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Abstract

Background: Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are

frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis.

Even with germline mutated p53, these engineered melanomas present with variable onset and pathology,

implicating additional somatic mutations in a multi-hit tumorigenic process.

Results: To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary

melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered

zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the

number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T

transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling.

Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel

path of BRAF cooperativity through the protein kinase A pathway.

Conclusion: This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors

manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein

kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors.

This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV

light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms

leading to human melanoma formation.

Background
Melanoma is a form of skin cancer known for its thera-

peutic resistance, aggressiveness and late metastatic

manifestation [1]. Activating mutations in BRAF (V600E)

or NRAS (Q61K) are collectively found in approximately

60% of human melanomas and result in the constitutive

signaling of the mitogen-activated protein kinase (MAPK)

pathway [2,3]. Although studies have shown a clear

dependence of tumor growth on MAPK signaling, most

nevi with BRAFV600E or NRASQ61K mutations remain be-

nign for decades [4]. In zebrafish, expression of human

BRAFV600E (BRAF) or NRASQ61k (NRAS) in melanocytes

results in the growth of pigmented, nevus-like lesions that

also rarely progress to melanoma. Invasive melanomas

develop in these transgenic zebrafish only in combination

with engineered loss of p53 function [5,6], and yet manifest

with variable onset and penetrance, strongly suggesting that

these drivers are not sufficient for malignant melanoma

formation and the requirement for additional unknown,

somatic events.

Recent analyses of the genomes and exomes of human

melanoma have resulted in the identification of new
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mutations that are likely to contribute to the disease

formation or survival [7-11]. One confounding aspect

of discriminating drivers in melanoma is the elevated

background mutation burden due to UV mutagenesis,

although new algorithms have been developed to refine

this analysis [10]. We sought to build upon these studies

through a focused analysis of a set of engineered melano-

mas, to determine the spectrum of mutations in the

absence of UV light and to interrogate the role of BRAF,

NRAS and p53 in melanoma in transgenic zebrafish. Spe-

cifically, we used targeted exon enrichment and Illumina

sequencing to generate exome and copy-number alteration

data for 53 samples consisting of 38 BRAF-driven and 15

NRAS-driven primary zebrafish melanomas and cell lines

with additional perturbations. A detailed examination

of the spectrum of somatic point mutations, insertions,

deletions and amplifications is presented. Our analysis

reveals striking genetic heterogeneity, genotype-specific

mutation patterns and a potential novel path to BRAF-

driven tumorigenesis, providing insights into the events

important for cooperation with BRAF and NRAS in the

context of low mutation burden.

Results and discussion
Study set and sequencing overview

We collected matched zebrafish melanoma and normal

tissue from 53 transgenic zebrafish harboring tissue-specific

oncogenic alleles of human BRAF and NRAS under

a melanocyte-specific (mitf ) promoter [5,6] (Table 1,

Figure 1; Additional file 1: Table S1). Specifically, 38 fish

expressed oncogenic BRAFV600E (BRAF) and 15 expressed

oncogenic NRASQ61K (NRAS). The majority of samples

(33 BRAF and 14 NRAS individuals) carried at least one

germline, mutant p53 allele (p53M214K [12]). While p53

itself has not traditionally been considered to be a major

tumor suppressor in melanoma development, inactivation

of CDKN2A/p16 is associated with loss of p53 activity

[13]. Further, the high mutation load in p53 and its

pathway components in melanoma also underscores its

importance [10]. Four BRAF fish harbored a germline

temperature-sensitive hypomorphic allele of mitf (mitf vc7)

[14,15]. Of BRAF individuals with aberrant p53, 38 had

additional mutant germline alleles in mitf -/- (known

as nacre-/-) [16], ptenahu1864 +/- [17] or mitf vc7 [14,15].

Transgenic individuals with BRAF;p53-/-;mitf -/- were

manipulated with a miniCoopR shuttle vector system [18],

consisting of somatic mosaic rescue of MITF expression

in melanocytes along with SETDB1 [18] and transcription

factors KROX20, FOXD3 or OCT6, the biology and onco-

genicity of which are being investigated independently.

To analyze coding regions of the zebrafish genome, we

performed targeted exome capture on tumor and normal

DNA followed by 75 base paired-end Illumina (HiSeq)

sequencing (European Nucleotide Archive accessions

ERP003701, ERP003702). The bait set covered all protein

coding genes, 3’ UTRs and 5’ UTRs of the Zv8 and later

Zv9 genome for a combined coverage of 60 Mb. A total of

2,309 Gb of sequencing was generated, averaging approxi-

mately 21.8 Gb per sample (Additional file 1: Table S2).

Because of the complexity and diversity of the zebrafish

genome [19], we addressed the sensitivity and precision of

applying the CaVEMan substitution calling algorithm

[20] to zebrafish through two analyses: variant calling

simulations and comparison to additional callers. In the

first instance, we measured the performance of CaVEMan

in simulated zebrafish tumor and normal genomes, which

showed that the algorithm detected somatic substitutions

with both high sensitivity and precision within these

conditions (Additional file 2: Figure S1, Supplementary

text in Additional file 3). We next employed CaVEMan for

substitution calling on the zebrafish melanoma study set.

