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THE
AMERICAN NATURALIST

Vol. 113, No. 4 The American Naturalist April 1979

THE GENETICAL EVOLUTION OF PATTERNS OF SEXUALITY:
DARWINIAN FITNESS*

Eric L. CHARNOV
Department of Biology, University of Utah, Salt Lake City, Utah 84112

Several authors have recently provided valuable discussions on the evolution and
implications of sexual reproduction (Trivers 1972; Williams 1975; Ghiselin 1974).
The models proposed here concern one particular aspect of this broad topic, which
may best be termed sex allocation. Most animal or plant species produce only two
types of gametes (large, small). In hermaphroditic organisms, a single individual
produces both large and small gametes in its lifetime. In dioecious organisms, males
and females are separate throughout their lives. Hermaphroditism (in animals) takes
two forms: (1) Sequential—an individual functions early in life as one sex and then
switches to the other sex for the rest of its life (? — 3 protogyny; 3 — ¢ protandry); (2)
Simultaneous—an individual produces both kinds of gametes in each breeding
season. While this scheme is too simplistic for plants (Grant 1975; Yamplosky and
Yamplosky 1922; Fryxell 1957), it is useful for animals, which show much less
diversity (Ghiselin 1969, 1974; Giese and Pearse 1974, 19754, 1975b).

In relation to the above scheme, the problems of sex allocation may be stated as
follows.

1. For a dioecious species, what is the equilibrium sex ratio (proportion of § in a
clutch) maintained by natural selection?

2. For a sequential hermaphrodite, what is the equilibrium sex order (3 — &,
? — 3) and time of sex change?

3. For a simultancous hermaphrodite, what is the equilibrium allocation of
resources to male versus female function in each breeding season?

4. Under what conditions are the various states of hermaphroditism or dioecy
evolutionarily stable? (e.g., when does selection favor genes for protandry over
dioecy ?) When is a mixture of sexual types stable?

5. Under what conditions does selection favor the ability of an individual to alter
its allocation to male versus female function in response to particular environmental
conditions?

These problems are very similar to one another in that each involves working out
an equilibrium under natural selection where the possible genotypes have a different

* This paper is dedicated to W. D. Bunker, whose standards of excellence I can only admire.
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genetic contribution through male versus female function. Of course, answers to the
questions must consider the biology of the organisms—growth, morphology, mortal-
ity, competition (interspecific and intraspecific), predation, patchiness in the envir-
onment, etc., as well as possible genetic factors (inbreeding, gene flow, etc.). The
equilibria may also differ depending upon the form of inheritance (e.g., parent-
offspring conflict over sex ratio—Trivers 1974; Trivers and Hare 1976; Alexander
and Sherman 1977; Autosomal-sex chromosome conflict over sex ratio—Shaw 1958;
Hamilton 1967).

The theoretical approach I use solves for a genetic equilibrium in a population.
Maynard Smith (1976) talked of the equilibrium value of a trait of interest as an
Evolutionarily Stable Strategy (or an ESS). An ESS is simply as follows. Suppose we
have a population of individuals who have some attribute X. We introduce into this
population a rare genotype with attribute X (where X+X ) and see whether the X
individuals are selected for or against (i.c., does the rare mutant spread ?). If for some
character of interest (e.g., primary sex ratio), there exists an X such that all deviants
are selected against, X is termed an ESS. The classical example is selection on the
primary sex ratio (Fisher 1930) where the ESS is one-half males at conception in the
simplest case. Thus a rare genotype producing an altered sex ratio in such a
population is selected against. As will be shown, the ESS idea is a very useful way of
asking such questions as: “At what age do we expect a cohort of protandrous shrimp
to change from & to 77 The answer is, “At an age when, under the prevailing
demographic and growth conditions, genotypes that switch at some other age
contribute less genetic material to future generations.” Constructed this way, the
models of population genetics can be used to provide answers. It is also possible that
the ESS is not a single action (pure strategy) but is some array of actions, each of
which takes place with some probability (mixed strategy). Finally, if the environment
is nonuniform, the ESS may consist of a set of actions, with a particular one
appropriate for a particular patch.

