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Abstract

A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene 

pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for 

~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic 

interaction profiles reveals a functional map of the cell in which genes of similar biological 

processes cluster together in coherent subsets, and highly correlated profiles delineate specific 

pathways to define gene function. The global network identifies functional cross-connections 

between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction 

degree correlated with a number of different gene attributes, which may be informative about 

genetic network hubs in other organisms. We also demonstrate that extensive and unbiased 

mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions 

and drug target identification.

The relation between an organism's genotype and its phenotype are governed by myriad 

genetic interactions (1). Although a complex genetic landscape has long been anticipated 

(2), exploration of genetic interactions on a genome-wide level has been limited. Systematic 

deletion analysis in the budding yeast, Saccharomyces cerevisiae, demonstrates that the 

majority of its ~6000 genes are individually dispensable, with only a relatively small subset 

(~20%) required for viability (1), which suggests the evolution of extensive buffering against 

genetic perturbations (3). Genome-scale screens for genetic interactions that affect the 

fitness of a cell or organism can chart the genetic network underlying functional redundancy 

(1). In particular, synthetic genetic array (SGA) methodology (4) enables the systematic 

mapping of synthetic lethal genetic interactions through an automated form of genetic 

analysis that produces high-density arrays of double mutants (5). Here, we report 

construction of a functionally unbiased genetic interaction map for a eukaryotic cell.

Genome-scale, quantitative analysis of genetic interactions

We consider a digenic interaction as a double mutant that shows a significant deviation in 

fitness compared with the expected multiplicative effect of combining two single mutants 

(6). Negative interactions refer to a more severe fitness defect than expected, with the 

extreme case being synthetic lethality; positive interactions refer to double mutants with a 

less severe fitness defect than expected. To quantitatively score genetic interactions in large-

scale SGA screens, we developed a model to estimate fitness defects directly from double-
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mutant colony sizes (7, 8) (fig. S1A). We screened 1712 S. cerevisiae query genes, including 

334 conditional or hypomorphic alleles of essential genes, for a total of ~5.4 million gene 

pairs spanning all biological processes (fig. S1, B and C) (7, 8). These queries were selected 

randomly with respect to function; however, preference was given to mutants exhibiting 

fitness defects (7, 8). Comparing fitness estimates of single mutants with their corresponding 

double-mutant phenotypes identified ~170,000 interactions, a threefold increase over all 

previously reported genetic interaction data (fig. S1, D and E). Our data captured ~35% of 

previously reported negative genetic interactions (7, 8) (fig. S1D) and exhibited significant 

correlation (r = 0.89) (fig. S1F) with genetic interactions identified by high-resolution liquid 

growth profiles (7–9), which confirmed the accuracy of our measurements (fig. S1F). Thus, 

our approach enabled assembly of a quantitative fitness-based profile of genetic interactions 

on a genome-wide scale.

We determined false-negative and false-positive rates at a defined confidence threshold (|ε| > 

0.08, P < 0.05) (fig. S2A) (7, 8) and used this filtered data set for all analyses. Data 

evaluation, by several different measures (7, 8), indicated that interactions that corresponded 

to specific confidence levels were functionally informative (fig. S2, B and C). In particular, 

enrichment for Gene Ontology (GO) coannotated gene pairs was correlated with the 

significance and magnitude of genetic interaction (fig. S2B), as well as with genetic profile 

similarity (fig. S2C) (7, 8). Notably, we found about twice as many negative interactions as 

positive genetic interactions (fig. S1B). Moreover, negative genetic interactions tended to be 

more informative for identifying physical interactions and GO coannotated gene pairs than 

positive interactions (fig. S2C).