Through manual inspection of each variant, we determined

that a large proportion of these substitutions were false

positives (57%; Additional file 2: Figure S2A), many due to

germline variants that had been missed by the algorithm or

calls made on suboptimal alignments (Additional file 2:

Figure S2B). The low precision led us to manually examine

all variants to ensure an accurate collection was used for

downstream analysis.

In the second part of the analyses, we ascertained the

sensitivity of our algorithm on the zebrafish melanoma

dataset by comparing the CaVEMan calls for one sample

(ZD8a) to those from SomaticSniper [21] and String

Graph Assembler (SGA) [22]. Our results showed that

Table 1 Study set overview

Genotype Samples

mitf:BRAFV600E 1

mitf:BRAFV600E;p53+/- 2

mitf:BRAFV600E;p53+/-; ptenahu1874 +/- 1

mitf:BRAFV600E;mitf vc7+/+; 4

mitf:BRAFV600E;mitf vc7+/+;p53+/- 4

mitf:BRAFV600E; p53-/-;mitf -/-;mitf:MITF 6

mitf:BRAFV600E;p53-/-;mitf -/-;mitf:MITF;mitf:foxd3 4

mitf:BRAFV600E;p53-/-;mitf -/-;mitf:MITF;mitf:krox20 12

mitf:BRAFV600E;p53-/-;mitf -/-mitf:MITF;mitf:krox20/foxd3/OCT6* 1

mitf:BRAFV600E;p53-/-;mitf -/-;mitf:MITF;mitf:SETDB1 1

mitf:BRAFV600E;p53-/-;mitf -/-;mitf:MITF;mitf:EGFP 1

mitf:NRAS1Q61K 2

mitf:NRAS1Q61K;p53-/- 5

mitf:NRAS1Q61K;p53+/- 4

mitf:NRAS1Q61K;p53+/-;rps29+/- 5

Total 53

The asterisk indicates that the genes krox20, foxd3 and OCT6 were each

expressed on separate plasmids for this tumor.
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SomaticSniper, and not SGA, provided a 10% increase of

somatic variants to the CaVEMan algorithm (Additional

file 2: Figure S2C-E). In spite of this marginal increase, we

added a subset of non-overlapping Sniper variants to

the CaVEMan calls, which we experimentally validated

through targeted enrichment and Illumina sequencing

(Additional file 2: Figure S3). All calls from this analysis

were then subject to a second, manual review.

Overview of substitutions and indels in engineered

zebrafish melanomas

We confirmed a total of 403 point mutations and 13

insertions and deletions (indels), the latter of which were

identified using Pindel [23] and processed using a similar

method to the substitutions (Figure 2A). Of the substitu-

tions, 79 were synonymous, 168 resulted in amino acid

changes, 16 were nonsense and 25 occurred at splice sites

(Additional file 1: Table S3). Eighty-five substitutions were

found in the 3' UTR and 26 in the 5' UTR, and one start

codon was gained. The ratio of 2.3:1 non-synonymous to

synonymous events was similar to the averages previously

reported in human melanoma [9,10]. The median number

of coding mutations per sample was four, significantly

fewer than the median of 171 in sun-exposed human

melanomas and closer to the median of nine in mucosal

and uveal melanomas, also originating from sun-shielded

sites [9]. Over half of the total number of mutations in

the study set was present in only eight samples (15%),

six of which had two or fewer engineered ‘initiating

drivers’. The highest number of substitutions were found

in samples with one or two initiating drivers: ZD0038a

(BRAF), ZD24a (NRAS), ZD23a (NRAS;p53+/-) and ZD30a

(NRAS;p53-/-).

Consistent with the low substitution burden, there were

few recurrent mutations. Two substitutions were found in

ttna and ttnb, the two largest protein-coding genes in the

zebrafish genome. No recurrent substitutions were found

in known melanoma genes or genes in the Cancer Gene

Census [24]. Over 60% of genes mutated in this study

were found to be mutated at least once in human mel-

anoma [9-11,25-27], which was unsurprising given the

extensive mutation load in the human disease. Substitutions

with predicted coding changes in known census cancer

genes included a nonsense mutation in ikzf and missense

mutations in nup214 and pik3cd, while a homozygous

missense substitution in the anaphase promoting complex

gene, anapc1, was identified in a BRAF, p53+/- tumor

(ZD8a).

UV-independent mutation spectra and mutational

processes

Intriguingly, recent studies have shown that over half of

the driver mutations in human melanomas do not bear

the UV radiation-associated signature [10]. To explore the

nature of the non-UV events, we examined the mutation

spectrum in the engineered zebrafish melanomas developed

under conditions without detectable UV light, as deter-

mined using a standard laboratory photometer (Inter-

national Light 1400). As with most human cancers, C > T

substitutions (24.4%) constituted the prominent mutation

class across all samples, including ZD8a and ZD24a

(Figure 2C,D), which had substantial mutation burdens.