My treatment of various aspects of sex allocation theory is motivated by a rather
interesting pattern which has emerged from recent modeling efforts in this area
(MacArthur 1965; Leigh et al. 1976; Charnov et al. 1976). MacArthur (1965) showed
in a discrete generation model that natural selection favors females who control their
sex ratio, clutch size, and allocation of resources to offspring to maximize the product
of the sons alive at breeding age times the daughters. His argument used an
optimality model, but Spieth (1974) showed that the result follows from a simple
genetic model. Charnov et al. (1976) used a discrete generation model to show that
for a simultaneous hermaphrodite the equilibrium allocation of resources to male
versus female function again maximizes the product of the fitness achieved through
male function times that achieved through female function. These sex allocation
equilibria may be redescribed as follows: Selection favors a change in allocation (e.g.,
sex ratio, resources, etc.) if and only if the percent gain in fitness through one sex
function exceeds the percent loss through the other. Framed in this way, the
equilibria correspond very nicely to the following result which Leigh et al. (1976, p.
3656) derived for a sequential hermaphrodite. They showed that, “in a nearly stable
population of nearly constant age composition, selection favors a rare mutant (which
alters its age of transform) if and only if it increases the prospective reproduction of



EVOLUTION OF SEXUALITY 467

its newborn while they are members of one sex by a percentage exceeding the
percentage loss to the other sex.” They also noted that this percentage result applied
to the sex ratio with overlapping generations.

In this paper, I consider three problems in sex allocation; (i) natural selection
when the population consists of a mixture of hermaphrodites and males or females,
(ii) selection on a sex-ratio gene which affects progeny sex ratio at every age of the
mother, and (iii) sex ratio in a variable environment (under parental control). Where
appropriate, I assume overlapping generations (with no restrictions on population
growth).

For the three models proposed here, the pattern mentioned above continues to
hold. This is due to the following result (which has been known for a long time in the
two-sex, single-locus, discrete-generations model, Bodmer and Parsons [1960]).

In order to find the ESS, we need a measure of fitness for a rare mutant adequate to
tell us if it is being selected for or against. For the three models proposed here, this
fitness measure will be shown to be of the form W = ii/m + f/f, where

m = fitness of rare heterozygote through male function,

m = fitness of common homozygote through male function,
7= fitness of rare heterozygote through female function,
f= fitness of common homozygote through female function.

From this simple measure follows the above results for sex allocation. If the
mutant is identical to the homozygote (1 = m, f=f), W = 2; we may assign the
homozygote a fitness of 2. The mutant is favored if W > 2 or if s/m + f/f > 2. If we
write = m + Am, f= f + Af; the rule becomes Am/m + Af/f> 0, or (in words):
Selection favors a mutant gene which alters various life history parameters if the
percent gain in fitness through one sex function exceeds the percent loss through the
other sex function.

Thus, the equilibrium allocation of resources to male versus female function maximizes
the product of the fitness gain through male function (e.g., sons, pollen, time spent as
a male) times the gain through female function (or m-f). Actually, the principle pro-
posed here is that selection will tend to maximize m-f, both in the choice of sexual
states (e.g., hermaphroditism versus dioecy) and in the allocation to male versus female
function within a sexual state.

This paper is the first in a series on how natural selection operates on sex
allocation. The first two models will assume overlapping generations—my purpose is
simply to establish that the equilibrium conditions for a complex life history do
indeed satisfy the above result. Later papers will use the formalism to propose and
test some particular hypotheses. The third model reduces to a discrete generation
problem. Here I discuss in more detail some of the biology behind the model, present
some specific predictions, and briefly review existing data.

A POPULATION AS A MIXTURE OF SEXUAL TYPES

Charlesworth and Charlesworth (1973) developed a model for natural selection
with two sexes and overlapping generations, while Leigh et al. (1976) considered
selection with sequential hermaphroditism (also overlapping generations). In this
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section I will generalize these efforts (at least for the initial spread of a rare gene) by
considering a population consisting of a mixture of hermaphrodites, males and
females. Such populations are known to exist among plants (Lewis 1941; Lloyd
1974a, 1974b, 1975, Charnov et al. 1976; Yamplosky and Yamplosky 1922) and are
variously distributed among invertebrates (Fox 1972; Ghiselin 1974; Giese and
Pearse 1974, 1975a, 1975b).

