of medium spiny GABAer-
gic projection neurons in a gradient progressing
along posteroanterior, dorsoventral, and medio-
lateral axes of the caudate nucleus (3). Prior to
cell death, signs of neuronal dysfunction are ev-
ident in recurved dendritic endings and changes
in spine density, shape, and size (4). The disorder
eventually destroys the architecture of the cau-
date nucleus and the adjacent putamen, al-
though extensive cell loss also occurs in other
regions of the basal ganglia and in the deep layers
of the cerebral cortex (5,6). Overall brain weight
may be reduced by 25% or more.

Although the proximate cause of the neuro-
nal dysfunction and death is not yet known, it is
ultimately due to the presence of a mutant gene
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located near the telomere of the chromosome 4

short arm (7-9). The HD mutation, discovered in
1993, occurs in the first exon of a 67-exon gene
encoding a large novel protein (10-12). All HD
patients have an expansion in a sequence of
consecutive CAG codons that lengthens the
stretch from the 10 to 34 repeat units seen on

normal chromosomes to more than 36 repeat
units. The major outstanding question since dis-
covery of the HD gene is, how does the expanded
CAG repeat cause specific neuronal loss? Delin-
eation of similar CAG expansion mutations in a
number of other neurodegenerative disorders
suggests that the eventual answer may reveal a
common mechanism of neuronal toxicity medi-
ated by the mutant gene products.

GENOTYPE:PHENOTYPE
CORRELATIONS

Once a disease gene has been identified, the pur-
suit of genotype:phenotype correlations can rep-
resent a fruitful approach for gaining insight into
pathogenesis. In most disorders, this approach
involves comparison of the phenotypic effects of
different mutations in the same gene. However,
numerous studies have established that the HD
CAG repeat expansion is the sole mutation re-

sponsible for all bona fide inherited and sporadic
cases of HD (13-42). Thus, in HD, the "geno-
type" is an assessment of the number of CAG
repeat units in the person's HD allele, whereas
the "phenotype" can represent any of a number
of descriptive clinical parameters, such as neuro-
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logic symptoms, psychiatric symptoms, cognitive
symptoms, age at onset, age at death, rate of
disease progression, degree of neuropathology,
etc.

To date, the relationship between the size of
the CAG repeat and the age at onset of neuro-
logic symptoms has been examined in numerous
data sets (43). Most HD cases show adult onset
and are associated with CAG allele lengths of 40
to 50 units. Disease alleles with CAG expansion
in the 35 to 40 unit range may show very late
onset or, in some cases, may be nonpenetrant.
By contrast, individuals with more than 60 CAG
units typically show onset of HD in their juvenile
years. All of these studies report an inverse cor-
relation between CAG repeat length and age at
onset of neurologic symptoms. However, there is
considerable variation in the age at onset associ-
ated with any given CAG repeat length (Fig. 1),
suggesting that it can be modified by environ-
mental, genetic, or stochastic modifiers. These
effects can be minimized by considering the
mean age at neurologic onset associated with
any repeat length. By combining a number of
published data sets (Fig. 1), we have established
that mean age at onset does not vary linearly
with CAG repeat length, but rather the relation-
ship is best described (r2 = .97) by an exponen-
tial model:

y = 284.49e-043X

where y is the age at onset and x is the number of
CAG repeat units.

This model is consistent with the view that
during the lifetime of the HD individual, there is
a progressive decline in the function of the stri-
atum, due to neuronal dysfunction or cell death,
that leads to onset of symptoms when a critical
threshold of functional loss is reached. The rate
of striatal decay in this scenario would be an
exponential function of CAG repeat length and
one would expect that some degree of neuronal
dysfunction or cell loss would precede neurologic
manifestations. Extrapolation of neuronal cell
counts reported from postmortem HD brains
(44) suggests that a threshold at which neuro-
logic onset occurs corresponds to approximately
30% neuronal loss in the caudate nucleus. Vali-
dation of this model will require careful analysis
of postmortem HD brains from individuals who
expire prior to neurologic onset. The alternative
to the gradual neuronal decline model is that the
length of the CAG repeat determines, in an ex-
ponential manner, the age at which the patho-
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FIG. 1. Relationship between age at neuro-
logic onset and number of HD CAG repeat
units

Data compiled from published reports of age at onset
(open circles) involving 1226 HD patients
(10,13,21,23-26,28-31,34,36,37,42,75-77) permit-
ted the determination of mean age at neurologic on-
set (+) associated with different numbers of GAG
repeats in the disease allele. The solid line represents
that predicted by nonlinear regression analysis for
the mean age at onset (r2 = .97) using the expo-
nential model presented in the text.

genic process is first triggered with no prior evi-
dence of dysfunction.

