
DOI 10.1007/s10462-005-9009-3
Artificial Intelligence Review (2005) 24:379–395 © Springer 2005

The Genetic Kernel Support Vector Machine:
Description and Evaluation

TOM HOWLEY & MICHAEL G. MADDEN∗
Department of Information Technology, National University of Ireland, Galway, Ireland
(∗author for correspondence, e-mail: michael.madden@nuigalway.ie)

Abstract. The Support Vector Machine (SVM) has emerged in recent years as a popu-
lar approach to the classification of data. One problem that faces the user of an SVM
is how to choose a kernel and the specific parameters for that kernel. Applications of
an SVM therefore require a search for the optimum settings for a particular problem.
This paper proposes a classification technique, which we call the Genetic Kernel SVM
(GK SVM), that uses Genetic Programming to evolve a kernel for a SVM classifier.
Results of initial experiments with the proposed technique are presented. These results
are compared with those of a standard SVM classifier using the Polynomial, RBF and
Sigmoid kernel with various parameter settings.
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1. Introduction

The SVM is a powerful machine learning tool that is capable of rep-
resenting non-linear relationships and producing models that general-
ise well to unseen data. SVMs initially came into prominence in the
area of hand-written character recognition (Boser et al., 1992a) and
are now being applied to many other areas, e.g. text categorisation
(Hearst, 1998; Joachims, 1998) and computer vision (Osuna et al.,
1997). An advantage that SVMs have over the widely-used Artificial
Neural Network (ANN) is that they typically don’t possess the same
potential for instability as ANNs do with the effects of different ran-
dom starting weights (Bleckmann and Meiler, 2003).

Despite this, using an SVM requires a certain amount of model
selection. According to Cristianini et al. (1998), “One of the most
important design choices for SVMs is the kernel-parameter, which
implicitly defines the structure of the high dimensional feature space
where a maximal margin hyperplane will be found. Too rich a feature
space would cause the system to overfit the data, and conversely the
system might not be capable of separating the data if the kernels are
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too poor.” However, before this stage is reached in the use of SVMs,
the actual kernel must be chosen and, as the experimental results of
this paper show, different kernels may exhibit vastly different perfor-
mance. This paper describes a technique which attempts to alleviate
this selection problem by using genetic programming (GP) to evolve
a suitable kernel for a particular problem domain. We call our tech-
nique the Genetic Kernel SVM (GK SVM).

Section 2 outlines the theory behind SVM classifiers with a particu-
lar emphasis on kernel functions. Section 3 gives a very brief overview
of genetic programming. Section 4 describes the proposed technique
for the evolution of SVM kernels. Experimental results are presented
in Section 5. Some related research is described in Section 6. Finally,
Section 7 presents the conclusions.

2. Support Vector Machine Classification

The problem of classification can be represented as follows. Given
a set of input-output pairs Z = {(x1, y1), (x2, y2), . . . , (x�, y�)}, con-
struct a classifier function f that maps the input vectors x ∈X onto
labels y ∈ Y . In binary classification the set of labels is simply Y =
{−1,1}. The goal is to find a classifier f ∈ F which will correctly
classify new examples (x, y), i.e., f (x)= y for examples (x, y), which
were generated under the same probability distribution as the data
(Scholkopf, 1998). Binary classification is frequently performed by
finding a hyperplane that separates the data, e.g., Linear Discriminant
Analysis (LDA) (Hastie et al., 2001). There are two main issues with
using a separating hyperplane:
1. The problem of learning this hyperplane is an ill-posed one

because there is not a unique solution and many solutions may
not generalise well to the unseen examples.