For simplicity, I recognize five sexual types (?, &, three hermaphrodites) but the
method is not limited to them. The basic question is as follows. Consider a
population homozygous at a locus of interest (4A4) where the genotype produces at
conception a certain fraction of 3, ¢ and various hermaphrodites. Each sexual type
has a particular life table, and a specified age-fertility pattern (for hermaphrodites
this is production of both sperm and eggs). Introduce into this population a rare
mutant (a) which alters one to many life-history parameters (e.g., fraction of each
type, life table, age-fertility pattern). The question of interest is: What are the
conditions under which this mutant is selected for or against? The model uses the
following assumptions and definitions.

Begin with the following definitions for genotype AA.

i = age of an individual, i =0, 1, 2, ..., f;;

j = sexual type of an individual,
1 = male,
2 = female,
3 = protogynous hermaphrodite (individual is a female until age ¢5, and a

male from ¢; + 1 until 85),
4 = protandrous hermaphrodite (3:i=0—>1t,, :i=1t, + 1> f,),
5 = simultaneous hermaphrodite, producing both sperm and eggs in each
breeding season;

b;; = eggs produced by an individual of sexual type j at age i (b;; = 0 if individual
is acting as a male at age i, by; = 0);

Q,; = quality or relative fertility of a male of sexual type j at age i. (If the gametes
are simply released into the environment Q;; reflects the number of sperm
[or pollen grains] released by the individual, compared to the number
released by some standard individual. Q;; can be measured on the interval
[0, 1].);

pi; = survival rate from age i to i + 1 for an individual of sexual type j;

q, = proportion of the eggs (of genotype AA4) which develop into sexual type k
(k=1,2,3,4,0r5),Y g =1;

n;(T) = number of individuals of age i of sexual type j at time T
I; = probability a newborn of sexual type j is alive at age i = [ [,% Puj, lo; = 1.

Since all eggs produced are assumed to be fertilized, the dynamics of a population
consisting only of genotype A4 is given by the following set of equations.

HOk(T + 1) = qk Z Z [n(i;l)j(T) ‘ p(i—l)j ° b,’j], fOI‘ k = 1 i 5;
i

(1)
n(T + 1)= ”(i—l)j(T) *Pia-1yp for i=1-8;,j=1-5.
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This is a fairly large set of linear difference equations (there are 5+ f; + f, +
Bs + B4 + Bs of them) but its form is rather simple, being similar to various
age-parity models in human demography (Keyfitz 1968). If the set of equations is
written in matrix form, the associated matrix is almost always nonnegative, irreduc-
ible and primitive (Keyfitz 1968). I restrict attention to these cases, since this insures
that the population approaches a stable age-type distribution where it is changing at
a constant exponential rate (ie., N(T + 1) = A; - N(T) where N is the total popula-
tion size). Two facts are useful, considering this population in stable age-type
distribution. First, the characteristic equation (which is needed to extract the
dominant eigenvalue—A4,) has a fairly simple form. It is most easily found by the
method in Wilson and Bossert (1971, p. 117) for deriving the classic Euler equation.
Applying their method (see the Appendix for this derivation) to equation set (1)
yields

=YXy by a/h) izl )

The second useful piece of information is that in stable age-type distribution, the
following ratio is a constant (independent of time, T):

Z Z ["ij(T) ' bij]
Z Z [nu ’ u

This constant (call it R*) may also be developed using the simple method of Wilson
and Bossert (1971). It is seen to have the form

Z Z [l - bij - q;/41]
R* = ZZ 0,0, qj/i ik i>1. “4)

Consider now a rare gene a introduced into this population of AA. When a is rare,
we need only consider the heterozygote Aa (if the heterozygote differs from 44) to
know if a is being selected for or against. Define for Aa the same parameters as for
AA, but put a “”” above them (i.., p;;). The fiy; individuals (newborn Aa) come from
two sources. Virtually all of the eggs produced by the Aa genotype are fertilized by
AA produced sperm (thus one-half of these zygotes are Aa). Of the eggs produced by
AA individuals, some small fraction (¢) will be fertilized by Aa produced sperm, and
one-half of these zygotes will be Aa. We ignore the AA4 individuals contributed by
these matings as they are negligible compared to those from 44 x AA matings.

