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Abstract: The majority of the genome in animals and
plants is transcribed in a developmentally regulated
manner to produce large numbers of non–protein-coding
RNAs (ncRNAs), whose incidence increases with develop-
mental complexity. There is growing evidence that these
transcripts are functional, particularly in the regulation of
epigenetic processes, leading to the suggestion that they
compose a hitherto hidden layer of genomic program-
ming in humans and other complex organisms. However,
to date, very few have been identified in genetic screens.
Here I show that this is explicable by an historic emphasis,
both phenotypically and technically, on mutations in
protein-coding sequences, and by presumptions about
the nature of regulatory mutations. Most variations in
regulatory sequences produce relatively subtle phenotyp-
ic changes, in contrast to mutations in protein-coding
sequences that frequently cause catastrophic component
failure. Until recently, most mapping projects have
focused on protein-coding sequences, and the limited
number of identified regulatory mutations have been
interpreted as affecting conventional cis-acting promoter
and enhancer elements, although these regions are often
themselves transcribed. Moreover, ncRNA-directed regu-
latory circuits underpin most, if not all, complex genetic
phenomena in eukaryotes, including RNA interference-
related processes such as transcriptional and post-
transcriptional gene silencing, position effect variegation,
hybrid dysgenesis, chromosome dosage compensation,
parental imprinting and allelic exclusion, paramutation,
and possibly transvection and transinduction. The next
frontier is the identification and functional characteriza-
tion of the myriad sequence variations that influence
quantitative traits, disease susceptibility, and other
complex characteristics, which are being shown by
genome-wide association studies to lie mostly in non-
coding, presumably regulatory, regions. There is every
possibility that many of these variations will alter the
interactions between regulatory RNAs and their targets, a
prospect that should be borne in mind in future
functional analyses.

Introduction

Genome sequencing projects have shown that the numbers of

protein-coding genes and the extent of protein-coding sequences

do not change appreciably across the vertebrates nor indeed across

the metazoa as a whole, despite large differences in developmental

complexity [1]. On the other hand, the extent of non–protein-

coding intronic and intergenic sequences in genomes does increase

with developmental complexity, suggesting that these sequences

may contain increasingly elaborate regulatory information [1].

In recent years it has also become evident that the vast majority of

the mammalian genome, and that of other complex organisms, is

transcribed, apparently in a developmentally regulated manner, to

produce large numbers of ncRNAs that are antisense, intergenic,

interleaved, or overlapping with protein-coding genes [2–5]. In

addition, there are increasing reports (Figure 1) of the functionality of

individual ncRNAs in mammals (Table 1), other animals (see, e.g.,

[6–8]), plants (e.g., [9,10]), and fungi (e.g., [11]), particularly in

relation to developmental processes [12]. These include the

involvement of ncRNAs in the regulation of the expression of

homeotic genes [7,13], oncogenes [14], and metabolic genes [15], as

well as in the regulation of skeletal development [16], eye

development [17], epithelial-to-mesenchymal transition [18], and

subcellular structures [19–22], among many others (for reviews and

additional examples, see [4,12,23–25]).

There is also compelling genome-wide evidence that the large

numbers of identified but as yet unstudied intronic, intergenic, and

antisense ncRNAs have intrinsic indices of functionality (Table 2),

as indicated by the following: (i) the conservation of their

promoters, splice junctions, exons, predicted structures, genomic

position, and expression patterns [2,26–36]; (ii) their dynamic

expression and alternative splicing during differentiation

[13,31,32]; (iii) their altered expression or splicing patterns in

cancer and other diseases [37–49]; (iv) their association with

particular chromatin signatures that are indicative of actively

transcribed genes [31,32]; (v) their regulation by key morphogens

and transcription factors [31,32,49,50]; and (vi) their tissue- and

cell-specific expression patterns and subcellular localization

[16,17,19–22,49,51–56].

Indeed, a recent study of over 1,300 mouse ncRNAs showed

that almost half of them exhibit precise expression patterns in

different parts of the brain, including different subregions of the

hippocampus, olfactory bulb, neocortex, and cerebellum [52].

While many ncRNAs, like other regulatory sequences (see below),

appear to be evolving quickly, including those with well-validated

functions [26], most retain conserved patches within them [26,32],

and some may be under positive selection, especially in the brain

[57]. At least some of these RNAs, including intronic RNAs, are

precursors for small regulatory RNAs like microRNAs (miRNAs),

small interfering RNAs (siRNAs), piwi-interacting RNAs (piR-

NAs), and small nucleolar RNAs (snoRNAs) [58–68]. Many

miRNAs are highly conserved from nematodes to humans,

whereas others are primate-specific, and their full repertoire

remains to be determined [4,69,70].
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It is widely accepted that animals have a relatively common set

of protein-coding genes and that, notwithstanding lineage-specific

innovations and splice variants, the primary basis of phenotypic,

especially morphological, radiation and higher complexity has

been the variation and expansion of the regulatory architecture

that controls the deployment of these protein components and

their isoforms during differentiation and development [71]. This

regulatory architecture is generally more plastic than protein-

coding sequences that are highly constrained by relatively strict

structure-function relationships, which is reflected by the fact that

regulatory sequences evolve at widely different rates [72–75].