Remarkably, ZD0038a, which had the highest substitution

load (n = 47), consisted of mutations occurring exclusively

at cytosine or guanine residues (Figure 2E), a mutation

signature that has not yet been described in human

Figure 1 Examples of zebrafish melanomas. BRAF (left panel) and NRAS (right panel) driven zebrafish melanomas in a p53-/- background, with

specimen example (top panel) and histology (bottom panel).
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Figure 2 (See legend on next page.)
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cancers. In this sample, all coding substitutions apart

from one resulted in a predicted missense (n = 21) or a

nonsense change (n = 3). To determine if this was the

result of positive selection, we calculated the dN/dS ratio

using a mutation-selection model. We found that the rates

of missense and nonsense mutations for this sample

were approximately 5.5 and 9.8 times higher than ex-

pected by neutral evolution, respectively, a result unlikely

in the absence of positive selection (PdM/dS = 0.030 and

PdNS/dS = 0.031).

Similar to findings in non-sun-exposed human melano-

mas [9], no significant bias of mutations was found in any

class on any particular strand (Figure 2B). By comparison,

a mutation strand-bias caused by transcription-coupled

repair has been demonstrated in UV light-induced mel-

anomas, lung and breast cancers, all of which display

the characteristic signatures of their respective UV, to-

bacco and DNA repair mutagens [9,28,29]. The absence of

this signature in our samples suggests that these repair

processes are not overt unless triggered by a selective,

mutagenic pressure.

ZD8a, a BRAF and p53 mutant, presented two micro-

clusters of mutations. Twelve substitutions (40% of the

total load) spanned exons within a 4,500 bp interval of the

hoxd9a and hoxd10a genes (Figure 2F), while a second

cluster of five mutations was found within a 5 kb interval

(Additional file 2: Figure S4). These microclusters were

reminiscent of ‘kataegis’, hypermutated regions resulting

from a single event [30]. A close examination of the reads

revealed that the substitutions occurred in cis, had similar

variant allele fractions and were mostly C > T transitions

(n = 12/26; Figure 2F). In human, patterns of kataegis have

been proposed to be related to mutational processes of

the AID/APOBEC family of enzymes, which modulate

antibody diversification by deaminating cytidines to deox-

yuridine within immunoglobulin genes [30,31]. Although

APOBEC emerged only in primates, they are believed to

have derived from the functionally conserved AID enzymes

[32], which may provide the mechanistic origin of these

clusters in zebrafish.

Insertions and deletions

Indels were sparse, with a total of 13 confirmed indels

across the 53 samples (Additional file 1: Table S4). This

is lower than the sample average of two to four indels in

human melanoma [9]. Eight indels were single base pair

indels, and all 13 (<5 bp) were flanked by tandem repeat

sequences on either side, evidence of a lapse in post-repli-

cative mismatch repair found commonly in breast cancer

genomes [30]. Ten indels were out of frame and likely to

cause loss of gene function. Four indels (36%) were found

in a sample mutant only in BRAF (ZD0038a). Interest-

ingly, a single nucleotide deletion resulting in a frameshift

mutation was found in pik3ip1 (V170fs*), which in human

directly binds to the p110 catalytic subunit of PIK3 and

negatively modulates its activity [33]. Its occurrence in a

BRAF, mitf -/-, p53-/- mutant sample is consistent with a

role for phosphatidylinositide 3-kinase (PI3K) cooperation

with MAPK deregulation in human melanoma [34].

Overview of copynumber changes

In total, 991 amplification segments (copy number ≥5 for

samples with ploidy <2.7, and copy number ≥8 for samples

with ploidy ≥2.7) and 436 segments of homozygous

deletions (copy number = 0) were identified by ASCAT

[35]. There was marked variation in the number of copy

number changes among samples in the study set, with a

cumulative 5 Gb of losses or gains manifesting in over half

of tumors analyzed. For samples represented by both array

comparative genomic hybridization (aCGH) and ASCAT

data, the frequency recurrence profiles of copy number

changes from ASCAT generally agreed with those from

aCGH performed on the same DNA stock (Additional

file 2: Figure S5).

While the majority of samples (85%) harbored at least

one amplification, only 30% of the samples showed any

homozygous deletions (Additional file 1: Table S5). It is

therefore worth noting that BRAF-driven tumors mutant

in mitf vc7 had significantly more homozygous deletions

than expected by chance (P = 0.01 by Chi-Square test;

Figure 3B). NRAS subtypes, by contrast, did not reveal

apparent commonalities (Figure 3A). Clustering of ASCAT

and aCGH segments from all samples also did not reveal

any regions of subgroup affiliation apart from the strong

amplified signal on chromosomes 18 and 19 (Additional

file 2: Figure S6), the latter of which is believed to be

associated with the BRAFV600E transgene integration as a

concatemer on chromosome 19.

Identification of a recurrently amplified region in a subset

of zebrafish melanomas

A particularly striking finding was the recurrence of a 175

kb amplicon on chromosome 3 (50.0 to 51.2 Mb) in 10

tumors belonging to the BRAF, p53-/-, mitf -/- background

(See figure on previous page.)