The dynamics of a when rare is given by the following set of equations (to a
reasonable approximation):

i>1. (3)

q
nOk(T+ ¢ ZZ n(; 1);(T) P(x 1)1' ij +SZZ R - 1),: p(i—nj'bfj) ,
j i

for k=1-5; (5)
’AE”‘(T -+ 1) = ﬁ(i—l)j(T).ﬁ(i—l)j’ fOI' i= 1 —’3],'] = 1 hd 5.
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The ¢ may be developed as follows—it is the ratio of the total male fertility of the Aa
individuals to the AA (to a reasonable approximation), or

Z Z u (T+1)-0Q tj] Z Z [’Alu—l)j T) ) f7<.-—1)j ’ Qij]
Z Z AT +1) Z Z (- vAT) " Pu-1y; - il

If (6) is substituted into (5), recalling the definition of R* (eq. [4]), we have

izl (6)

ou(T + 1) q‘ Z Z - of(TYby + R* - Q)pu-rys  for k=1-5; (7)
'A’lU(T'!‘ 1)= n(,_l)J(T) p(i—l)jﬂ fOl‘ l= léﬁj,]= 1—)5
Equation sets (1) and (7) have a very similar form. The dynamics of the a allele (when
rare) depends upon the dominant eigenvalue (1) associated with (7). If A > 4, the a
gene is increasing in frequency; if 4 < 4,, it is being selected against. The A is given by
largest positive root of the characteristic equation of (7), which is seen to have the
following form (derived in the Appendix):

Z Z ru ij 211‘/’1['] Z Z EJ QU le/ii .
ZZ U ij qj/’{l ZZ[’U Qu 41/'1] =

Equation (8) may be written as

M) F()
ML) T E(L) ©)

For any fixed life histories, (8) may be used to extract A. If our interest is simply in
whether or not a is being selected for, the following technique is useful. Suppose (9) is

rewritten as
o M(@*)  F(¥)
W =M TR

It is easy to show that W(4*) is a decreasing function of A*. Of course, the A to be
compared with A, is that associated with W = 2.1n (10), set A* = 1,. It follows that if
A> A= W>2(orif A < ;< W < 2). To determine whether a is being selected for
or against, W(4,) is a sufficient parameter—we need only know if it is > or < 2.

Note further that these results do not require that the population be growing in
size—thus they clearly apply to density dependent models.

G. C. Williams has pointed out to me that the ESS results require that mutant
types be selected against with a force greater than drift or mutation pressure.
Otherwise (e.g., in sex ratio) a too-many-daughters genotype may be rescued by a
too-many-sons genotype that restores the sex ratio to equilibrium.

2=

(replace 4 with A*, a variable). (10)

SEX RATIO SELECTION WITH AGE STRUCTURE

The model considers an autosomal gene which affects sex ratio at every age for a
female and asks for a set of sex ratios such that any rare mutant with a different set is
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selected against. It is a version of a model originally proposed by Charlesworth
(1978). Since we deal with only males and females, a simplification in notation is
useful.

Imagine a very large population, homozygous (44) at an autosomal locus, and
define, as follows, for this population (i=0, 1, 2, ... where 0 is conception):

Ay = finite rate of increase for population of A4,
n;(t) = number of ¢ of age i at time ¢,

b; = clutch size for an age i @,

p; = survival rate from age i to i + 1 for a @,

I; = probability a ¢ is alive at age i,

r; = proportion of b; which are § (the sex ratio),

Q; = relative fertility of an age i 3, defined as before.

In an analogous way, define n¥(t), p¥, If for the males in this population. Since
births depend only upon the females present, A, is given by the usual stable age
equation

Y A7 lb(1 — r) = 1. (11)

Let 7 be the average sex ratio. Considering the population in stable age distribution, 7
may be written as:

r=(Q ATLbir)/(Y A7ULbY). (12)

Also useful is the fact that in stable age distribution the following ratio is a
constant independent of time. (Note the close correspondence to R*.)

R = Z n{e)bi(l —r;) — (1-7 ’ll_i'libi(l —r)
2 (0 Py, AL TFQ;

- g : (z AllflrQi)‘ )

We introduce into this population a mutant a which alters one to several life
history parameters. When the a allele is rare, only Aa need be considered (Aa
individuals essentially mate only with AA4). Denote the life history parameters of the
Aa with a “"” The dynamics of Aa is given by the following set of difference
equations where ? and ?' refer to yet unspecified functions and where i extends over
all ? and 3§ age classes.