Not surprisingly, GAG repeat length has also
been inversely correlated with the age of onset of
psychiatric manifestations in HD (13). A similar
relationship with age at death (Fig. 2) indicates
that the presence of an HD-length GAG repeat
produces a reduced lifespan (13). However, de-
spite an apparent increased rate of neuronal loss
with increasing GAG repeat lengths, the length
of time from onset of neurologic symptoms to
death does not show a corresponding relation-
ship. Indeed, the duration of disease from neu-
rologic onset to death is remarkably similar (- 15
years) for different repeat lengths (Fig. 2). Thus,
progression to death is not highly correlated with
the size of the mutant allele, as is neurologic
onset, and it probably involves additional factors
beyond degree of neuronal loss. Indeed, direct
attempts to relate the patient's overall functional
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FIG. 2. Duration of disease after onset and age

at death versus number of HD CAG repeat

units

Age at death (dotted circles) is plotted against the
number of CAG repeats for 305 patients whose
brains were subjected to postmortem analysis to

confirm HD neuropathology (13). The line shows
the predicted curve-fit (r2 = .49) based on a similar
exponential model to that used Fig. 1. Also shown is
the number of years between onset and death
(shaded triangles) for 144 patients whose age at on-

set and death were both known. Linear regression
analysis failed to identify any relationship between
the disease duration and number of CAG repeat

units.

decline with CAG repeat length have yielded
conflicting results (29,30,45).

HD GENE PRODUCTS

The mutant HD gene directs the synthesis of
RNA with an expanded CAG segment and con-

sequently a protein with a lengthened stretch of
consecutive glutamine residues. Although it is

commonly assumed that the dominant mutation

acts through the altered protein, both major
products differ significantly between normal and

disease alleles and therefore the pathogenic ef-

fect could equally be due to the altered mRNA.

The HD mRNA consists of two alternatively poly-
adenylated species of 13.5 kb and 10.5 kb, with

the CAG repeat located near the 5' end, 17

codons downstream from the initiator AUG (10).
The mRNA encodes an -350 kD protein, named
huntingtin, with no similarity to other reported
sequences except in the low-sequence complex-
ity polyglutamine-polyproline region (encoded
by the CAG repeat and an adjacent degenerate

CCG repeat) near the NH2-terminus and a motif

of unknown function dubbed "HEAT" that has

been found in database searches in a variety of

unrelated proteins (10,46). Whereas the first 17

amino acids of huntingtin and the remainder of

the protein downstream of the polyglutamine-
polyproline segment are highly conserved in

evolution, the subsequent polyglutamine-
polyproline segment is not, and it may be largely
dispensable for huntingtin's unknown normal

function (47-50). The disease mechanism could

operate as a "gain-of-function" that confers a

novel, deleterious property on either the HD

mRNA or huntingtin protein without simulta-

neously interfering with their normal physiolog-
ical roles.

COMPARISON WITH OTHER CAG

TRINUCLEOTIDE REPEAT

DISORDERS

The mutational mechanism in HD, an expanded,
meiotically unstable CAG repeat encoding poly-
glutamine, has been demonstrated in several

other genes causing neurodegenerative disor-

ders, which suggests that a common pathogenic
mechanism is triggered in each case (51).
Kennedy's disease, or spinal bulbar muscular at-

rophy (SBMA), is caused by an expanded CAG

repeat in the X-linked androgen receptor gene

producing, in males, a progressive loss of anterior
horn cells in the spinal cord with consequent

progressive muscular weakness (52,53). Denta-

torubral-pallidoluysian atrophy (DRPLA) in-

volves neuronal loss in the dentatofugal and pal-
lidofugal systems, and consequent ataxia and
choreoathetosis, due to an expanded CAG repeat

in a chromosome 12p gene encoding atrophin,
another protein of unknown function (54-58).
Several spinocerebellar ataxias are caused by an

expanded CAG repeat, including spinocerebellar
ataxias 1, 2, 3, 6, and probably 7.

In SCA1, an expanded CAG repeat on chro-

mosome 6p alters the coding sequence of

ataxin- 1 (a protein of unknown function) and

causes progressive neuronal loss in the cerebel-

lum, the inferior olive, and in various cranial

0
0
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nerve nuclei (59). A similar disorder, SCA2, in
which the most affected regions are cerebellum,
pontine nuclei, inferior olives, and substantia
nigra, is caused by an expanded CAG repeat in a
novel gene at 12q24.1 (60-62). In SCA3, allelic
with Machado-Joseph disease (MJD), an ex-
panded CAG segment in a novel chromosome
14q32.1 gene causes progressive degeneration of
the spinocerebellar tracts, with relative sparing of
the inferior olive and cerebellar cortex compared
with SCAl and SCA2 (63-70). A CAG repeat in
the alA subunit of a brain voltage-gated calcium
channel (CACNL1A4) at 19p13 has recently been
implicated as the cause of SCA6, another domi-
nant cerebellar ataxia, although the repeat is
more stable and the expanded polyglutamine
stretch is shorter than in the other CAG neuro-

degenerative disorders (71). The genetically dis-
tinct SCA7, causing spinocerebellar ataxia with
retinal degeneration, also shows evidence of ex-
panded CAG in genomic DNA and of lengthened
polyglutamine in a 130-kD nuclear protein, but
the locus has not yet been cloned (72,73).