A functional map of the cell

Genes belonging to the same pathway or biological process tend to share similar profiles of 

genetic interactions (5). We exploited this property to construct a global network, grouping 

genes with similar interaction patterns together: Nodes in this network represent genes, and 

edges connect gene pairs that share common sets of genetic interactions or similar 

interaction profiles (Fig. 1). This network highlights genetic relations between diverse 

biological processes and the inherent functional organization of the cell. Genes displaying 

tightly correlated profiles form discernible clusters corresponding to distinct bioprocesses, 

and the relative distance between distinct clusters appears to reflect shared functionality 

(Fig. 1). For example, the role of the microtubule cytoskeleton in bridging nuclear 

chromosomal- and actin cytoskeleton–based functions is illustrated by the close proximity 

and relative positioning of clusters corresponding to genes annotated with roles in cell 

polarity and morphogenesis, mitosis and chromosome segregation, and DNA replication and 

repair (Fig. 1). Despite screening only ~30% of the genome as query genes, we recovered 

genetic interactions for ~75% of the genome because partial genetic interaction profiles were 

generated for nearly all nonessential genes in the genome. Our data were able to precisely 

predict known gene functions (GO biological process annotations), as well as or better than 

all other genome-scale data sets (fig. S2D), and assigned a substantial amount of unique 

functional information for the genes not captured by previous genetic interaction studies (fig. 

S2D).
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Predicting function and relations

Although complex, the genetic interaction network contains functional information at 

multiple levels of resolution. The interrogation of the genetic map at higher resolution 

enabled the dissection of broad biological processes into distinct, yet interdependent, gene 

cohorts (Fig. 2) [supporting data file S8 (8)]. In even more detail, we can also visualize 

networks in which genes are connected by edges that correspond to genetic interactions 

directly. Indeed, gene clusters that are correlated by negative (red) and positive (green) 

genetic interactions reveal network organization reflecting biological pathways and/or 

protein complexes and their functional integration with one another (Fig. 2, B to D). The 

genetic interactions occurring between different pathways and complexes were often 

monochromatic, as predicted previously (10), such that they were composed almost 

exclusively of a single type of genetic interaction, either all negative or all positive.

Genetic clusters were used to predict function for uncharacterized genes on the basis of 

network connectivity (Fig. 2, A to D). Three genes, PAR32, ECM30, and UBP15, had 

interaction profiles similar to those of members of the Gap1-sorting module (Fig. 2B), and 

consistent with a role in this process, all three genes led to Gap1 sorting and transport 

defects when deleted (Fig. 2E). Additional experimental results (fig. S3) (11) suggest that 

Par32 may function in target of rapamycin (TOR)–dependent regulation of the Gln3, Gat1, 

Rtg1, and Rtg3 transcription factors (12), whereas Ecm30 forms a stoichiometric complex 

with the Ubp15 ubiquitin protease (7, 8) that may modulate Gap1 localization, perhaps by 

controlling its ubiquitination state.

In another example, similar genetic interaction profiles suggested a strong functional relation 

between the GET pathway and the poorly characterized gene, SGT2 (Fig. 2C). Consistent 

with a role in endoplasmic reticulum (ER)–dependent membrane targeting (13) or protein 

folding (14), we found that Sgt2 physically interacts with Get4, Get5, and heat shock 70 

(Hsp70) protein family members (Fig. 2F), and, similarly to GET pathway mutants (13), 

deletion of SGT2 results in mislocalization of the tail-anchored protein, Pex15 (fig. S4).

Deciphering complex regulatory relations from the global genetic network

Because the global genetic interaction map represents a broad functional survey, it should 

provide insights into the regulatory wiring diagram of the cell. For example, synthetic lethal 

interactions between genes encoding the elongator (Elp) complex and those of the 

urmylation (Urm) pathway suggested that the Urm pathway collaborates with the Elp 

complex in the modification of specific transfer RNAs (tRNAs) (15) (Fig. 2D). In addition to 

their synthetic lethal relation, Elp and Urm pathway genes shared highly similar genetic 

interaction profiles; notably, these interactions were enriched for cell polarity and secretion 

genes (P < 10−3) (Fig. 2D), which reflects a specific cell polarity defect associated with Elp 

pathway mutants (16).