2. The data might not be linearly separable.
SVMs tackle the first problem by finding the hyperplane that realis-
es the maximum margin of separation between the classes (Cristianini
and Shawe-Taylor, 2000). A representation of the hyperplane solution
used to classify a new sample xi is:

f (x)=〈w,xi〉+b (1)

where 〈w,xi〉 is the dot-product of the weight vector w and the input
sample, and b is a bias value. The value of each element of w can be
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viewed as a measure of the relative importance of each of the sample
attributes for the classification of a sample. It has been shown that the
optimal hyperplane can be uniquely constructed by solving the follow-
ing constrained quadratic optimisation problem (Boser et al., 1992b):

Minimise〈w,w〉+C
�∑

i=1
ξi (2a)

subject to
{

yi(〈w,xi〉+b)≥1− ξi, i =1, . . . , �

ξi ≥0, i =1, . . . , �
(2b)

This optimisation problem minimises the norm of the vector w which
increases the flatness (or reduces the complexity) of the resulting model
and thereby improves its generalisation ability. With hard-margin opti-
misation the goal is simply to find the minimum 〈w,w〉 such that the
hyperplane f (x) successfully separates all � samples of the training
data. The slack variables ξi are introduced to allow for finding a hyper-
plane that misclassifies some of the samples (soft-margin optimisation)
as many datasets are not linearly separable. The complexity constant
C >0 determines the trade-off between the flatness and the amount by
which misclassified samples are tolerated. A higher value of C means
that more importance is attached to minimising the slack variables than
to minimising 〈w,w〉. Rather than solving this problem in its primal
form of (2a) and (2b), it can be more easily solved in its dual formula-
tion (Cristianini and Shawe-Taylor, 2000):

Maximise W(α)=
�∑

i=1
αi − 1

2

�∑

i,j=1
αiαjyiyj 〈xi, xj 〉 (3a)

subject to C ≥αi ≥0,
�∑

i=1
αiyi =0 (3b)

Instead of finding w and b the goal now is find the vector α and
bias value b, where each αi represents the relative importance of a
training sample i in the classification of a new sample. To classify a
new sample, the quantity f (x) is calculated as:

f (x)=
∑

i

αiyi〈x, xi〉+b (4)

where b is chosen so that yif (x)=1 for any i with C >αi >0. Then, a
new sample xs is classed as negative if f (xs) is less than zero and pos-
itive if f (xs) is greater than or equal to zero. Samples xi for which the
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corresponding αi are non-zero are known as support vectors since they
lie closest to the separating hyperplane. Samples that are not support
vectors have no influence on the decision function. In (3b) C places an
upper bound (known as the box constraint) on the value that each αi

can take. This limits the influence of outliers, which would otherwise
have large αi values (Cristianini and Shawe-Taylor, 2000).

Training an SVM entails solving the quadratic programming prob-
lem of (3a) and (3b). There are many standard techniques that
could be applied to SVMs, including the Newton method, conju-
gate gradient and primal-dual interior-point methods (Cristianini and
Shawe-Taylor, 2000). For the experiments reported here the SVM
implementation uses the Sequential Minimisation Optimisation (SMO)
algorithm of Platt (1999).

2.1. Kernel functions

One key aspect of the SVM model is that the data enters the above
expressions (3a and 4) only in the form of the dot product of pairs.
This leads to the resolution of the second problem mentioned above,
namely that of non-linearly separable data. The basic idea with SVMs
is to map the training data into a higher dimensional feature space
via some mapping φ(x) and construct a separating hyperplane with
maximum margin there. This yields a non-linear decision boundary
in the original input space. By use of a kernel function, K(x, z) =
〈φ(x), φ(z)〉, it is possible to compute the separating hyperplane with-
out explicitly carrying out the mapping into feature space (Scholkopf,
2000). Typical choice for kernels are:

– Linear Kernel: K(x, z)=〈x, z〉
– Polynomial Kernel: K(x, z)= (〈x, z〉)d

– RBF Kernel: K(x, z)= exp(
−||x−z||2

2σ 2 )

– Sigmoid Kernel: K(x, z)= tanh(γ ∗ 〈x, z〉− θ)