(14)

The ? may be developed as follows. Age zero Aa ¢ come from two sources. Aa %
mate essentially only with A4 &, and half of the resulting offspring are Aa. Some
small fraction ¢ of the A4 ¢ are mated to 4a &, and half of these offspring are Aa. We
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may thus write

oft + 1)~ [Z ng— (a1l = )] + 5 [Z A (P11 — 7)) (15)

The ¢ is of the form
e+ 10,
T mE(e+ 1)Q;

If (16) is substituted into (15), recalling both the stable age assumption for the 44
population and (13), we obtain

(to a reasonable approximation). (16)

. R« . . A 1 N . o .
ot + 1) > = (X At 1(e)PE-1,Q:) + 3 [X - 1y(@)bi- 1 b1 = 7))- (17)
A similar argument for ? (conception of sons) produces

. 1 . . ~ 1 . N “ .
nye+ 1)~ (m)@ i 1)(t)P?3—1)Qi) + 3 (Z N 3 l)biri)- (18)

If (17) and (18) are substituted into (14), the result is a set of linear difference
equations which describes the dynamics of Aa when rare. If we represent the set as
matrix multiplication, the projection matrix can be shown to be primitive, given
certain regularity conditions which will normally be satisfied in real situations. We
can therefore apply the Perron-Frobenius theorem which implies that 4 (the domi-
nant eigenvalue of the projection matrix) is unique, real and positive. If L > 4, the Aa
are increasing relative to the A4; if 1 < A, the Aa are being selected against. To get
this characteristic equation, note that if the 4a are in stable age distribution, we may
write:

At + 1) = ng(t + 1)A™ (19)
nFt + 1) = n¥(t + 1)A~ (20)

If these are substituted into (17) and (18), the following result (dropping the time
index):

T
T,

A

0= NoCy1 + "0C12,

>

ay A na
ny = NoCyy + NGCa2, (21)

where

SR

(X A7),

1 N .

€11 :E[Z A-llibi(l _ri)]’ Ci2 =
1
2

(5 - T6#) e = (X 4 BOY(2 T 4 1FQ),

The characteristic equation may be written in terms of the cj as follows (eliminat-
ing n, and n¥ from [21])

L=cyy+cpa+ €21 €13 —Cy1 7 Caae (22)
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Equation (22) is necessary for the consistency of the equations (21). It is identical to
the characteristic equation derived by Charlesworth (1978). Equation (22) may be
solved for 4, which can then be compared to 4;. Again, there is a much easier way to
make this comparison. Define w(1*) to be a function of A* where A* replaces 4. It is
easy to show that (22) is a decreasing function of A*. It follows that w(l) = 1;
w(i* > 1) <1; w(A* <i)> 1. In particular, A >4, <>w(4;)>1 and A< i,
w(4;) < 1. Thus w(4,) is a fitness measure, adequate to tell us if a is being selected for
or against. One assumption will make the substitution of ¢ in (22) easier; the
interest is in a gene which affects sex ratio and the various life history parameters for
the mother. If the gene does not affect the parameters for the father or son (i.e., all
males follow the same life history) ¥ = I¥ and 0, = Q,. With this in mind, recalling
(11), (12), and (13), we have after a bit of algebra:

_ X LAcbid Y A5 Tb(1 — 7))
Z l,-ll_ib,-ri Z ll_lllbl(l — ri) ’

Equation (23) has a very intuitive interpretation—it is the sons born to an Aa
female over her lifetime (discounted for population growth) divided by the sons of an
aa female plus the same for the daughters produced by each. Thus the form of the
equation is, as before, ii/m + f/f, with appropriate definition of fitness through male
and female function.

w¥(41) = [4w(4) — 2]

(23)

PARENTAL CONTROL OF SEX RATIO IN A PATCHY ENVIRONMENT:
PARASITIC HYMENOPTERA

Most hymenoptera have haplodiploid sex determination—males develop from
unfertilized eggs, females from fertilized. The uniqueness of haplodiploidy is that the
mother can easily control the sex of her offspring. Here I develop a model for how a
female wasp should alter her sex ratio in response to change in a major environmen-
tal variable. The resulting theory is again in the general form m/m + f/f = W. The
model makes a set of simple and testable predictions, some of which are supported by
existing literature. Since the patterns have a long history in the literature, a brief
review of the biology will serve as an introduction.