These sequences range from promoter regions that have no

recognizable sequence similarity yet direct orthologous patterns of

gene expression between fishes and mammals [76] to highly

conserved non-genic elements [77,78], and ‘‘ultraconserved’’

sequences that have remained essentially unchanged over

hundreds of millions of years of vertebrate evolution and appear

to act as tissue-specific enhancers that regulate gene expression

during development [79–82].

Regulatory sequences are also generally assumed to operate

through their interactions with sequence-specific transcription

factors and other regulatory proteins, but this assumption has been

made in ignorance, until recently, of the extent of developmentally

regulated transcription of ncRNAs from the genome, including

many regions spanning enhancers and promoters (see, e.g.,

[45,83–86]). The possibility is therefore that the genomes of

mammals and other complex organisms encode a large repertoire

of regulatory RNAs [4]. Indeed, the case has been made that a

much higher degree of regulatory sophistication, aided by the co-

option of the considerable powers of RNA to transmit sequence-

specific information, was a prerequisite for the evolution of

developmentally complex organisms [87,88], and that many of

these RNAs may be involved in the regulation of developmental

processes, including the epigenetic trajectories that underpin them,

for which there is increasing evidence [12,89].

However, if these ncRNAs are functional and important in

developmental and physiological processes, why have so few been

identified in genetic screens to date? Here I outline the emerging

evidence for ncRNA involvement in key molecular genetic

phenomena and in specific functions and phenotypes. I also

outline the expectational, perceptual, and practical factors that

may collectively account for the low genetic visibility of individual

ncRNAs. Awareness of these factors and the possibility that the

structure of the genomic programming of complex organisms is

different from our current understanding may lead to the

increased recognition of ncRNAs in genetic analyses, assisted by

the emerging fusion of genetics, genomics, and systems biology.

Phenotypic Impact

The ability to detect a relevant mutation or variation is

dependent on the sensitivity of the phenotypic screen. Mutations

in protein-coding sequences usually give severely compromised

(i.e., obvious) phenotypes, whereas those in regulatory sequences

often do not. Proteins are the key structural and functional

analogue components of cells, and the loss of their function is often

disastrous, leading in many cases to obvious defects, and in some

cases to embryonic lethality. Mutations in generic transcription

factors and other ‘‘regulatory’’ proteins are included, and their loss

causes pleiotropic effects on gene expression at many loci and

plays an important role in the molecular etiology of cancer

[71,90,91]. This is in contrast to regulatory sequences, which,

when damaged, may only affect a small part of the network, with

more restricted and subtle consequences, often referred to as

quantitative trait variations. Indeed the use of the word

‘‘mutation’’, as opposed to ‘‘variation’’, reflects an inherent bias

in the identification of genetic factors that influence phenotype in

animals, with those exhibiting strong effects understandably

having taken precedence over those that do not, both perceptually

and practically. Consistent with this, until recently, there were

Figure 1. The recent rise in papers on ncRNAs. The number of indexed Medline entries with the words ‘‘non-coding RNA’’, ‘‘noncoding RNA’’,
‘‘non-protein-coding RNA’’ or ‘‘ncRNA’’ in the title, abstract or keywords is plotted per year. Data courtesy of Ryan J. Taft.
doi:10.1371/journal.pgen.1000459.g001
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Table 1. Examples of functional mammalian noncoding RNAs.

Name Characteristics Function
Experimental
Methodologya References

Air 108 kb; transcribed from an antisense
promoter located in intron 2 of Igf2r

Regulates genomic imprinting of a cluster of
autosomal genes on mouse chromosome 17

Mutagenesis; FISH; ChIP;
RNA-IP

[156,189,196]

BACE1AS ,2 kb; transcribed antisense to beta-
secretase-1 (BACE1) gene, elevated in
Alzheimer disease

Regulates BACE1 expression in vitro and in
vivo, influences amyloid-beta 1–42 levels

shRNA and siRNA knockdown [197]

BC1 152 nt; expressed by a specific subset
of neurons in the central and peripheral
nervous system; dendritic location

Affects exploratory behaviour and anxiety,
represses translation by targeting initiation
factor 4A helicase

In vivo knockout, biochemical
analyses

[100,198]

Borg ,2.8 kb; induced by bone morphogenic
proteins (BMPs) and osteogenic proteins

Regulates BMP-induced differentiation of
C2C12 cells into osteoblastic cells

Antisense knockdown [199]

CCND1
associated
ncRNAs

Unspecified sizes; transcribed from the
promoter region of the cyclin D (CCND1)
gene; induced by DNA damage signals

Allosterically modifies the RNA-binding
protein TLS (‘‘translocated in liposarcoma’’),
leading to inhibition of CREB-binding protein
and histone acetyltransferase activities to
repress cyclin D1

ChIP; RNA-IP; siRNA
knockdown

[200]

CUDR ,2.2 kb; up-regulated in a doxorubicin-
resistant human squamous carcinoma

Regulates drug sensitivity, cellular
transformation and apoptosis

Overexpression [201]

EGO ,1.0 and 1.7 kb; highly expressed in
human bone marrow and in eosinophil
development