Each kernel corresponds to some feature space and because no
explicit mapping to this feature space occurs, optimal linear separators
can be found efficiently in feature spaces with millions of dimensions
(Russell and Norvig, 2003). Note that the Linear Kernel is equivalent
to a Polynomial Kernel of degree one and corresponds to the origi-
nal input space. An alternative to using one of the pre-defined ker-
nels is to derive a custom kernel that may be suited to a particular
problem, e.g. the string kernel used for text classification by Lodhi
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et al. (2002). To ensure that a kernel function actually corresponds to
some feature space it must be symmetric, i.e., K(x, z)=〈φ(x), φ(z)〉=
〈φ(z), φ(x)〉 = K(z, x). Typically, kernels are also required to satisfy
Mercer’s theorem, which states that the matrix K = (K(xi, xj ))

n
i,j=1

must be positive semi-definite, i.e., it has no non-negative eigenvalues
(Cristianini and Shawe-Taylor, 2000). This condition ensures that the
solution of (3a) and (3b) produces a global optimum. However, good
results have been achieved with non-Mercer kernels, and convergence
is expected when the SMO algorithm is used, despite no guarantee of
optimality when non-Mercer kernels are used (Bahlmann et al., 2002).
Furthermore, despite its wide use, the Sigmoid kernel matrix is not
positive semi-definite for certain values of the parameters γ and θ

(Lin and Lin, 2003).

3. Genetic Programming

A GP is an application of the genetic algorithm (GA) approach
to derive mathematical equations, logical rules or program functions
automatically (Koza, 1992). Rather than representing the solution to
a problem as a string of parameters, as in a conventional GA, a GP
usually uses a tree structure, the leaves of which represent input vari-
ables or numerical constants. Their values are passed to nodes, which
perform some numerical or program operation before passing on the
result further towards the root of the tree. The GP typically starts off
with a random population of individuals, each encoding a function
or expression. This population is evolved by selecting better individ-
uals for recombination and using their offspring to create a new pop-
ulation (generation). Mutation is employed to encourage discovery of
new individuals. This process is continued until some stopping criteria
is met, e.g., homogeneity of the population.

4. Genetic Evolution of Kernels

The approach presented here combines the two techniques of SVMs
and GP, using the GP to evolve a kernel for a SVM. The goal is to
eliminate the need for testing various kernels and their parameter set-
tings. With this approach it might also be possible to discover new
kernels that are particularly useful for the type of data under analy-
sis. An overivew of the proposed GK SVM is shown in Figure 1.
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Figure 1. The Genetic Kernel SVM.

The main steps in the building of a GK SVM are:
1. Create a random population of kernel functions, represented as

trees—we call these kernel trees.
2. Evaluate the fitness of each individual by building an SVM from

the kernel tree and test it on the training data.
3. Select the fitter kernel trees as parents for recombination.
4. Perform random mutation on the newly created offspring.
5. Replace the old population with the offspring.
6. Repeat Steps 2 to 5 until the population has converged.
7. Build final SVM using the fittest kernel tree found.

The Grow method (Banzhaf et al., 1998) is used to initialise the pop-
ulation of trees, each tree being grown until no more leaves could
be expanded (i.e., all leaves are terminals) or until a preset initial
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maximum depth (2 for the experiments reported here) is reached.
Rank-based selection is employed with a crossover probability of 0.9.
Mutation with probability 0.2 is carried out on offspring by randomly
replacing a sub-tree with a newly generated (via Grow method) tree.
To prevent the proliferation of massive tree structures, pruning is car-
ried out on trees after crossover and mutation, maintaining a maxi-
mum depth of 12. In the experiments reported here, five populations
are evolved in parallel and the best individual over all populations is
selected after all populations have converged. This reduces the likeli-
hood of the procedure converging on a poor solution.