One of the most striking patterns of sex ratio alteration is found with solitary
parasites attacking a host population in which the hosts are of various sizes. It is
typical for the parasite to produce sons in small hosts and daughters in large
hosts——at least the sex ratio tends to be biased in this direction (Chewyreuv 1913;
Brunson 1934, 1937; Roberts 1933 ; Holdaway and Smith 1933; Clausen 1939; Assem
1971). The same pattern is present in trap-nesting bees and wasps, with more males
produced in cells of small diameter (Krombein 1967). Along with this shift in sex
ratio, two other patterns are important. (i) It is usual in Hymenoptera for females to
be larger than males. (ii) Within a species, smaller than average females typically
suffer reduced fertility (although this has not actually been demonstrated for most of
the above species [Assem 1971]). Interestingly, small males may not suffer a great
disadvantage in mating (at least for one species, small males had no difficulty in
getting females to accept them [Assem 1971]).
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F16. 1.—Fitness as a function of host size: The fitness of a son or daughter is a function of the
host size in which they are placed. Fitness is relative within each sex. In this figure, offspring in
“small hosts” have a relative fitness of one. In “large hosts,” sons have a fitness w ; daughters w,.
Since w, > w,, a daughter gains more by being raised in a large host than does a son.

Chewyreuv (1913) was perhaps the first to clearly recognize these patterns (except
that relating to males). He suggested that (1) females practiced selective oviposition,
laying more unfertilized eggs in small hosts, and that (2) the action represented an
adaptation since daughters typically require more food than sons. Since the size of
the resulting wasp is highly related to the size of the brood host, a small host is thus
not as good as a large host for producing a daughter. Chewyreuv’s theory has been
discussed by several of the authors already mentioned, and it seems clearly estab-
lished that the sex ratio alteration comes about through selective fertilization by the
mother. The second part of the theory has received much less attention. An almost
identical theory has been proposed by Trivers and Willard (1973) for adaptive
change in progeny sex ratio on the part of a female mammal.

Chewyreuv (1913) has proposed a very interesting theory. I intend to develop it
further, using the ESS concept. In order to make quantitative predictions, it is
necessary to consider both the distribution of host sizes and the way in which male
and female fitness (survival x fertility) are related to host size. Other factors, such as
host age, etc., may also prove important, but it seems necessary to first look at the
behavior of a fairly simple model. This model will now be discussed.

Suppose a parasite population is presented with hosts of two sizes (L = large,
S = small) in specified proportions. An ovipositing female is assumed to control her
sex ratio in both Land S hosts. If r; = proportion of eggs laid in S which are male (r,
for L); the ESS is #, and r, such that any female deviating from these sex ratios is
selected against.

Referring to figure 1, the model makes the following assumptions.

1. All mothers are inseminated (results only slightly altered if this condition is
violated).

2. Small hosts are present with frequency P.

3. Both sons and daughters produced in small hosts are assigned a fitness of 1.
Sons produced in large hosts have a fitness W,, daughters W,.

These measures are relative fitness within each sex. Thus an L male inseminates W,
females for every one female inseminated by an S male. Likewise, an L female lays W,
as many eggs (on the average) as an S female. These assumptions are shown in figure
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1, where the fitness functions for sons and daughters are drawn for a range of host
sizes. Two of these are designated S and L. Note that for these W, > W,.

Consider a mutant 4 introduced into a population of mostly aa, a where its female
bearers alter their sex ratios to #; and 7,. The dynamics of this gene (when rare) may
be developed as follows. Let the frequency of 4 (among the males) be ¢, (very small),
the frequency of Aag (S refers to those derived from small hosts) and Aa, (among the
females) are ¢, and ¢; respectively. In order to keep the mathematics reasonably
simple, I will also assume W, = 1. (The extension to W; # 1 proves to be trivial and
will be provided at the end of the argument.) Finally, let ¢ = frequency of aag (among
the females).

There are six mating combinations which occur with frequency > 2. Their
frequency and progeny production are shown in table 1. I have dropped all terms of
order ¢* and have ignored all aa or a contributed via matings involving either 4 or
Aa. If we define the new genotype frequencies as ¢j, &, and ¢, we have (to a
reasonable approximation)

# Aag , _ #Aay
#aa ’ 5= daa

One fact will make the derivation of these ratios easier. The average fitness of an aa
is g+ (1 — q)W,. In terms of sex ratio this may be written as q + (1 — g)W, =
[P(1 —r)+ (1 = P)1 —r))W,J/[P(1 —ry) + (1 = P)(1 — r,)]. With this in mind,
forming the ratios given in (24), we arrive at the following, written as a matrix
multiplication.