Regulates expression of myelin basic protein
and eosinophil-derived neurotoxin mRNAs

siRNA knockdown [202]

DHFR upstream Unspecified size; transcribed upstream of
the dihydrofolate reductase (DHFR) gene

Regulates DHFR expression by formation of
triple helix in the DHFR promoter

siRNA knockdown,; ChIP;
RNA-IP, other

[15]

Evf-2 ,3.8 kb; antisense to Dlx6; developmentally
regulated, expressed in the ventral forebrain

Cooperates with Dlx-2 in vivo to increase the
transcriptional activity of the Dlx-5/6
enhancer in a target and homeodomain-
specific manner

Overexpression; siRNA
knockdown; mutagenesis;
ChIP

[154]

Gadd7 754 nt; induced by lipotoxic-stress Regulates lipid-induced oxidative and ER
stress

Mutagenesis; shRNA
knockdown

[203]

GAS5 ,7 kb; growth arrest-specific transcript,
multiple splice isoforms, encodes several
snoRNAs in its introns, down-regulated in
breast cancer

Controls apoptosis and the cell cycle in
lymphocytes

siRNA knockdown;
overexpression

[204]

H19 2.3 kb; imprinted (maternal allele active) at
the Igf2 locus; strongly expressed during
embryogenesis; up-regulated in various
tumours

Complex functions, influences growth by
way of a cis control on Igf2 expression
implicated as both a tumour suppressor
and an oncogene

siRNA knockdown;
overexpression; in vivo
knockout

[205–207]

HOTAIR 2.2 kb; transcribed from the HOXC locus
from a position intergenic and antisense
to the flanking HOXC11 and HOXC12 genes

Epigenetically silences gene expression at
the HOXD locus

siRNA knockdown [13]

HOTAIRM1 483 nt; specific to the myeloid lineage Involved in RA-induced expression of HOXA1
and HOXA4 during myeloid differentiation,
and induction of myeloid differentiation
genes CD11b and CD18

shRNA knockdown [49]

Hsr1 ,600 nt; ubiquitously expressed Required for heat shock response siRNA and antisense
knockdown

[208]

IGS RNAs 150–300 nt; originate from the intergenic
spacers (IGS) that separates rRNA genes;
bind to the chromatin remodelling complex
NoRC

Required for the nucleolar localization of
NoRC and epigenetic control of the rDNA
locus

Mutagenesis; antisense
knockdown

[209]

Kcnq1ot1 91 kb; paternally expressed from Kcnq1
imprinting control region

Mediates organization of a lineage-specific
nuclear domain involved in epigenetic
silencing of the Kcnq1 imprinting control
region

Mutagenesis; ChIP; RNA/DNA
FISH

[22,155,
157,210]

Khps1a 1,290 nt; originates from the CpG island
and overlaps a tissue-dependent
differentially methylated region of Sphk1

Regulates DNA methylation in the tissue-
dependent differentially methylated region
of Sphk1

Overexpression [211]

lincENC1 Size unspecified; ,181 kb from Enc1 Regulates cell proliferation in embryonal
stem cells

shRNA knockdown [32]

MEG3 ,1.6 kb; maternally expressed from the
Dlk1-Gtl2 imprinted locus

Regulates p53 expression, inhibits cell
proliferation in the absence of p53

Overexpression, mutagenesis [192]
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relatively few regulatory mutations identified among the catalogue

of known human mutations that are associated with overt genetic

disease.

There is, of course, a wide spectrum of effects of both coding

and noncoding mutations (Figure 2), and there are exceptions to

the rule in both directions. Loss-of-function mutations in some

protein-coding genes have mild effects [92], as exemplified by as

knockouts of the mammalian genes encoding calbindin D9k [93]

and C/EBPdelta [94,95], and the significant number of yeast

genes that show no observable phenotype. Reciprocally, knockouts

of some highly conserved miRNAs, many of which have multiple

targets, give strong phenotypes [96–98], even though very few

Name Characteristics Function
Experimental
Methodologya References

MEN e/b
(Neat1)

,3.5 and ,23 kb; up-regulated upon
muscle differentiation; transcribed from the
multiple endocrine neoplasia 1 (MEN1) locus

Required for the structural integrity of
nuclear paraspeckles

Antisense, siRNA knockdown;
overexpression; FISH

[19–21]

ncR-uPAR ,350 bp; upstream of human protease-
activated receptor-1 (PAR-1) gene

Up-regulates Par-1 promoter Overexpression [212]

Nkx2.2AS 4.3 kb; antisense to Nkx2, preferentially
expressed in the nervous system

Enhances oligodendrocytic differentiation Overexpression [213]

NRON ,2.7 kb; enriched in placenta, muscle, and
lymphoid tissues

Modulates NFAT nuclear trafficking siRNA knockdown [214]

p15AS 38.4 kb; antisense to the tumour suppressor
gene p15

Epigenetically silences p15 expression Overexpression [14]

PCGEM1 1,643 nt; prostate tissue-specific and prostate
cancer-associated

Inhibits apoptosis induced by doxorubicin Overexpression [215]

PRINS ,3.6 kb; elevated expression in psoriatic
epidermis; regulated by the proliferation
and differentiation state of keratinocytes.