4.1. Terminal & function set

In the construction of kernel trees the approach adopted was to use
the entire sample vector as input. An example of a kernel tree is
shown in Figure 2 (Section 5). Since a kernel function only operates
on two samples the resulting terminal set comprises only two vector
elements: x and z. The evaluation of a kernel on a pair of samples is:

K(x, z)=〈treeEval(x, z), treeEval(z, x)〉 (5)

The kernel is first evaluated on the two samples x and z. These sam-
ples are swapped and the kernel is evaluated again. The dot-product

Figure 2. Example of a Kernel found on the Wisconsin Breast Cancer Dataset.



386 T. HOWLEY AND M. G. MADDEN

of these two evaluations is returned as the kernel output. This cur-
rent approach produces symmetric kernels, but does not guarantee
that they obey Mercer’s theorem. Ensuring that such a condition is
met would add considerable time to kernel fitness evaluation and, as
stated earlier, using a non-Mercer kernel does not preclude finding a
good solution.

The use of vector inputs requires corresponding vector operators
to be used as functions in the kernel tree. The design employed uses
two versions of the +,− and × mathematical functions: scalar and
vector. Scalar functions return a single scalar value regardless of the
operand’s type, e.g., x ∗scal z calculates the dot-product of the two vec-
tors. For the two other operators (+ and −) the operation is per-
formed on each pair of elements and the magnitude of the resulting
vector is returned as the output. Vector functions return a vector pro-
vided at least one of the inputs is a vector. For the vector versions
of addition and subtraction (e.g., x +vect z) the operation is performed
on each pair of elements as with the scalar function, but in this case
the resulting vector is returned as the output. No multiplication oper-
ator that returns a vector is used. If two inputs to a vector function
are scalar (as could happen in the random generation of a kernel tree)
then it behaves as the scalar operator. If only one input is scalar then
that input is treated as a vector of the same length as the other vector
operand with each element set to the same original scalar value.

4.2. Fitness function

Another key element to this approach (and to any evolutionary
approach) is the choice of fitness function. An obvious choice for the
fitness estimate is the classification error on the training set, but there
is a danger that this estimate might produce SVM kernel tree models
that are overfitted to the training data. One alternative is to base the
fitness on a cross-validation test (e.g., leave-one-out cross-validation)
in order to give a better estimation of a kernel tree’s ability to produce
a model that generalises well to unseen data. However, this would
obviously increase computational effort greatly. Therefore, our solu-
tion (after experimenting with a number of alternatives) is to use a
tiebreaker to limit overfitting. The fitness function used is:

fitness(tree)=Error,with tiebreaker: fitness=
∑

αi ∗R2 (6)



THE GENETIC KERNEL SUPPORT VECTOR MACHINE 387

This firstly differentiates between kernel trees based on their train-
ing error. For kernel trees of equal training error, a second evaluation
is used as a tiebreaker. This is based on the sum of the support vec-
tor values,

∑
αi (αi =0 for non-support vectors). The rationale behind

this fitness estimate is based on the following definition of the geomet-
ric margin of a hyperplane, γ (Cristianini and Shawe-Taylor, 2000):

γ =
(
∑

i∈sv

αi

)− 1
2

(7)

Therefore, the smaller the sum of the αis, the bigger the margin and
the smaller the chance of overfitting to the training data. The fit-
ness function also incorporates a penalty corresponding to R, the
radius of the smallest hypersphere, centred at the origin, that encloses
the training data in feature space. R is computed as (Cristianini and
Shawe-Taylor, 2000):

R = max
1≤i≤�

(K(xi, xi)) (8)

where � is the number of samples in the training dataset. This fitness
function therefore favours a kernel tree that produces a SVM with a
large margin relative to the radius of its feature space.