As Fig. 3 shows for several of these disorders,
a relationship exists between CAG repeat length
and age at onset that is comparable to the pattern
seen in HD. The age at onset data for SCAI
superimpose on the HD curve whereas data for
DRPLA and SCA3/MJD are displaced to the right
and those for SCA2 are displaced to the left.
These findings indicate that in each disorder the
degree of CAG expansion necessary to cause a
detectable neurologic deficit differs. The slopes of
the latter three curves also differ from HD and
SCA1, indicating a greater effect of each addi-
tional CAG unit on reducing age at onset. These
comparisons suggest that in each disorder, the
deleterious effects of the expanded CAG act in a
similar manner but on target cell populations
and with a CAG length dependence that are
dictated by the context in which the mutation is
expressed. If the model of gradual neuronal de-
cline to a symptomatic onset threshold is correct,
individual differences in the curves would reflect
corresponding differences in the threshold for
different neuronal cell types and for the context-
dependent effect of each embedded CAG repeat
on the rate of neuronal decline. In the more
severe young-onset cases, the neuronal pathol-
ogy extends beyond the regions most character-
istic of each disorder to parts of the brain that
degenerate in one or more of the other CAG
repeat disorders. This suggests that each CAG
repeat might produce progressive neuronal loss
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FIG. 3. Onset and repeat length in CAG repeat
disorders

Data compiled from published reports were used to
calculate mean age at neurologic onset (as in Fig. 1)
associated with different CAG repeat lengths in the
disease alleles of 92 SCA2 cases (diamonds), 201
SCA1 cases (inverted triangles) (78-81), 1226 HD
cases (circles) (10,13,21,23-26,28 -31,34,36,37,42,
75-77), 149 DRPLA cases (squares) (58,82-84) and
332 MJD/SCA3 cases (triangles) (64,68,69,85-87).
Each panel also shows the curve-fit (line; r2 = .867
(SCA2); .952 (SCAI); .970 (HD); .943 (DRPLA);
.968 (MJD/SCA3) for the mean age at onset with an
exponential model similar to that used in Fig. 1.
Filled symbols in each panel represent individuals
homozygous for the corresponding disease allele,
with age at onset plotted against the number of CAG
repeats in larger of the two disease alleles
(61,81,88-92).
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of more than one neuronal cell population, but
with a different rate of decline in each population.

A notable feature of these disorders is the
age-at-onset phenotype for individuals homozy-
gous for the disease allele (Fig. 3). In HD, SCAI,
and SCA2, a second dose of the disease allele
does not aggravate the disease process, as the age
at onset observed matches well that expected on
the basis of the disease allele with the larger
repeat. By contrast, in both DRPLA and SCA3/
MJD individuals, the combined effects of two
disease alleles produces an age of onset earlier
than that predicted based on either allele alone.
The lack of a significant effect of a second disease
allele in HD, SCAI, and SCA2, suggests that the
presence of a single mutant gene in these disor-
ders produces sufficient product to maximize the
rate of neuronal loss that can be caused by a
given length of CAG repeat. On the other hand,
in DRPLA and MJD/SCA3, the pathogenic trig-
gering mechanism is not saturated in typical het-
erozygotes as some capacity to accelerate the
process with a second disease allele remains.

MECHANISM OF PATHOGENESIS

Although it is conceivable that the biochemical
mechanisms producing neuronal loss in the CAG
repeat disorders could differ in each case, the
remarkable similarities argue strongly that the
pathogenic mechanisms in HD and in the other
CAG repeat disorders are closely related. Conse-
quently, defining the pathogenic mechanism in
any one of the disorders will probably lead to an
understanding of the others and to a delineation
of the factors that determine the surprising spec-
ificity of neuronal loss. In each case, cell death
could either occur as an effect of the long CAG
segment in the disease gene mRNA or be due to
an expanded polyglutamine segment in the cor-
responding protein. As each of the genes is un-
related to the others, loss of normal protein func-
tion is probably not the primary cause of
pathogenesis, although it could certainly contrib-
ute to aspects of the disease phenotype (74).
Differences in the capacity of the altered gene
products in each disorder to trigger the disease
process may depend on many factors including
their concentration, localization, normal func-
tion, and constraints imposed by product struc-
ture outside the CAG/polyglutamine region.
Hopefully, the ability to compare specific neuro-
nal loss in a number of disorders will accelerate
recognition of the steps in pathogenesis that are

shared between them, providing the knowledge
to develop rational treatments.
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