Required for cell viability after serum
starvation

siRNA knockdown [42]

PINC ,1 and 1.6 kb; developmentally regulated,
expressed in mammary gland

Performs dual roles in cell survival and
regulation of cell-cycle progression

siRNA knockdown; FISH [216]

RepA ,1.6 kb; internal to Xist Recruits the Polycomb complex, PRC2, to the
inactive X chromosome, with Ezh2 serving
as the RNA binding subunit

ChIP; FISH; overexpression;
shRNA knockdown

[128]

SAF 1.5 kb; transcribed from the opposite strand
of intron 1 of the human Fas gene

Regulates Fas-mediated but not TNF-alpha-
mediated apoptosis

Overexpression [217]

SatIII Various sizes up to .1.4 kb; transcribed from
satellite DNA associated with, and localized in,
nuclear stress bodies

Mediates recruitment of RNA processing
factors to, and formation of, nuclear stress
bodies

Antisense and siRNA
knockdown

[218]

SCA8 Predicted gene product underpinning the
triplet repeat expansion-induced
neurodegenerative disease Spinocerebellar
Ataxia 8

Induces late-onset, progressive
neurodegeneration in the Drosophila retina;
associates with the RNA binding protein
staufen

Ectopic expression in
Drosophila; genetic
modifier screen

[39]

TERRA /
TelRNAs

Various sizes; transcribed from and associated
with telomeres; contain UUAGGG repeats

May form G-quartet structures with telomere
DNA; inhibit telomerase activity

RNA FISH; oligo-nucleotide
inhibition

[219,220]

Tsix ,40 kb; antisense to Xist Epigenetically silences Xist expression by
inhibiting RepA recruitment of polycomb
complexes to maintain the active X
chromosome in females

Mutagenesis [128,221–223]

TUG1 6.7 kb; expressed in the developing retina and
brain

Required for the proper formation of
photoreceptors in the developing rodent
retina

shRNA knockdown [17]

UCA1 1,442 nt; expressed in embryonic development
and bladder cancer

Enhances tumorigenic behaviour of bladder
cancer cells in vitro and in vivo

Overexpression [224]

Xist ,17 kb; mosaic expression in females Epigenetically controls dosage compensation
by silencing one of the two X chromosomes

Mutagenesis for recent
review see [99]

Y RNAs 83–112 nt; up-regulated in cancer; bound by
Ro autoantigen

Regulate cell DNA replication and cell
proliferation

siRNA knockdown [47,225]

Zeb2NAT .680 nt; antisense to Zeb2, a transcriptional
repressor of E-cadherin

Regulates splicing of the Zeb2 59 UTR Overexpression [226]

Zfh-5AS ,10 kb; expressed in particular regions of
the developing brain

Regulates expression of the transcription
factor Zfh-5 mRNA

Mutagenesis [227]

This list is not exhaustive, and there are other examples of functional ncRNAs in mammals (see e.g. [228]) as well as of regulatory and structural ncRNAs in other animals,
plants, fungi (see e.g. [6–11]) and bacteria [229].
aAbbreviations used are: siRNA, short interfering RNA; shRNA, short hairpin RNA; FISH, fluorescence in situ hybridization; ChIP, chromatin immunoprecipitation; RNA-IP,
immunoprecipitation of RNA associated with particular proteins.

doi:10.1371/journal.pgen.1000459.t001

Table 1. cont.
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such genes have been identified in genetic screens in Caenorhabditis

elegans and Drosophila, and none have been identified in mice,

despite the intensity of such screens (see below). Moreover, to date,

no naturally arising mutations have been discovered in the Xist

gene in either humans or mice, despite the central role that this

ncRNA plays in embryogenesis and in X-chromosome dosage

control in females [99], possibly because such mutations are lethal.

On the other hand, the potential subtlety of mutations in

ncRNAs, even when they are targeted by reverse genetics, is

illustrated by the case of BC1, which is expressed in synaptoden-

dritic domains of neurons in rodents. Knockout of this transcript

produces no obvious physical or neurological abnormality, and the

mutant mice were initially indistinguishable from wild type, but

were subsequently found to have reduced exploratory behaviour

and consequently a higher mortality in field experiments [100].

Thus this ncRNA causes a subtle behavioural phenotype that is

invisible in the cage, and would escape detection in superficial

forward genetic screens, but is almost certainly strongly disadvan-

tageous in the wild. Similarly, deletions or insertions in some

ultraconserved enhancers yield no discernable abnormality

[101,102], despite the fact that these sequences are clearly under

intense selection [103], suggesting insensitivity of phenotypic

screens in captivity or redundancy in the regulatory architecture

(perhaps associated with developmental robustness) that we have

yet to understand.