5. Experimental Results

Table 1 shows the performance of the GK SVM classifier compared
with three commonly used SVM kernels, Polynomial, RBF and Sig-
moid, on a number of datasets. (These are the only datasets with
which the GK SVM has been evaluated to date.) The first four data-
sets contain the Raman spectra for 24 sample mixtures, made up
of different combinations of the following four solvents: Acetone,
Cyclohexanol, Acetonitrile and Toluene; see Hennessy et al. (2005) for
a description of the dataset. The classification task considered here
is to identify the presence or absence of one of these solvents in a
mixture. For each solvent, the dataset was divided into a training set
of 14 samples and a validation set of 10. The validation set in each
case contained five positive and five negative samples. The final two
datasets, Wisconsin Breast Cancer Prognosis (WBCP) and Glass2, are
readily available from the UCI machine learning database repository
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Table 1. Percentage classification accuracy of GK SVM compared to that of Polyno-
mial, RBF and Sigmoid Kernel SVM on six datasets

Classifier Dataset

Polynomial Acetone Cyclo- Aceto- Toluene WBCP Glass2
hexanol nitrile

Kernel - degree d

1 100.00 100.00 100.00 90.00 78.00 62.00
2 90.00 90.00 100.00 90.00 77.00 70.91
3 50.00 90.00 100.00 60.00 86.00 78.18
4 50.00 50.00 50.00 50.00 87.00 74.55
5 50.00 50.00 50.00 50.00 84.00 76.36

RBF kernel σ

0.0001 50.00 50.00 50.00 50.00 78.00 58.18
0.001 50.00 90.00 50.00 50.00 78.00 58.18
0.01 60.00 80.00 50.00 60.00 78.00 59.64
0.1 50.00 50.00 50.00 50.00 78.00 63.64
1 50.00 50.00 50.00 50.00 81.00 70.91
10 50.00 50.00 50.00 50.00 94.44 83.64
100 50.00 50.00 50.00 50.00 94.44 81.82

Sigmoid kernel 90.00 90.00 100.00 90.00 75.76 70.91

GK SVM 100.00 100.00 100.00 80.00 93.43 87.27

(Blake and Merz, 1998). The results for WBCP dataset show the aver-
age classification accuracy based on a three-fold cross validation test
on the whole dataset. Experiments on the Glass2 dataset use a train-
ing set of 108 instances and a validation set of 55 instances.

For all SVM classifiers the complexity parameter, C, was set to 1.
An initial population of 100 randomly generated kernel trees was used
for the WBCP and Glass2 datasets and a population of 30 was used
for finding a model for the Raman spectra datasets. The behaviour of
the GP search differed for each dataset. For the spectral datasets, the
search quickly converged to the simple solution after an average of only
five generations, whereas the WBCP and Glass2 datasets required an
average of 17 and 31 generations, respectively. (As stated earlier, five
populations are evolved in parallel and the best individual chosen.)

The results clearly demonstrate both the large variation in accu-
racy between the Polynomial, RBF and Sigmoid kernels as well as
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Table 2. Best Parameter Settings for the Sigmoid kernel

Dataset Ranges tested Best Accuracy Best parameter settings (γ, θ )

γ θ

Acetone 1–10 0–1000 90 (3,500), (5,400),(6,700)
Cyclohexanol 1–10 0–1000 90 (1,100), (2,200), (3,300), (3,400),

( 5,600), (6,600–900), (7,700)
Acetonitrile 1–10 0–1000 100 (7,200),(8,300),(8,400),(9,400),(10,600)
Toluene 1–10 0–1000 90 (1,800),(3,900),(4,400),(6,1000)
WBCP 0–1 1–10 75.76 (0.4,0)
Glass2 0–1 1–10 70.91 (0.9,6)

the variation between the performance of models using the same ker-
nel but with different parameter settings: degree d for the Polynomial
kernel, σ for the RBF kernel, γ and θ for the Sigmoid kernel. For
the Polynomial and RBF kernel, the accuracy for different settings is
shown. As there are two parameters to set for the Sigmoid kernel,
only the best accuracy, over all combinations of parameters tested, for
each dataset is shown. The actual values of γ and θ used to get this
accuracy on each dataset is shown in Table 2.