Figure 2 Overview of substitutions. (A) The number of substitutions (dark blue columns) and indels (red columns) per sample, corresponding

to their initiating germline mutations (bottom shaded). For p53, light blue indicates p53+/- and dark blue p53-/-. Asterisk specifies mitf:MITF

expression in a mitf -/- background. (B-E) Mutation spectrum of all and selected samples. For all samples (B) mutations are indicated on the

transcribed (T) and untranscribed (UT) strand. (F) Evidence of kataegis within 4,500 bp region in ZD8a, a BRAF;p53 mutant sample. Somatic

mutations are highlighted with colored circles corresponding to the type of substitution.
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Figure 3 Identification of a frequently amplified locus on chromosome 3. Frequency profiles of tumors mutant in (A) NRAS;p53-/-;X, (B) BRAF;

mitf vc7;X tumors and (C) BRAF;p53;mitf -/-;mitf:MITF;mitf:X, where X can include additional drivers as mentioned in the text. (D) Amplification

segments supporting a peak on chromosome 3 in tumors of BRAF;p53;mitf -/-;mitf:MITF;mitf:X background derived from exome sequencing

(maroon segments) and aCGH (green dotted segments). Samples mutated are represented by inverted, color-coded triangles above the corre-

sponding gene indicated by the thick black bar. (E) Frequently amplified genes in the entire dataset. (F) Number of copies (y-axis) of the genes

(x-axis) in the region of amplified locus. Each line represents a tumor that is color-coded according to either BRAF;p53;mitf -/-;mitf:MITF;mitf:X

(yellow) or other (blue) background status. The most frequently amplified genes are highlighted in yellow in (D-F).
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with MITF rescue (Figure 3C). Although this subgroup is

the largest of our dataset (47%, 25/53), the clustering of

the recurrent amplicon in this subgroup was unlikely to

have occurred by chance (P = 0.000256 by Chi-Square

test). Amplified segments were supported by both ASCAT

and aCGH (Figure 3D). The most frequently amplified

genes were prkacaa and samd1 (1 of 2), presenting in

10/53 samples, followed by as1ba (n = 9), wu:fj41e11 (n = 9)

and tecra (n = 8) (Figure 3E). While amplifications were

found across all 10 samples for samd1 and prkacaa, they

presented in five or fewer samples for flanking genes

RNF222 and gcgr (Figure 3D).

A simulation was performed to determine the likelihood

of the events occurring in these genes, at this frequency,

by chance. For each sample, the number and lengths of

the amplified segments were randomly introduced across

the target exome regions one million times, producing

a P-value that was adjusted by Bonferroni correction

(n = 6,677). We did not factor causes of amplification

other than those by chance, such as nearby fragile sites,

for which little information is available for zebrafish.

Based on our simulations, all genes recurrently ampli-

fied in six or more samples were likely to be significant,

including prkacaa, samd1, asf1ba, wu:fj41e11 and tecra

(n = 13; Additional file 1: Table S6). These genes did not

show evidence of amplification or overexpression in

human cancer datasets (CCLE, Oncomine, COSMIC) or

large, comprehensive melanoma studies [9,10]. Genes

recurrently amplified in fewer samples also showed signifi-

cant enrichment (P ≤ 0.05; Additional file 1: Table S6).

Among these, interestingly, was tert (P = 0.0, n = 4 sam-

ples), which encodes the reverse transcriptase subunit of

telomerase responsible for maintaining the ends of chro-

mosomes. Tert was the only known cancer gene recurrently

mutated in our study set. In human melanoma, TERT is

amplified [10,36] and harbors promoter mutations in as

many as 90% of melanoma cases [7,8].

Identification of few recurrent homozygous deletions

A total of 366 deletion events were identified, affecting

the same genes in at most three samples in the study set

(Figure 4A). By performing the above simulations, we

determined the majority (28/30) of genes deleted in three

samples were unexpected by chance (Additional file 1:

Table S7). The genes nitr1i, nitr3a, nitr7b and nitr7a were

in a locus deleted in three samples belonging to both

BRAF and NRAS mutant lines (Figure 4B). The nitr genes

are members of a highly diversified, multigene family of

novel immune type receptor found in teleosts. Nitr genes

do not rearrange like immune receptors but show struc-

tural similarities to both the mammalian T-cell or Ig-like

receptors [37,38]. Loss of these genes could be relevant to

one facet of progression, which is to avoid immune surveil-

lance, consistent with a critical role of immune regulation

in human melanoma [39]. Other recurrently deleted

genes include sema6d, plcd3a, mrps5, cyp2y3 and xirp

(Figure 4C-H), none of which had been previously im-

plicated in human cancer. Further investigation would

provide insights into the contribution of these genes to

tumorigenesis in zebrafish.

Relationships between age, drivers, and mutation burden

We exploited the model system to explore the footprints

of mutagenesis assuming a uniform basal mutational clock.