Monogenic Diseases and High Penetrance
Mutations

The generally stronger effects of protein-coding mutations leads

to a sampling bias, in that more severe phenotypes are not only

more easily discerned but have also been more likely to attract

further study, both in medical contexts and in model organisms. In

medicine, mutations involving catastrophic component damage

have been traditionally referred to as ‘‘monogenic diseases’’ and

were the primary targets of study in the pioneering days of human

genomics, just a decade or two ago, when the protein-coding genes

underpinning cystic fibrosis, Huntington disease, and Duchenne

muscular dystrophy, among others, were identified by positional

mapping and cloning approaches. Thus, in humans, mutation

mapping is still both a young science and extraordinarily difficult

due to the sheer complexity of the genome, which naturally led to

an initial focus on severe loss-of-function diseases that exhibit

simple inheritance patterns with high penetrance (‘‘single gene–

large effect’’) making them amenable to identification. This is now

changing with the increasing availability of human genome

sequences, and the application of genome-wide association

(GWA) studies to the mapping of the genetic components of

Table 2. Indices of the functionality of ncRNAs.

Feature References

Conservation of promoters [2,27,32]

Conservation of splice junctions [27]

Conservation of sequence [26,27,32]

Conservation of genomic position [31,33,34]

Conservation of secondary structure [28–30]

Positive selection [230]

Conservation of expression [35,36]

Dynamic expression and alternative splicing [13,31,32]

Altered expression or splicing in cancer and other
diseases

[37–49]

Association with particular chromatin signatures [31,32]

Regulation by morphogens and transcription factors [31,32,49,50]

Tissue- and cell-specific expression patterns [16,17,19–22,49,51–56]

Specific subcellular localization [19–22,52,56]

doi:10.1371/journal.pgen.1000459.t002

Figure 2. The contrasting effects of mutations in protein-coding and regulatory sequences. A conceptual diagram of the spectrum of
phenotypic effects of mutations in sequences encoding proteins and other analogue components of cells (continuous line) versus variations in non-
coding sequences that specify regulatory interactions (dashed line).
doi:10.1371/journal.pgen.1000459.g002
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complex traits, wherein lies the majority of the health burden and

the majority of the interesting phenotypic differences between

individuals and species.

Complex Traits and GWA Studies

Indeed, functional classification of sequence variations that have

been identified by GWA studies to be associated with complex

traits, albeit still strongly focused on those of medical importance,

shows that the vast majority of variations are located in noncoding

regions [104,105]. In most cases, the causative mutations have yet

to be defined, and their mechanistic basis is unknown—especially

whether they affect cis-acting binding sites for regulatory proteins

or the function or expression of regulatory RNAs. One good

candidate for the latter is the ncRNA ANRIL, which lies antisense

to CDKN2A and traverses a noncoding region centromeric to

CDKN2A, a region implicated in a range of complex diseases

including cancer, type 2 diabetes, periodontitis, and coronary

heart disease [106–112]. Perplexingly, however, those variants

mapped by GWA studies to date account for only a small

proportion of genetic variation in disease or quantitative traits

[113]. These traits are clearly multifactorial and may be affected

by rare variants with strong effects that have yet to be recognized.

The identification of the sequence changes that directly

underpin quantitative trait variations has thus far been possible,

or at least achieved, only in well-structured pedigrees in plants and

animals. In the few cases where such quantitative trait loci (QTLs)

have been mapped to completion, most have been found to be

located in noncoding sequences, specifically: (i) regulatory

sequences in promoters and distal enhancers (e.g., the ‘‘teosinte

branched1’’ mutation affecting branching and inflorescence in

maize [114]); (ii) 39 untranslated regions (UTRs) (e.g., those

underlying Tourette’s syndrome [115], and muscular hypertrophy

in sheep [116]; see also below); (iii) introns (e.g., a QTL affecting

muscle growth in domestic pigs [117]); or (iv) intergenic sequences

of unknown transcriptional status (e.g., the ‘‘callipyge’’ mutation

causing posterior muscular hypertrophy in sheep [118]). The latter

occurs in an imprinted locus and affects the expression of a

number of protein-coding and ncRNA genes [119] associated with

an unusual genetic phenomena termed ‘‘polar overdominance’’

[120], which may also occur in humans [121]. While these

mutations are reasonably assumed to be regulatory in nature, their

mechanistic basis has not been determined, although in the latter

case, there is some evidence for the involvement of trans-acting

miRNAs [119,122]. In addition, linkage studies in a large family

have recently identified the ncRNA AK023948 as a candidate

susceptibility gene for papillary thyroid carcinoma [123].

Type of Mutation and Sensitivity of the Model
System

The nature of the organism under study and the type of

mutations also affect the outcome of genetic screens—relevant

single-base mutations are not only harder to identify than

insertions/deletions, especially in mammalian genomes and even

in inbred mice, but also have milder effects on regulatory

sequences.

Most mutations induced by ENU mutagenesis involve single-

base changes, which are also, along with small indels and copy

number variations, the most common type of natural variation in

humans and other mammals, where few regulatory mutations

have yet been identified. Whereas a nonsynonymous mutation in a

protein-coding sequence can have severe effects on the structure

and function of the protein, many regulatory sequences have loose

consensus sequences, and variations in them, as noted already,

may have subtle effects and go unnoticed, especially in superficial

phenotypic screens.