The RBF kernel performs poorly on the spectral datasets but then
outperforms the Polynomial kernel on the Wisconsin Breast Cancer
Prognosis and Glass2 datasets. The Sigmoid kernel performs much bet-
ter than the RBF kernel on the spectral datasets, and slightly worse
than the Polynomial kernel on these datasets. However, on the WBCP
and Glass2 datasets, it performs much worse than the other kernels. For
the first three spectral datasets, the GK SVM achieves 100% accuracy,
each time finding the same simple linear kernel as the best kernel tree:

K(x, z)=〈x, z〉 (9)

For the Toluene dataset, the GK SVM manages to find a kernel of
higher fitness (according to the fitness function detailed in Section 4.2)
than the linear kernel, but which happens to perform worse on the test
dataset. One drawback with the use of these spectral datasets is that
the small number of samples is not very suitable for a complex search
procedure such as used in GK SVM. A small training dataset increases
the danger of an evolutionary technique, such as GP, finding a model
that fits the training set well but performs poorly on the test data.
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On the Wisconsin Breast Cancer Prognosis dataset, the GK SVM
performs better than the best Polynomial kernel (d =4). The best ker-
nel tree found during the final fold of the three-fold cross-validation
test is shown in Figure 2. This tree represents the following kernel
function:

K(x, z)=〈(x −scal (x −scal z)), (z−scal (z−scal x))〉 (10)

The performance of the GK SVM on this dataset demonstrates its
potential to find new non-linear kernels for the classification of data.
The GK SVM does, however, perform marginally worse than the RBF
kernel on this dataset. This may be due to the fact that the kernel
trees are constructed using only three basic mathematical operators
and therefore cannot find a solution to compete with the exponential
function of the RBF kernel. Despite this apparent disadvantage, the
GK SVM clearly outperforms all kernels on the Glass2 dataset.

Table 2 details the settings for γ and θ of the Sigmoid kernel that
resulted in the best accuracy for the SVM on each dataset. For exam-
ple, with γ = 5 and θ = 400, an accuracy of 90% was achieved in
classifying the Acetone test dataset. Note that these results show the
best accuracy over a range of settings for (γ, θ ). The range for each
parameter was divided into ten partitions, including the starting and
end value, i.e., 110 different pairs were tested on the spectral datasets.
A different range of values was required to find the best accuracy on
the WBCP and Glass2 datasets. This highlights further the problem
of finding the best setting for a kernel, especially when there is more
than one parameter involved.

Overall, these results show the ability of the GK SVM to automat-
ically find kernel functions that perform competitively in comparison
with the widely used Polynomial, RBF and Sigmoid kernels, but with-
out requiring a manual parameter search to achieve optimum perfor-
mance.

6. Related Research

6.1. SVM model selection

Research on the tuning of kernel parameters or model selection is
of particular relevance to the work presented here, which is attempt-
ing to automate kernel selection. A common approach is to use a
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grid-search of the parameters, e.g., complexity parameter C and width
of RBF kernel, σ (Hsu et al., 2003). In this case, pairs of (C, σ )
are tried and the one with best cross-validation accuracy is picked. A
similar algorithm for the selection of SVM parameters is presented in
Staelin (2002). That algorithm starts with a very coarse grid covering
the whole search space and iteratively refines both grid resolution and
search boundaries, keeping the number of samples at each iteration
roughly constant. It is based on a search method from the design of
experiments (DOE) field. Those techniques still require selection of a
suitable kernel in addition to knowledge of a suitable starting range
for the kernel parameters being optimised. The same can be said for
the model selection technique proposed in Cristianini et al. (1998), in
which an on-line gradient ascent method is used to find the optimal
σ for an RBF kernel.

6.2. Application of evolutionary techniques with SVM classifiers

Some research has been carried out on the use of evolutionary
approaches in tandem with SVMs. Fröhlich et al. (2003) use GAs for
feature selection and train SVMs on the reduced data. The novelty of
this approach is in its use of a fitness function based on the calcula-
tion of the theoretical bounds on the generalisation error of the SVM.
This approach was found to achieve better results than when a fitness
function based on cross-validation error was used. A RBF kernel was
used in all reported experiments.