Where data for the age of fish (at tumor collection)

was available, we found a significant correlation between

age and the number of substitutions using the Pearson’s

correlation test and a generalized linear model (GLM)

(R = 0.37, P = 0.02, GLM P = 0.0035). Positive correlations

have similarly been found in human melanoma [9]. Age of

onset and number of drivers were themselves strongly

negatively correlated. If each germline driver was counted

as one event in a requisite multistep process, we could at-

tempt to delineate a relationship between these initiating

events and extent of the mutations. For transgenic zebra-

fish of the genotype BRAFV600E;p53-/-;mitf -/-;mitf:MITF, a

value of four drivers was assigned, due to the yet unknown

contributions of the additional genes (KROX20, FOXD3,

OCT6) to melanoma. Interestingly, our data showed a

significant, inverse association between the number of

drivers and the substitution events (R = -0.45, P = 0.00075,

GLM P = 0.00031), indicating that a greater number of

drivers require fewer additional events to generate the

melanoma lesions. To determine if this correlation

extended to copy number events, we considered each

amplified or deleted segment as an event in the tumor.

Our data showed that if we considered drivers and age

together, this was also a significant predictor of the

total number of copy number events (GLM P = 0.00011;

Additional file 1: Table S8).

Functional categorization of frequently mutated genes

Similar to human cancers, the engineered melanomas

overall displayed high heterogeneity, where the majority

of genes mutated in only one sample (68%; Additional

file 2: Figure S7A). Taking into account all the different

modalities of mutation and their frequencies of occurrence,

a P-value was calculated (using a binomial test) for each

mutated gene (Additional file 1: Table S9). Due to the high

frequency of recurrence, prkacaa and samd1 presented

with the highest significance (P = 2.31 × 10-8). Following

this, we explored the potential functional themes underlying

these aberrations through a KEGG (Kyoto Encyclopedia of

Genes and Genomes) pathway analysis, which revealed

that the enrichment for most pathways declines when the

minimum threshold for number of mutated samples is

raised (Additional file 2: Figure S7B). From this we infer

that although many genes are not frequently mutated and
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significant by themselves (that is, mutated only once), the

pathways in which they reside are significantly mutated.

Among the enriched pathways in this study (Additional

file 1: Table S10), two include biological processes that

have been directly linked to the hallmarks of cancer

(apoptosis and vascular endothelial growth factor signal-

ing, for angiogenesis), while deregulation of two other

pathways, p53 signaling and melanogenesis (Additional

file 2: Figure S7C), have previously been implicated in

melanoma [40]. Also showing significant enrichment

was the MAPK signaling and cell cycle pathway, thus fur-

ther supporting functions important in human melanoma

development.

Conclusions
We have provided a comprehensive overview of the genetic

events in engineered zebrafish models harboring known

driver alleles. Several new insights into the mutagenic

processes in non-UV-mediated, engineered melanomas,

and the biology of BRAF and NRAS-driven malignancies,

can be drawn from these 53 exomes.

Our results show that in the absence of direct UV

light, engineered melanomas develop similar mutational

signatures to most human cancers, dominated by the

evolutionarily conserved spontaneous deamination of

cytosine to thymidine [9]. We also found rare cases exhi-

biting remarkably distinct mutation spectra, including

A

E

G

F

DC

B

H

Figure 4 Overview of homozygous deletions. (A) Frequency of homozygously deleted genes across samples. (B) Recurrently deleted loci

occurring in at least three samples that are driven by BRAF (dark blue) or NRAS (light blue), and the corresponding genes in these regions (right-

hand side). (C-H) Examples of deleted segments (dark blue bars) and the genes in these regions (labeled at the bottom), represented by their

exon structures (dark blue lines).
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indications of kataegis and a novel, unclassified mutational

signature.

Importantly, our results demonstrate that tumors driven

primarily by a greater number of known cancer genes

typically manifest with fewer mutations, suggesting that

such models can be used to bound and estimate the

number of events in human cancers. Mouse models of

acute myeloid leukemia and mammary tumors similarly

displayed fewer mutations and structural rearrangements,

respectively, than their human counterparts [41,42]. It

could be speculated that predisposed human individuals

would support the same conclusion. With nearly half

of the samples presenting no substitutions or indels,

however, these two classes of mutations are unlikely to

be the only route to the additional mutations needed

for full melanoma development, with potentially other

factors such as chromatin modifications at play.

The highly recurrent amplicon in transgenic lines with

BRAF;p53;mitf -/-;mitf:MITF encompassing the genes

prkacaa, samd1, tecra, wu:fj41e11 and asf1b, indicates a

strong selection for genes in this interval in mutant

BRAF, p53 and mitf lines with MITF rescue. Although

the amplicon was exclusive to the BRAF;p53;mitf -/-;mitf:

MITF transgenic models, it is unclear whether it would

also present in the BRAF or BRAF;p53 mutant models

given a larger sample cohort. Since MITF serves as a

functional rescue in this transgenic line, the genetics of

this subset may be comparable to human tumors that

show dependency on MITF for growth, either through

MITF amplification or overexpression. That none of

the genes in this amplicon have been reported so far as

mutated in human melanoma could therefore be due

to its specific occurrence with BRAF, p53 and amplified

MITF, found in less than 5% of BRAF mutant metastatic

melanomas and a rare combination (Additional file 2:

Figure S8).