The elongator tRNA modification machinery has been postulated either to broadly affect the 

translation of a suite of mRNAs whose genes have cell polarity roles or to selectively 

influence the activity of a key polarity regulatory gene (17). We were intrigued by the 
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finding that the subset of Elp-Urm negative interactors, as well as cell polarity and secretion 

genes, in general, encode proteins that are significantly enriched for the amino acids that 

charge Elp- and Urm-modified tRNAs (Fig. 2G) (7, 8). These findings suggest that Elp and 

Urm pathways may be biased toward the regulation of a functionally specific subset of 

cellular proteins. ELP1 is a highly conserved gene whose human ortholog, inhibitor of kappa 

light polypeptide gene enhancer in B cells, kinase complex–associated protein (IKBKAP), is 

associated with a neurological disorder, familial dysautonomia, which leads to disruption of 

cytoskeletal organization when mutated (18, 19). Thus, it is possible that disease 

manifestation may involve impaired IKBKAP-dependent translation of a set of human genes 

belonging to a specific functional group.

Genetic network connectivity

Consistent with the degree distribution of other biological networks (1), the majority of 

genes have few interactions, whereas a small number are highly connected and serve as 

network hubs (Fig. 3A). We found subsets of genes that showed a strong bias in their 

interaction type. About 2% of array genes exhibited more than eight times as many negative 

interactions as positive ones, whereas a smaller set containing ~1% of all array genes 

showed four times as many positive as negative interactions (Fig. 3B). Genes displaying this 

behavior were functionally distinct. Specifically, a bias toward negative interaction was 

observed for genes required for normal progression of the cell division cycle (P < 10−8), 

which highlights the central role of checkpoints in maintaining viability in dividing cells. 

Predominantly positive interactions were indicative of genes involved in translation, 

ribosomal RNA processing, and mRNA decay (P < 10−5), which may suggest that defects in 

the translation machinery somehow mask phenotypes that would otherwise be expressed in 

normal cells.

Genetic interaction degree, fitness, multifunctionality, and pleiotropy

Genetic interaction hubs show a clear association with several fundamental physiological 

and evolutionary properties (Fig. 3C), which may be predictive of genetic interactions in 

other organisms. In particular, we uncovered a strong correlation between genetic interaction 

degree and single-mutant fitness (r = 0.73). Single mutants with increasingly severe fitness 

defects tended to exhibit an increased number of both negative and positive interactions (Fig. 

3C and fig. S5, A and B) (7, 8). This relation was also observed for essential genes where 

the average number of interactions involving a temperature-sensitive mutant allele was 

inversely proportional to allele fitness at a given semipermissive temperature (fig. S5B). The 

increased connectivity of genes with fitness defects when singly mutated was not due to 

nonspecific interactions derived from a generally compromised cell or experimental noise; 

interactions with these genes were found to overlap with known functional relationships just 

as frequently as other interactions (fig. S5C).

In addition to the correlation with single-mutant fitness defects, genetic interaction hubs 

showed a high degree of pleiotropy. Specifically, the number of genetic interactions for a 

particular hub was significantly correlated with the number of distinct annotated functions 

(multifunctionality) for that gene (Fig. 3C and inset). This connection between network hubs 
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and pleiotropy was further reflected by the rich variation associated with hub mutant 

phenotypes and increased phenotypic capacitance, the number of different morphological 

phenotypes linked to a specific gene as defined quantitatively (Fig. 3C) (20). This relation 

suggests that genetic network hubs play key roles in the integration and execution of 

morphogenetic programs.

It is noteworthy that these correlations persisted after we controlled for fitness defects of 

single mutants (fig. S5D). Furthermore, these trends reveal characteristics that distinguish 

genetic network hubs from hubs on the physical interaction network (Fig. 3C). Notably, the 

correlation to both fitness and multifunctionality was several fold stronger for genetic 

interaction degree (Fig. 3C). This likely reflects the ability of genetic perturbation analysis 

to identify broad phenotypic connections that cannot be captured in networks subject to 

physical constraints and suggests that large-scale genetic interaction networks will be of 

wide utility for defining the functional wiring diagrams of cells and organisms.