On the other hand, insertions and deletions dominate

mutational screens in Drosophila, and a large number map to

noncoding intergenic and intronic regions. This is exemplified by

the intensively studied bithorax complex, where there are not only

mutations known in the coding sequences for the homeotic protein

Ultrabithorax (Ubx), but also in upstream (bithoraxoid or bxd) and

intronic (Contrabithorax or Cbx and anterobithorax or abx) sequences

[124], which contain conserved blocks within them [125–127].

Such noncoding mutations are interpreted as affecting orthodox

cis-acting enhancer sequences (i.e., those that bind cis-acting

regulatory proteins), despite the fact that (for example) bxd

mutations fall within a region that is transcribed during early

embryogenesis into a complex set of short polyadenylated RNAs

with no coding potential. These RNAs arise by alternative splicing

of at least 11 exons derived from a 26-kb primary transcript [126].

Moreover, these regulatory regions involve interaction with

Polycomb-group and Trithorax-group proteins, which are in-

creasingly implicated as being directed to their sites of action by

ncRNAs [7,13,128] (see below).

Similarly the iab regulatory elements of the bithorax complex

that control the expression of abdominal-A and Abdominal-B, and

consequently the identities of the 2nd–9th abdominal segments,

are transcribed into ncRNAs in a spatially ordered pattern [129].

It has also recently been shown that 231 ncRNAs are expressed

from the four human HOX loci in a spatially and temporally

ordered progression along developmental axes, one of which

(termed HOTAIR) from the HOXC locus controls expression of the

HOXD locus in trans, as shown by siRNA-mediated knockdown

experiments [13]. None of these ncRNAs has yet been specifically

associated with a genetic variant in mammals, although in

Drosophila there are many homeotic mutations that lie in regions

encompassed by ncRNAs [12,124], and Drosophila geneticists were

clearly intrigued by them [130]. Moreover, as pointed out by Rinn

et al. [13], the existence of such transacting regulatory ncRNAs

may explain the observation that the deletion of the entire HOXC

locus exhibits a milder phenotype than the deletion of individual

HOXC genes [131].

Despite the now known importance of miRNAs in the control of

gene expression [67,132], only four miRNA loci have been

identified in intense genetic screens in C. elegans and Drosophila, and

none in mammals. This may be partly due to the fact that C. elegans

is hermaphroditic and naturally driven to homozygosity in

individual isolates, without the need for laborious back-crossing,

and flies are routinely bred to homozygosity in mutational screens,

making screening of recessive mutations far more efficient than in

mice. There was also an element of serendipity, in that the first

identified miRNA locus, lin-4, expressed a small RNA whose

complementary sequence was present in multiple copies in the 39

UTR of its target gene, lin-14, and thus was relatively easy to

pinpoint [133,134], which also applied in the subsequent case of

let-7 [135].

Following the discovery of miRNAs, Drosophila mutants of

uncertain provenance that mapped in gain-of-function screens to

noncoding regions were re-analysed, and one that regulates

growth [136], termed bantam, was identified to encode a miRNA

[137]. The miRNAs let-7 [135] and lsy-6 [138] were also identified

genetically in C. elegans, not in other organisms, despite the former

being not only highly conserved in sequence and expression

pattern throughout metazoan evolution [139], but also funda-

mental to normal and abnormal developmental processes [140–

142], as are many other miRNAs [143]. On the other hand, lsy-6
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is expressed in only a few cells [144], and has only rarely turned up

in deep sequencing libraries. Subsequently most known miRNAs,

of which there are hundreds in mammals, and later piRNAs, have

been identified by biochemical not genetic means. In view of the

lsy-6 example and the clearly incomplete sampling of the small

RNA transcriptome, even using deep sequencing [70], there are

likely to be many more.

Expectations and Interpretations

There has also been a strong expectation that mutations that

have phenotypic effects will map to protein-coding genes or cis-

regulatory elements that interact with regulatory proteins. The

former has influenced the practical strategies for mutation

searching, in terms of a focus on exon scanning of candidate

genes (see below), and the latter has influenced the interpretation

of regulatory variations, although in only a few cases has the

mechanistic basis been determined [71,145]. Some mutations map

to gene ‘‘deserts’’ (see, e.g., [146]), and while it is conceivable that

they affect distal enhancers (see, e.g., [147]), it is interesting and

relevant to note that there is good evidence that enhancers and

other regulatory sequences are transcribed into ncRNAs in the

cells in which they are active [45,83–86], and hence may act in

part via ncRNAs.

Transvection and Locally Acting ncRNAs
Many loci, such as the bithorax complex referred to earlier,

exhibit a genetic phenomenon called ‘‘transvection,’’ whereby a

wild-type regulatory region upstream of a defective protein-coding

sequence on one chromosome can rescue a relatively normal

phenotype, when it is combined with a mutant regulatory region

linked to a wild-type protein-coding sequence on the homologous

chromosome (both of which give mutant phenotypes when

homozygous) [130]. This phenomenon is well documented in

Drosophila but appears to occur in most animals and has been

interpreted as a physical cross-talk between functional cis-acting

promoters or enhancers on one chromosome to engender

transcription of adjacent protein-coding genes on the other, since

the effect is usually pairing-dependent and lost when the

regulatory and protein-coding sequences are separated to

nonsyntenic positions in the genome [130,148]. However, this is

not always the case—at some loci, transvection between regulatory

elements and protein-coding sequences can operate over large

distances (even between different chromosomes) [149–152],

suggesting the involvement of a trans-acting signal. Moreover,

many promoter elements that exhibit transvection are transcribed

into ncRNAs, and transvection is altered in Polycomb and zeste

mutants [125–127,130], indicating that epigenetic processes

(which may be regulated by ncRNAs, see below) are involved.