In this amplicon, amplification of prkacaa, which encodes

one of two principal catalytic (C) subunits of protein kinase

A (pka), is intriguing for several reasons. Human PRKACA

is the principle catalytic subunit of protein kinase A (PKA)

[43]. Although not previously associated with melanoma,

the cAMP-PKA pathway is a major signal transduction

pathway for melanin production, melanocyte proliferation

and differentiation (reviewed in [44]) and has been impli-

cated in pituitary tumorigenesis [45,46]. Mutations in

PRKAR1A, a PKA-regulatory subunit, cause an inherited

syndrome called the Carney complex, characterized by

pigmented skin lesions, schwannomas, recurrent muco-

cutaneous myxomas and endocrine neoplasms [47,48].

Indeed, cAMP-dependent PKA activation has been shown

to result in the upregulation of the mitf promoter, tyro-

sinase expression and melanin synthesis, affecting skin

pigmentation and melanogenesis [49]. Of interest, re-

cent data have interestingly demonstrated a link between

pigment production and UV-independent melanoma-

genesis, where harmful accumulation of pheomelanin

intermediates or by-products during pigment synthesis

can promote tumor formation [40]. Thus, a potential con-

sequence of PRKACA amplification may be disruption of

PKA signaling and pigment production, pointing to its

possible contribution to aberrant pigment production in

UV-independent carcinogenesis.

An important observation of this study is that, apart from

the amplicon, the BRAF- and NRAS-driven melanomas

display striking genetic heterogeneity similar to human

cancers and mouse cancer models [41,42]. One inter-

pretation of this finding is that tumorigenic processes

are achieved through the contribution of many different

mutated genes, in line with previous findings in mice

cooperativity screens [50] and low frequency drivers un-

veiled from emerging studies of human melanoma [9-11].

The enrichment of mutations in pathways known to be

important for melanoma development, such as MAPK

and p53 signaling, in the presence of germline mutations

affecting BRAF, NRAS and p53, also suggest that further

modulation of the signaling of these pathways is required

for full manifestation of the tumors.

To the best of our knowledge, the spectrum of somatic

coding mutations in an engineered model of melanoma

has not yet been described. The integrated analysis we

report here thus provides a glimpse into the genetic paths

to BRAF- and NRAS-driven tumorigenesis, providing a

framework for genomic characterization, and a standard

for evaluating and prosecuting detailed biological questions

in engineered animal models of cancer.

Materials and methods
Simulation of zebrafish cancer genomes

Individual zebrafish genomes were created with a SNP

density of 0, 0.001, 0.01, 0.1, and 0.5 SNPs/base by ran-

domly generating substitutions across the genome using an

in-house simulation script. Using each individual genome,

referred to as the ‘normal’, we created a second genome

containing an additional 2,000 substitutions for the ‘tumor’.

For each normal and tumor genome, we simulated 75 bp

reads in FASTQ format using wgsim [51], specifying null

for the base mutation rate, error rate and indel mutation

rate. To simulate normal contamination, we combined

normal and tumor FASTQ files for each individual ac-

cording to the following proportions to obtain an average

sequencing coverage of 80× (Table 2).

The simulated tumor and normal pairs were subse-

quently processed through the Cancer Genome Project

Sequencing Pipeline.

Sample collection

Zebrafish tumor and normal tissue samples were obtained

from Amy Capper and Jennifer Richardson (Elizabeth
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Patton’s lab, University of Edinburgh, Edinburgh, UK),

and from Richard White and Charles Kaufman (Len Zon’s

lab, Boston Children’s Hospital, Boston). All samples were

obtained in accordance with the UK Home Office regula-

tions, UK Animals (Scientific Procedures) Act 1986, and

reviewed by the Wellcome Trust Sanger Institute Ethical

Review Committee. Samples from Elizabeth Patton’s lab

were subject to histopathological review by a clinical

pathologist (Marie Mathers, Edinburgh Western General

Hospital). We were unable to perform histopathology on

samples from Len Zon’s lab. Normal tissue included sec-

tions from the fin, head, or gut. Zebrafish melanoma and

normal DNA were extracted from fresh frozen tissues

using the Qiagen Blood and Tissue DNAeasy Kit (cata-

logue number 69504 (Hilden, Germany)). Melanomas were

derived from transgenic zebrafish expressing either the

BRAFV600E or NRASQ61K human oncogene as previously

described [5,6,18].