&)~ #A/#a; & ~ (24)

h W, h
0 B B & &}
1 — r)P(q + Wy(1 — PF PW, F ,
( l) ( 5 2( q)) _D_l D2 1 s l=1¢ (25)
(L =P)1 =r)g + Wa(l —q)) F,(1—P) F,(1—-P)W, ,
D D D & &

h=[Pr + (1 — P),)/2,
B=[g+ Wy(1 —q)][r; P + r,(1 = P)],
D=P(—r)+ (1 —P)1—r)W,

Equation (25) is singular since the third column is a constant multiple of the second.
This makes the characteristic equation a quadratic equation of rather simple form.
In terms of a;; (i=1,2,3;j=1, 2, 3) it is as follows.

A? _'1(‘122 +a33)—a31a13 —ay1a;; =0. (26)

If the dominant root of 3.3 is > 1, the mutant is being favored. (If A < 1, it is being
selected against.) It is useful to examine the set of parameters which make A = 1.



476 THE AMERICAN NATURALIST

TABLE 1

OFFSPRING PRODUCED BY THE SIX MATINGS IN THE PARASITE SYSTEM

MALES
FEMALES A ~ & (frequency) a~1
(frequency)
Aas~ey ...... B Aas & P(1 —7)2
Aa;  &(1 — P)(1 - 7,)/2
A A{e[PPy + (1 = P)R]}2
Aag ~e3 ... .. e Aas Woes P(1 — )2
Aa, Wyes(1 = P)(1 —7,)/2
A {ea Wa[ PPy + (1 = P)F,]}/2
aas ~q ....... Aas &, qP(1 —ry) aa  gq[P(1 —r)+ (1 ~P)1 ~ry)]
Aa; g,q(1 — P)(1 —r3) a q[Pry + (1 = P)ry]
aap ~(1-gq)... Aas Wye,(1 — q)P(1 —ry) aa  W,(1 —q)[P(1 —r))+ (1 - P)1 —ry)]
Aa;, Wye (1 —g)(1 = P)(1 —r,) a Wi(l — g)[r P + (1 = P)r3]

Setting A = 1 in (26), we arrive at the following after a bit of algebra.

_P(1—F)+ Wyl = P)YL—F,) | PR+ (1= Py
P —r)+W(1 =Pl —ry)  Pri+(1— Py

This is, of course, of the form #1/m + f/f. As before, we may not consider (27) equal
to 2, but a variable measure of fitness (W = #i/m + f/f).1f W > 2, the mutant is being
selected for; if W < 2 it is being selected against.

To extend the analysis to cases where the male fitness is also a function of host size
(1 < Wy < W,), I argue as follows. Since A are produced only by Aq, the average
fraction of matings which involve 4 is ~ (fertility of all A)/(fertility of all a). We must
thus multiply ¢, {fraction of males that are A) by the average fertility of an A versus a.
This ratio (call it [) is:

_ [P+ (1 = Py, W /[PFy + (1 = P)F, WA
[Pry + (L — P)ry W, ]/[Pry + (1 — P)rs]

2

(27)

The end result is simply that instead of aa x A matings being of frequency ¢, they
happen with frequency le;—this simply multiplies a,, and a3; in (25) and (26) by 1.
Setting A = 1 as before shows that, for this case, the analogue to (27) is

_PA-)+ W1 -P)Y1-F) Pr+(1-PFHW
P(1 —r)+W,(1—-P)1—%) Pri+(1—-P,W’
Again the form is i/m + f/f—all of the former arguments still hold (considering

[28] to be a fitness measure, instead of equal to 2).

It should be noted that extension of the above results to more than two host sizes is
straightforward—my restriction to two sizes is based on the desire to produce an

2

(28)
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W

gl

P/(1-P)

l
0 !

P
FI1G. 2.—The ESS sex ratios under the host size model: Analysis of the model shows that P is
divided into regions I, II, IIT given by w, and w,. In each region a different sex ratio rule applies.

easily tested model. In terms of an ESS analysis, the two-size model contains only
three parameters (W), W,, P), all of which are easily varied in the lab.