Although there are several distinguishing characteristics of genetic interaction hubs, we 

measured a significant correlation (r ~ 0.2) between the genetic and physical interaction 

degree for any given gene (Fig. 3C). Similar to protein-protein interaction hubs (21–23), we 

found that genetic network hubs tend to be expressed at higher mRNA levels. In comparison 

with the whole-genome sequences of 23 different Ascomycota fungi species, we found that 

genetic interaction degree correlated positively with gene conservation and negatively with 

copy number volatility, which indicates that they tend to be lost or duplicated less frequently. 

Genes showing more genetic interactions evolved (dN/dS) more slowly than genes with few 

interactions (Fig. 3C), which suggests that genetic hubs generally tend to be evolutionarily 

constrained. However, a subset of genetic interaction hubs appears to behave differently. 

Despite their tendency to evolve faster (fig. S5F) (24), proteins with higher levels of native 

disorder tend to exhibit a large number of genetic interactions, which suggests that genes 

encoding disordered proteins may represent a distinct class of genetic interaction hub.

Distribution of genetic interactions by bioprocess

We assessed the distribution of genetic interactions across different cellular processes for 

both negative (Fig. 4A) and positive (fig. S6A) (7, 8) interactions. The heat map identified 

functions enriched (yellow) or depleted (blue) for genetic interactions relative to the 

expected frequency of a random gene set. As expected, genes involved in similar biological 

processes were enriched for negative interactions; however, we also observed genetic 

interactions bridging bioprocesses (Fig. 4A). Specifically, genes involved in chromatin, 

transcription, ER-Golgi transport, and Golgi-endosome transport showed a significant 

number of interactions that bridge diverse functions, which suggests that many of these 

genes are interconnected or pleiotropic. These bioprocess-level findings concur with 

individual gene analyses, which indicated that genes involved in processes related to 

chromatin structure and transcription (P < 10−14), as well as secretion and vesicle transport 

(P < 10−9), were among the most highly connected genes in our network. The central role 

for chromatin- and transcription-related processes identified in the yeast genetic network is 

consistent with large-scale genetic network mapping in Caenorhabditis elegans (25), and the 

bridging function for secretory pathway genes emphasizes their role as communication 
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conduits for the cell. In contrast to genetic interactions, protein-protein interactions connect 

relatively fewer bioprocesses, and thus, although highly informative of local pathway 

architecture, physical interactions fail to provide a complete picture of multifunctionality or 

interconnections between cellular processes (fig. S6A). Reduced interactions in particular 

gene sets, such as meiosis, drug or ion transport, and metabolism or mitochondrial genes 

(blue in Fig. 4A), may arise because some processes are more buffered than others and 

require more complex genetic analysis to uncover their interactions (5), whereas others may 

function only under certain environmental conditions (26).

Because variation was observed in the average number of genetic interactions for genes 

across different bioprocesses, we tested whether gene-specific properties (Fig. 3C) were 

predictive of this variation. For example, we found that gene duplicates exhibited fewer 

interactions when surveyed across the entire genome (Fig. 4B) (7, 8), and therefore, we 

asked if bioprocesses with relatively few genetic interactions could be explained by specific 

factors, such as a high percentage of duplicated genes. An analysis of covariance 

(ANCOVA) (Fig. 4C) (7, 8) showed that a linear model including the gene-specific 

properties predictive of genetic interaction hubs (Fig. 3C) was sufficient to explain the 

number of negative (12 out of 17) (Fig. 4C) and positive (13 out of 17) (fig. S6B) genetic 

interactions for the majority of bioprocesses. For example, the relatively few genetic 

interactions seen for genes with roles in drug and ion transport are explained by a 

combination of a high rate of gene duplication (~50 to 60%) and copy number volatility 

among genes annotated to this process. This is consistent with the tendency of genes 

encoding protein pumps to undergo numerous duplication events (27), which confirms that 

extensive redundancy associated with large gene families complicates the identification of 

digenic interactions. Three bioprocesses had significantly more negative interactions than 

predicted (Fig. 4C) (P < 0.05), including those that show functional enrichment for genetic 

interaction hubs (Fig. 4A). Conversely, DNA replication and repair and amino acid 

biosynthesis showed significantly fewer negative interactions than predicted (P < 0.05), 

which suggested that either more genetic interactions remain to be found for these genes 

under different environmental conditions or that these genes are more buffered and thus are 

inherently less connected on the digenic network.