Exome bait set

Exon sequences for bait set design were initially down-

loaded from BioMart [52] to encompass all protein coding

genes, and 3’ UTR and 5’ UTR regions from Ensembl

58 of the Zv8 genome. The bait set was subsequently

adjusted to encompass additional genes from Ensembl 61

and new releases of the Zv9 genome (Zebrafish Agilent

All Exon SureSelect). A total of 2,309 Gb of sequencing

was generated, averaging approximately 21.8 Gb per

sample, of which 79.6% of reads mapped and 55% of

which mapped to target coding regions (that is, ‘on target’;

Additional file 1: Table S2). By comparison to the human

exome [20], the performance of the zebrafish exome was

slightly lower (in human, 89% of reads map, averaging

62% on target coverage), requiring a greater total

sequencing depth to acquire the desired baseline coverage

of 20 ×.

DNA and library preparation, capture and sequencing

DNA libraries were prepared using the Illumina Paired

End Sample Prep Kit according to the manufacturer’s

protocol. For targeted enrichment, in the first iteration,

we designed a custom bait set to target the zebrafish

exome for solution capture to include all the exons of all

protein coding genes in the Zv8 Ensembl 58 gene build.

Subsequently, an additional 2,059 genes were added to

include improved annotations in the Zv9 assembly and

Ensembl 59 gene build. Targeted enrichment was per-

formed as described [53] following the manufacturer’s

instructions.

Sequencing with 75 base paired-end reads of targeted-

enrichment libraries was performed on the Illumina GAIIx

and the HiSeq 2000 sequencers. Reads were mapped to the

zebrafish reference (Zv9 Ensembl 61) using the Burrows-

Wheeler algorithm (BWA version 0.5.9) [54] under default

parameters and excluding library PCR duplicates.

Identification of substitution variants

CaVEMan

CaVEMan (cancer variants through expectation maxi-

mization), an in-house algorithm, was employed to call

single nucleotide substitutions in our dataset. Post-

processing filters developed for human variant calling

and additional filters were applied to the set of initial

CaVEMan mutation calls to improve the specificity of

the output.

SomaticSniper

Tumor and normal BAM files were processed by Soma-

ticSniper [21] with a specification for read and base

quality of at least 40. Raw variants were post-processed

using scripts obtained through Github [55], modified to

include a variant allele frequency of no more than 3% in

the normal sample and less than 10% of the tumor, and

without germline SNPs or indels within 5 bp of any of the

normal zebrafish exomes. Variants were annotated using

the Ensembl variant effect predictor (Ensembl 64 gene

build) specifying only coding variants as output.

SGA

SGA analysis was run by Jared Simpson using a modified

algorithm [22].

Identification of insertions and deletions

Insertions and deletions were called using a modified

version of Pindel [23] as previously described [28]. To

improve the identification of high confidence variants,

we specified a requirement for a minimum depth of 15

reads in both tumor and normal samples. For small

Table 2 Metrics for simulating normal contamination in

tumor and normal genome FASTA files

SNP density Type Millions of reads

Normal Tumor content

30% 60% 100%

0 Normal 8 5.6 3.2 0

Tumor 0 2.4 4.8 8

0.001 Normal 8 5.6 3.2 0

Tumor 0 2.4 4.8 8

0.01 Normal 8 5.6 3.2 0

Tumor 0 2.4 4.8 8

0.1 Normal 8 5.6 3.2 0

Tumor 0 2.4 4.8 8

0.5 Normal 8 5.6 3.2 0

Tumor 0 2.4 4.8 8
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indels, at least four reads supporting the variant seen

by Pindel and at least one by BWA were required. Larger

indels were defined in non-repeat regions where the

mutation was seen once on either strand by Pindel. All

indels were manually reviewed for confirmation.

Variant validation

Capillary and 454 resequencing

Validation of substitutions and indel variants was initially

attempted through capillary or 454 Roche resequencing

of amplified PCR products spanning the mutation in the

tumor and the normal DNA, which had been subject to

whole-genome amplification from the original stock

using GenomiPhi (illustra GenomiPhi HY DNA Amplifi-

cation Kit, catalog number 25-6600-20 (Little Chalfont,

Buckinghamshire, United Kingdom)), according to the

manufacturer’s instructions. Nested PCR improved PCR

yield over a single round of amplification, but both capil-

lary and 454 Roche approaches proved problematic in

PCR-amplified zebrafish DNA.

Targeted capture and Illumina sequencing

To circumvent problems with PCR-based validation, we

designed a custom bait set targeting the mutant alleles for

enrichment followed by Illumina sequencing. We stream-

lined the validation study set by qualitatively reviewing

each variant and keeping only CaVEMAN calls that did

not show germline mutations and were supported by high

quality mapping reads and alignment. An additional 1,700

non-overlapping, Sniper variants (60% of the total non-

overlapping Sniper calls) were selected at random to

include in the validation set, comprising a bait set of 1.4

Mb with minimal tiling probes flanking 60 bp on either

side of each variant. DNA libraries were made as described

above and pooled into eight samples per group with

barcode identifiers. Targeted capture was performed with

each pool according to manufacturer’s instructions followed

by 100 bp paired-end sequencing on the Illumina HiSeq

2000 and default BWA alignment. Mutant variants were

confirmed on Samtools Pileup files using a separate, in-

house validation script based on tumor and normal allele

depth and quality. All confirmed variants were subjected to

an additional, manual review.