An ESS analysis for (28)looks for r, and r, such that (28) < 2 for all possible #; and
#,. If we examine how fitness changes with #, and 7, (i.e., 0OW/0F{, OW/0F,), the results
assume a fairly simple form. The ESS sex ratios depend on W, W,, and P in a fairly
simple way. There are three regions of P, and a different sex ratio rule applies in each
one. (Recall that W, > W,.) These regions are shown in figure 2.

Wy(1—P)—P
2W, (1~ P)
Region II: W; < P/(1 — P) < W,; sex ratio results, r, = 1, r, = 0.

' P+ (1- P)W,
Region I11: P/(1 — P)> W,; sex ratio results, r; = ‘_(2})—)2, Fa

Region I: P/(1 — P) < Wy; sex ratio results, ry = 1, r, =

=0.

In region I (which always includes P < 1), the female fitness (W,) plays no role; in
region I1I, the male fitness (W, ) plays no role. In general, the results are as suggested
by Chewyreuv’s theory, but it is important to note that they rest on W, > W,. It is
not that small hosts are better for producing sons than daughters (a between sex
comparison) but that sons gain less in fitness by being raised in a large host, relative
to the gain of a daughter (a within sex comparison). At present I am testing this
model (with a host-parasite system) in a semiquantitative way. It is easy to vary P;
and W, and W, may be qualitatively varied by varying host size.

The model provides an answer to one somewhat puzzling aspect of Chewyreuv’s
(1913) data. As discussed by Assem (1971): “A most interesting result was that it does
not seem to be the absolute size of the host alone, but some relative measurements as
well that play a role, though Chewyreuv does not conclude so explicitly. When he
offered, again in an irregular order, (host) pupae of Sphinx ligustri (large) and those
of Pieris brassicae (small), the former produced females and the latter males. If,
however, the Pieris pupae were alternated with those of Vanessa levana (still smaller)
the same wasps produced an offspring of females in the former and males in the
latter.” This is exactly the outcome predicted under the present model.
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SUMMARY

R. A. Fisher (1930) was perhaps the first to realize that the key to sex ratio
evolution lay in the almost trivial fact that (under diploidy) everyone has one mother
and one father; that in terms of autosomal genes males and females contribute
equally to any zygote formed. This paper shows that his observation proves a useful
key to a host of other sex related problems. It is for this intuitive reason that fitness
measures for the alteration of sex function are often of the general form W = m/m +
f/f In such a measure male and female function are assigned equal weight. It is
somewhat surprising that this notion continues to hold under haplodiploidy (at least
from the mother’s viewpoint).

There is much that this paper has ignored—inbreeding, fluctuating or stochastic
environments, etc. A treatment of many of these is much beyond me. It will be quite
interesting to know how well the #/m + f/f notion holds up to alterations in the
basic models proposed here.
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APPENDIX
THE CHARACTERISTIC EQUATIONS

This appendix will derive equations (2) and (8). If the population of A4 is in stable age-type
distribution, we may write noj(t — x) = ng,(r)/A]. Thus we may also write n;(z)=
noj(t — i) - Ij; = ng,(t) - 1;; /A4, but from equations (1)

nOk(T+ 1)=qk ZZn,j(T+ l)bu (Al)
I
Thus ‘
nOk(T+ 1)=qk zz [noj(T+ 1) l,jbu/j,ll] (AZ)
i i

Let No(T + 1) be the total number of newborns at T + 1, then for j=1, 2,..., 5,
noi(T + 1) = q; - No(T + 1) and (A2) may be written as

No(T + 1) g = 4 Zzl: [No(T + 1) - g; - ;- bi/21]
or J
L= 23 0y by gi/h) (A3)
Joi
which is of course (2).

To get equation (8), consider the Aa population in stable age-type distribution. We may
write

;’loj(‘f — X) = ;loj('f)/j,x. (A4)
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We may also write 7i;,(t) = fo;(t — i) - I; = Roj(z) - I;;/A" but frgj(t) = §; - No(t) where No(1) =
total newborn Aa at 7. The first equation in set (7) may be written as

G- No(T + 1) = (@/2) }: Z [@;- No(T + 1)(51',‘ + R* - Qij)]iij SATE

or

i

2= }; Y 14,47 by + R* - 0], (AS)
or, using (2) and (4),
YU a by by/AY X N4 1y Qu/A]
2= i Z‘ [4, by by/i] ;J Z:: la; * L Qi)

which is (8) (since the term Y ; i [q; - Iij - by /Ai] = 1).

(A6)
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