An example of GPs and SVMs is found in Eads et al. (2002),
which reports on the use of SVMs for identification of lightning types
based on time series data. However, in this case the GP was used to
extract a set of features for each time series sample in the dataset.
This derived dataset was then used as the training data for building
the SVM which mapped each feature set or vector onto a lightning
category. A GA was then used to evolve a chromosome of multiple
GP trees (each tree was used to generate one element of the feature
vector) and the fitness of a single chromosome was based on the cross
validation error of an SVM using the set of features it encoded. With
this approach the SVM kernel (along with σ ) still had to be selected,
in this case the RBF kernel was used.

Some more recent work has been carried out in the use of an evo-
lutionary strategy (ES) for SVM model selection. ES is an evolution-
ary approach which is generally applied to real-valued representations
of optimisation problems, and which tends to emphasise mutation
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over crossover (Whitley, 2001). Runarsson and Sigurdsson (2004) use
an ES to evolve an optimal value for C and σ for an RBF kernel
of an SVM. Four different criteria are used for evaluating a partic-
ular set of parameters. Two of these criteria are based on the kernel
radius and

∑
αi measures (discussed in section 4.2). The fourth cri-

terion used is simply the count of support vectors used in the SVM
model, with a lower count indicating a better model. The best overall
performance appears to be obtained using the following evaluation

f (x)=
(

R2 + 1
C

) �∑

i=1

αi (11)

where f (x) is the fitness function used to evaluate a particular SVM
kernel. This paper also reports the usage of ES and SVM to classify
a dataset of chromosomes, which are represented by variable-length
strings. In this case, an RBF kernel is used with the Euclidean dis-
tance replaced by the string edit (or Levenshtein) distance (another
example of a custom kernel). The ES is used to evolve a set of costs
for each of the symbols used to describe a chromosome, where the
costs are required to calculate the distance between two chromosome
strings. They found that minisiming the number of support vectors
resulted in overfitting to the training data and conclude that this cri-
terion is not suitable when dealing with small training sets.

Another example of the use of ES methods to tune an RBF kernel
is presented in Friedrichs and Igel (2004), which involves the adaption
of not only the scaling, but also the orientation of the kernel. Three
optimisation methods are reported in this work:
1. The σ of the RBF kernel is adapted.
2. Independent scalings of the components of the input vector are

adapted.
3. Both the scaling and the rotation of the input vector is adapted.

The fitness of a kernel variation was based on its error on a separate
test set. The performance of this ES approach was compared with a
SVM that was tuned using a grid search. Better results were achieved
with both the scaled kernel and the scaled and rotated kernel. How-
ever, it must be noted that the results of the grid search were used as
initial values for the ES approach, i.e., used to initialise σ .

Again, the focus in these last two examples of research in this area
is on the tuning of parameters for an RBF kernel. This appears to be
the most popular kernel (particularly when model selection is consid-
ered), but as the results presented in Section 5 show, does not always
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achieve the best performance. The goal of our research is to devise a
method that overcomes this problem, and produces the best kernel for
a given dataset.

7. Conclusions

This paper has proposed a novel approach to tackle the problem of
kernel selection for SVM classifiers. The proposed GK SVM uses a
GP to evolve a suitable kernel for a particular problem. The initial
experimental results show that the GK SVM is capable of matching
or beating the best performance of the standard SVM kernels on the
majority of the datasets tested. These experiments also demonstrate
the potential for this technique to discover new kernels for a partic-
ular problem domain. Future work will involve testing the GK SVM
on more datasets and possibly finding more kernels to compare its
performance with. The effect of restricting the GP search to Mercer
kernels will be investigated. In order to help the GK SVM find bet-
ter solutions, further experimentation is required with increasing the
range of functions available for construction of kernel trees, e.g. to
include the exponential or tanh function. In addition, future work will
investigate alternative fitness evaluations for the ranking of kernels,
e.g. including the support vector count in the fitness estimate.
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