Overlap between the genetic and the protein-protein interaction networks

We observed genetic interactions overlapping with 10 to 20% of protein-protein interaction 

pairs, depending on the physical interaction mapping methodology (fig. S7), which is 

significantly higher than expected randomly (~3%). Considering the global yeast physical 

interaction network as defined by affinity purification–mass spectrometry (28, 29), yeast 

two-hybrid protocol (30), or protein-fragment complementation assay (PCA) (31), roughly 

an equivalent number of physical interactions overlapped with negative and positive genetic 

interaction pairs: ~7% of protein-protein interacting pairs shared a negative genetic 

interaction, whereas ~5% shared a positive interaction. Conversely, considering our genetic 

interaction network, only a small fraction of gene pairs that show a genetic interaction (0.4% 

negative and 0.5% positive) are also physically linked. These findings suggest that the vast 

majority of both positive and negative interactions occurs between, rather than within, 
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complexes and pathways, connecting those that presumably work together or buffer one 

another, respectively.

Navigating from genetic to chemical-genetic interaction networks

The set of ~4700 viable yeast deletion mutants has been exposed to hundreds of different 

chemical compounds (26). We quantified the chemical-genetic degree for each gene by 

counting the number of chemical (environmental) perturbations for which the corresponding 

gene deletion mutant showed hypersensitivity. We found a significant correlation (r = 0.4, P 

< 10−5) between genetic interaction and chemical-genetic degree (Fig. 3C). These 

observations suggest that hubs on a chemical-genetic network are predictive of hubs on the 

genetic interaction network and can be used to link environmental capacitance and genetic 

robustness. Furthermore, our data suggest that the same genes buffer the cell against both 

environmental and genetic insults. It is not known whether natural selection favors genetic 

robustness (32), but the positive correlation between genetic interaction degree and 

environmental capacitance suggests that genetic and environmental robustness may coevolve 

(33).

Because chemical perturbations mimic genetic perturbations, the genetic network should be 

useful for predicting the cellular targets of bioactive molecules (34). We identified genetic 

interaction profiles that are significantly correlated to a chemical-genetic profile of a 

particular compound (7, 8, 26, 34) and showed that compounds often clustered to dense 

regions of the genetic network indicative of specific bioprocesses (Fig. 5A). For example, 

hydroxyurea, a compound that inhibits ribonucleotide reductase and blocks DNA synthesis, 

clusters with the gene cohort annotated with roles in DNA replication and repair (Fig. 5A). 

These results demonstrate that clustering of chemical-genetic and genetic interaction profiles 

complements haploinsufficiency profiling, which has the potential to identify drug targets 

directly (26). We used this network approach to examine the previously uncharacterized 

compound, 0428-0027, which we have subsequently named erodoxin (Fig. 5A). Erodoxin 

clustered with genes associated with protein folding, glycosylation, and cell wall 

biosynthesis functions (Fig. 5A) because the erodoxin chemical-genetic profile most closely 

resembled the genetic interaction profile of ERO1 (Fig. 5B and fig. S8A), an essential gene 

involved in oxidative protein folding (Fig. 5C) (35). Two additional lines of evidence 

suggested that Ero1 is the target of erodoxin. First, ero1∆/+ and fad1∆/+ heterozygotes were 

the most hypersensitive mutants identified from haploinsufficency profiling (fig. S8B) (7, 8). 

Second, we found that erodoxin leads to inhibition of Trx1 oxidation (Fig. 5D) and delayed 

carboxy peptidase Y (CPY) processing (Fig. 5E), which suggests that it inhibits Ero1 

activity both in vitro and in vivo.