Identification of copy number variants

Copy number variation was determined primarily through

ASCAT [35]. Only segments under 10 Mb in length were

considered. Genes falling in these segment regions were

annotated using the Ensembl variant effect predictor

(Ensembl 64). Segment data were analyzed using R, Nexus

Copy Number Software 6.1 (Biodiscovery) [56], visualized

using IGV [57,58] and plotted using Progenetix [59].

Array comparative genomic hybridization

aCGH was performed on a subset of 24 zebrafish mel-

anoma normal and tumor samples using a Nimblegen

Custom Design 12 × 135 K CGH Array (Roche Nimblegen

Technologies, catalogue number 05223881001 (Basel,

Switzerland)) containing 135,000 probes covering the

length of the zebrafish Zv9 genome. In brief, tumor and

normal DNA were labeled, competitively hybridized to the

array for 48 hours, washed and scanned using a 5 micron

scanner (Molecular Devices (Sunnyvale, California, USA)).

Signal intensities were extracted using the DEVA v1.2.1

Software (Nimblegen) [60]. Overall data quality was evalu-

ated as recommended in the DEVA Software User’s Guide

[61]. Segmentation was performed using the R Copynum-

ber package [62] and visualized using the Nexus Copy

Number Software (6.1) (Biodiscovery), IGV [57,58] and

Progenetix [59].

Statistical analyses

Codon selection

We used the method described in [63] to evaluate whether

amino acid changes in ZD0038a occurred at a higher

frequency than expected in the absence of positive selec-

tion. Briefly, we used 12 parameters to describe the differ-

ent rates of the 12 possible single nucleotide substitutions,

and two parameters (analogous to dN/dS) to describe se-

lection at missense and nonsense mutations. This allowed

us to quantify the strength of the selection without the

confounding effect of sequence composition and different

rates of each substitution type. Maximum-likelihood

was used to estimate these parameters and likelihood

ratio tests were used to test deviations from neutrality

(dN/dS = 1). Analogous results to those presented in

the main text were obtained using the traditional

codon model approach used in phylogenetic analyses

(implemented in [64]) as well as accounting for CpG

context-dependent effects.

Estimation of the number of mutated copies

Allele-specific copy number estimates for point mutations

were obtained by integrating copy number and sequencing

data as described in [35].

Simulations of amplifications and homozygous deletions

Genes showing enrichment of amplifications were identi-

fied by permutation analysis, where 1,000,000 permutations

were performed randomizing the positions (but not the

size) of amplifications, for each sample. For each permuta-

tion and each gene, the number of samples that were hit

by an amplification was counted and the probability that

each gene was significantly enriched for amplifications

was calculated as the proportion of the permutations in

which that gene had as many, or more, amplifications

than were observed in the ‘real’ data. Probabilities were
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adjusted for multiple testing using the Bonferroni correc-

tion (n = 6,677, the number of genes tested).

Evaluation of driver and age correlation

Mutation burden and driver correlation was performed

as previously described [20].

Pathway analysis

Mutation significance analysis

We combined mutation data from substitutions, insertions

and deletions, and copy number changes (amplifications

and homozygous deletions) to assess the likelihood of a

gene being mutated in more samples than expected by

chance. As each mutation type can occur at a different

frequency (where amplifications are more frequent than

deletions), each mutation type was considered separately.

Thus, to calculate a combined P-value for each gene j, we

used the following Equation 1:

pj ¼ ∏
i∈ 1;2;3;4f g

P
�

X≥xijjqi; ni
�

¼ ∏
i∈ 1;2;3;4f g

1−
X

k¼xij−1

k¼0

ni
k

� �

qið Þk 1−qið Þni−k
 !

;

ð1Þ

where xij is the number of samples carrying a mutation in

gene j in sample group i and ni the number of samples in

sample group i. Moreover, qi was calculated as follows:

qi−
1

ni

X

ni

k¼1

1− 1−
1

N

� �mk

;

with N number of genes in the genome.

Entrez gene mapping

For compatibility with the KEGG database, we mapped

Danio rerio Ensembl IDs onto Entrez IDs using NCBI

[65], which includes a cross-reference of Entrez to

Ensembl. Target genes that could not be matched in this

fashion were matched using gene symbol and synonyms.

Pathway analysis

We used knowledge from the KEGG database to construct

a large protein interaction network. To gauge whether a

pathway contains more frequently mutated genes than

expected by chance, a KEGG pathway enrichment was

performed for all 215 pathways in the Danio rerio specific

KEGG database.

All genes with a combined P-value <0.05 (as calculated

according to the mutation significance analysis) were

selected for the pathway analysis. This cutoff selected

for genes with at least two amplifications, and given rarer

mutation types, genes with at least one mutation other

than an amplification.

We called a gene frequently mutated if it carried at

least N mutations, where N can be between 1 and 10

(Additional file 1: Table S9). Genes with mutation counts

of three or more were visualized in the context of their

KEGG pathway interactions using Cytoscape [66].
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