Taken together, these observations raise the possibility that

transvection is mediated by trans-acting RNAs [153], in which

case the observed cross-complementation may occur simply as a

result of a compound heterozygosity between a regulatory ncRNA

locus and a nearby protein-coding locus whose expression is

controlled by it.

In support of this proposition, there is now rapidly emerging

evidence that many ncRNAs derived from either same or opposite

strands act locally to regulate the epigenetic status and expression

of nearby protein-coding genes, often involving the recruitment of

chromatin-activator or repressor complexes [7,13–16,89,154–

157], with sense-antisense pairs in some cases being the substrate

for the generation of siRNAs [63–65,68]. Moreover the many

deletion studies of gene promoter regions to define regulatory

sequences have almost always assumed, physically and mechanis-

tically, that resultant changes to expression patterns are due to the

loss of cis-acting protein binding sites rather than deletions in the

same or opposite strand ncRNAs that frequently traverse and are

expressed from the same region. The complexity of these

relationships is illustrated by the examples of the ncRNA DLeu2

(deleted in lymphocytic leukemia 2), which has multiple splice variants

and lies antisense to genes in a region deleted in various

malignancies [158], and the ncRNA ANRIL referred to earlier.

Thus the interpretation of the mechanisms by which such

mutations operate remains not only an open question but a

difficult problem to disentangle, given the complex interlacing and

overlapping coding and noncoding transcripts, and splice variants

thereof, that are expressed from many loci in different cells and

tissues [2,3].

Transinduction, Ectopic Expression and Gene Knockouts
RNA is also implicated in a curious genetic phenomenon called

‘‘transinduction,’’ whereby transient transfection of a b-globin

gene induces transcription of the ‘‘locus control region’’ and

intergenic regions at the chromosomal b-globin locus in non-

erythroid cell lines. This effect is dependent on transcription of the

globin gene from the transfected plasmid and its association with

the endogenous b-globin locus, but not on protein expression, and

therefore is RNA-mediated [83], although the responsible

sequences have not been mapped. Indeed, the general assumption

that mRNA is simply an intermediate between gene and protein,

albeit with cis-acting regulatory elements, may be incorrect, and

there may be a false dichotomy between coding and noncoding

RNA [159]. This is indicated by the complexity of overlapping

sense and antisense coding and noncoding transcripts from most

genomic loci [2–5] and evidence that protein-coding sequences are

under constraint not only at the amino acid sequence level, but

also within their RNA sequence [160]. Moreover, given that many

gene knockout studies concomitantly delete potential sources of

regulatory ncRNAs such as introns (given that many miRNAs and

all snoRNAs are sourced from introns) and antisense transcribed

sequences, all aspects of the observed phenotypes cannot be

unequivocally or solely ascribed to the loss of the protein without

complementation studies or more precise deletions that are rarely

done for reasons of technical difficulty.

Technical Limitations

The focus on protein-coding sequences has been reinforced by a

practical problem, especially in mammals. Mutation mapping

studies using whole-genome scanning techniques usually have not

pinpointed the causative mutation or variation, and the affected

region may encompass one megabase or more. Until recently,

comparative sequencing of such regions was not feasible, and in

any case it can be very difficult to sort the relevant polymorphism

from the considerable background variation in huge intergenic

and intronic regions, especially in outbred human populations. In

most circumstances, understandably, investigators have resorted to

analysing the most plausible candidate genes (recently including

those expressing noncoding transcripts or ESTs [158,161]) usually

involving scanning of known exons (and sometimes the immediate

59 flanking promoter sequences and UTRs) in the region by PCR

amplification, in the hope that they can identify the causative

mutation in these locations, which in turn are the ones that are

then reported in the literature. However, there are many informal

reports of mapping studies that have not identified such exonic

mutations, and which consequently lie in abeyance, including (as

noted already) the large number of GWA studies that have

mapped disease-associated variations to noncoding, presumably
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regulatory, regions [104]. A reasonable strategy for searching for

the relevant variations in these regions may be to focus on

sequences that exhibit evolutionary conservation and/or whose

expression is altered [162]. Conversely, reverse genetic screens

looking for phenotypes associated with ncRNAs might target

conserved blocks within them and focus on tissues where they are

known to be expressed.

Mutations Affecting trans-Acting Functions of
mRNAs

As noted above, regulatory mutations have been identified in

the 39 UTRs of mRNAs, such as those underlying Tourette’s

syndrome [115] and muscular hypertrophy in sheep [116], which

appear to involve gain- or loss-of-function of miRNA binding sites.