Exploring the universe of genetic interactions

Unbiased, systematic, and quantitative analysis of digenic loss-of-function perturbations 

assigns a rich phenotypic profile to each gene and enables construction of a functional map 

of the cell, organizing genes and higher-order bioprocesses according to their related roles 

(Fig. 1). The functional connections defined by genetic interactions complement the 

information derived from networks based upon physical interactions, which links previously 
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uncharacterized genes to specific pathways and complexes and reveals connections between 

pathways and complexes. The global mapping of genetic networks is becoming feasible in 

more complex cells and metazoans because of the growing availability of whole-genome 

sequences and large-scale sets of gene-knockdown reagents (1). Although negative genetic 

interactions can be conserved from yeast to worms and from yeast to human cells, the extent 

to which individual genetic interactions are conserved over large evolutionary distances 

remains unclear (1). The conservation of the genetic map may also occur at various levels of 

resolution. For example, overall network topology (Fig. 1) and properties (Fig. 3C) may be 

more highly conserved than particular genetic interactions because they reflect the 

fundamental architecture of the cell. The ability to integrate genetic and chemical-genetic 

perturbation data offers the potential to link bioactive compounds to their targets (Fig. 5), to 

identify genetic interaction hubs through chemical perturbations (Fig. 3C), to design 

synthetic lethal therapies for targeting genetically defined tumors (36), and to understand the 

mechanistic basis of drug synergy (37). Finally, genetic interaction maps provide a model 

for understanding the link between genotype and phenotype and for outlining the general 

principles of complex genetic interaction networks, which play a key role in governing 

inherited phenotypes, including human disease (3).
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Editor’s Summary

Making Connections

Genetic interaction profiles highlight cross-connections between bioprocesses, providing 

a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. 

Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-

third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs 

and generating quantitative profiles for ~ 75% of the genome. Of the pairwise 

interactions tested, about 3% of the genes investigated interact under the conditions 

tested. On the basis of these data, a reference map for the yeast genetic network was 

created.
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Fig. 1. 
A correlation-based network connecting genes with similar genetic interaction profiles. 

Genetic profile similarities were measured for all gene pairs by computing Pearson 

correlation coefficients (PCCs) from the complete genetic interaction matrix. Gene pairs 

whose profile similarity exceeded a PCC > 0.2 threshold were connected in the network and 

laid out using an edge-weighted, spring-embedded, network layout algorithm (7, 8). Genes 

sharing similar patterns of genetic interactions are proximal to each other; less-similar genes 

are positioned farther apart. Colored regions indicate sets of genes enriched for GO 

biological processes summarized by the indicated terms.
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Fig. 2. 
Magnification of the functional map better resolves cellular processes. (A) A subnetwork 

corresponding to a region of the global map described in Fig. 1 is indicated in red (inset). 

Node color corresponds to a specific biological process: dark green, amino acid biosynthesis 

and uptake; light green, signaling; light purple, ER-Golgi; dark purple, endosome and 

vacuole sorting; yellow, ER-dependent protein degradation; red, protein folding and 

glycosylation, cell wall biosynthesis and integrity; fuchsia, tRNA modification; pink, cell 

polarity and morphogenesis; orange, autophagy; and black, uncharacterized. Individual 
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genetic interactions contributing to genetic profiles revealed by (A) are illustrated for three 

specific subnetworks in (B) to (D). (B to D) Subsets of genes belonging to amino acid 

biosynthesis and uptake, ER-Golgi, and tRNA modification regions of the network were 

selected, and, in some cases, additional genes were included from the complete network 

shown in Fig. 1. Nodes are grouped according to profile similarity, and edges represent 

negative (red) and positive (green) genetic interactions (|ε| > 0.08, P < 0.05). Nonessential 

(circles) and essential (diamonds) genes are colored according to the biological process 

indicated in (A), and uncharacterized genes are depicted in yellow. (E) PAR32, ECM30, and 

UBP15 are required for plasma membrane localization (micrographs) and activity 

(histogram) of the Gap1 amino acid permease. DIC, differential interference contrast; GFP, 

green fluorescent protein. (F) Sgt2 physically interacts with components of the GET 

pathway and members of the Hsp70 chaperone family. Proteins identified with high 

confidence as specific interactors for tandem affinity purification (TAP)–tagged Sgt2 (Sgt2-

TAP) are shown in decreasing order of spectral counts. (G) Distribution of the Elp and Urm 

modified codon usage among synthetic sick or lethal interaction partners. The fraction of Elp 

and Urm modified codons (lysine, glutamine, and glutamic acid) relative to all codons was 

measured for all negative interactors with genes in the Elp or Urm complex (red) relative to 

the background usage of all genes (blue).
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Fig. 3. 
Positive and negative genetic interactions on the basis of a defined confidence threshold (|ε|> 

0.08, P < 0.05) (7, 8). (A) The distribution of genetic interaction network degree for negative 

(red) and positive (green) interactions involving query genes. (B) The ratio of positive to 

negative interactions for each gene varies across the genome. (C) Pearson correlation 

between genetic interaction degree (derived from the array mutant strains) and physiological 

and evolutionary properties was measured for positive (green), negative (red) and protein-

protein (black) interaction degree (7, 8). Chemical-genetic degree refers to the number of 

chemical perturbations to which a gene exhibits hypersensitivity. (Inset) The relation to gene 

multifunctionality for each of the interaction data sets is illustrated by measuring the average 

number of annotations to specific biological process GO terms for the top 1% highest degree 

genes for each interaction type. (7, 8).
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Fig. 4. 
(A) Frequency of synthetic lethal/sick (negative) genetic interactions within and across 

biological processes. The fraction of screened gene pairs exhibiting negative interactions 

was measured for 17 broadly defined functional gene sets (7, 8). A color was assigned to 

each process-process element reflecting the fraction of interaction (blue, below the 

frequency of random pairs; black, statistically indistinguishable from the random 

background of interactions; and yellow, above the frequency of random pairs), with the 

diagonal representing within-process interactions. The red line in the color scale bar 
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indicates random background. (B) Genetic interaction frequency of duplicate genes. T bars, 

SEM. (C) Gene-specific factors explaining the variation in number of negative interactions 

across biological processes. (Top) The average number of interactions across each process 

with the color indicating processes that have more interactions than expected (yellow, P < 

0.05); processes whose interaction degree is explained by the factors indicated on the y axis; 

and those with fewer interactions than expected (blue, P < 0.05). The influence of each gene-

specific factor in explaining the number of interactions observed was measured by plotting 

the ratio of F statistics of the bioprocess factor before and after incorporating the additional 

gene-specific factor. This ratio is indicated by the corresponding column in the heat map (7, 

8). (AA, amino acids; chrom. seg., chromosome segregation; HR, homologous 

recombination; kinetoch., kinetochore)
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Fig. 5. 
(A) A chemical-genetic interaction map is shown in which colored triangles represent 

chemical compounds and white nodes correspond to genes. Compounds were positioned on 

the map by highlighting the gene node whose genetic interaction profile most closely 

resembles the chemical genetic profile of the compound derived from three sources (7, 8). 

Compounds tightly correlated to genes positioned within functional clusters (Fig. 1) were 

colored accordingly to the color of the cluster as in Fig. 1. The chemical-genetic profile of 

hydroxyurea clustered with genes involved in DNA replication and repair, whereas that of 

erodoxin clustered with genes involved in protein folding, glycosylation, and cell wall 

biosynthesis. Compounds positioned outside functional clusters are colored light purple. (B) 

Network displaying overlap between ERO1 negative genetic interactions and genes resulting 

in growth inhibition when deleted in the presence of erodoxin. (C) ERO1-dependent 

pathway for oxidative protein-folding pathway. (D) Erodoxin inhibits Ero1-dependent 

oxidation of Trx1 in vitro. (E) Erodoxin inhibits CPY processing to the vacuolar form in 

vivo. ER (p1), Golgi (p2), and vacuolar (m) forms of CPY are indicated.
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