Interestingly, however, a number of other reported 39 UTR

mutations do not appear to act in cis to regulate the expression of

the associated mRNA, as is normally assumed, but rather in trans

as ncRNAs. For example the 39 UTR of prohibitin (in the absence

of the associated protein-coding sequences) can inhibit cell cycle

progression in one complementation group of breast cancer–

derived cells that is characterized by naturally occurring mutations

in the 39 UTR, indicating that these sequences are in fact

functioning, in part, as trans-acting ncRNAs [163,164]. Similarly,

the oogenesis defect observed in Drosophila oskar null mutants is

rescued by the oskar 39 UTR alone [165].

A trans-acting function for mRNA sequences, both coding and

noncoding, may be more general that expected. For example, the

introduction of cancer-associated silent point-mutations in p53

mRNA alters its binding to the protein Mdm2, which in turn alters

p53 expression and function [166]. The 39 UTRs of troponin I,

tropomyosin, and a-cardiac actin have been shown to reactivate

muscle-specific promoters in a differentiation-defective myoblast

mutant, enhance the differentiation of wild-type muscle cells, and

suppress the proliferation of fibroblasts independently of their

normally associated protein-coding sequences [167]. Similarly, the

39 UTRs of tropomysin [168] and ribonucleotide reductase [169]

can suppress tumour formation, and the 39 UTR of the DM

protein kinase gene, which is involved in myotonic dystrophy,

inhibits the differentiation of C2C12 myoblasts [170]. Moreover,

many 39 UTRs in mouse appear to be expressed separately from

their mRNAs in a developmentally regulated manner [171].

There other examples of mutations in sequences encoding 39

UTRs that do not act via the UTR. A single nucleotide

polymorphism that determines susceptibility to an autoimmune

thyroid disease occurs both within the 39 UTR of the ZFAT gene

(zinc-finger gene in AITD susceptibility region) and also within the

promoter of an antisense transcript (SAS-ZFAT), and increases the

expression of ZFAT not through increasing mRNA stability, but by

repressing the expression of the antisense transcript [172].

Regulation of Complex Genetic Processes by
ncRNAs

Apart from the general presumption that most ncRNAs will be

involved in regulation, variations in which will often have,

individually, subtle effects on phenotype, there is, in fact, general

evidence of their positive genetic signatures, as ncRNAs underpin

most, if not all, complex genetic processes in the higher organisms.

These include RNA interference-related phenomena such as co-

suppression and transcriptional gene silencing [132,173–176], as

well as position effect variegation [177,178], hybrid dysgenesis

[179], parental imprinting, X-chromosome dosage compensation

and allelic exclusion [180], germ cell reprogramming [181], and

paramutation [182,183], all of which involve epigenetic processes.

Indeed, as noted already, there is increasing evidence that a major

function of ncRNAs, both small and large, is the regulation of

epigenetic memory through modifications to DNA and chromatin

structure, involving the recruitment of DNA methyltransferases,

histone-modifying enzymes, and chromatin remodelling complex-

es to their appropriate sites of action (including ncRNA genes

themselves) in particular cells at particular stages of differentiation

(for reviews, see [12,89,184]; also Table 1).

Examples of Mutations in ncRNAs

There are some known examples of mutations in ncRNAs, aside

from those mentioned already, that give recognizable phenotypes

or that are strongly implicated in altered phenotypic states. These

include a triplet repeat expansion in the ncRNA SCA8, which

causes the human neurodegenerative disease Spinocerebellar

Ataxia 8 (which as a transgene can induce progressive retinal

neurodegeneration in Drosophila) [39] and other examples of

deleterious gain-of-function mutations in noncoding RNAs

associated with diseases such as myotonic dystrophy [185],

deletions encompassing ncRNA loci and alterations to ncRNA

splicing patterns in various cancers [47,106,158,161,186,187], and

a SNP variant in an ncRNA MIAT that confers risk of myocardial

infarction [188]. They also include many ncRNAs, including small

nucleolar RNAs, that appear to be important in the mechanism of

imprinting [189] and the molecular etiology of associated

pathologies such as Prader-Willi syndrome [190,191], some that

are implicated as tumour suppressors [168,192], or that are

located at chromosomal translocation breakpoints associated with

B-cell lymphoma [193] and schizophrenia [194]. It has also been

shown that the translocation and induced expression of an

antisense, long ncRNA can cause the epigenetic silencing of the

adjacent a-globin gene, resulting in a-thalassemia [195].

Conclusion

There is not (yet) a huge catalogue of mutations in ncRNAs that

have been shown to affect phenotype, compared to those in

protein-coding sequences. However, on the assumption that most

ncRNAs are regulatory and that most regulatory regions have yet

to be assigned genetic signatures, it is no surprise that this may be

the case. On the other hand, as screening for variations affecting

complex traits becomes more sophisticated, it is reasonable to

anticipate that many will map to, and affect the function of,

ncRNAs. Certainly this possibility should be borne in mind in the

interpretation of such variations and the consequent studies to

define their mechanism of action. The functional analysis of

ncRNAs is in its infancy, but in situ hybridization, genomic, and

structural characteristics, and the perturbation of their expression

by overexpression and siRNA-mediated knockdown are emerging

as major tools (Tables 1 and 2). There seems little doubt that there

is a hidden world of regulatory architecture underpinning the

development of complex organisms that we have yet to explore,

both genetically and functionally.
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