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The genetics of depression: successful
genome-wide association studies
introduce new challenges
Johan Ormel 1, Catharina A. Hartman1 and Harold Snieder1

Abstract
The recent successful genome-wide association studies (GWASs) for depression have yielded more than 80 replicated
loci and brought back the excitement that had evaporated during the years of negative GWAS findings. The identified
loci provide anchors to explore their relevance for depression, but this comes with new challenges. Using the
watershed model of genotype–phenotype relationships as a conceptual aid and recent genetic findings on other
complex phenotypes, we discuss why it took so long and identify seven future challenges. The biggest challenge
involves the identification of causal mechanisms since GWAS associations merely flag genomic regions without a
direct link to underlying biological function. Furthermore, the genetic association with the index phenotype may also
be part of a more extensive causal pathway (e.g., from variant to comorbid condition) or be due to indirect influences
via intermediate traits located in the causal pathways to the final outcome. This challenge is highly relevant for
depression because even its narrow definition of major depressive disorder captures a heterogeneous set of
phenotypes which are often measured by even more broadly defined operational definitions consisting of a few
questions (minimal phenotyping). Here, Mendelian randomization and future discovery of additional genetic variants
for depression and related phenotypes will be of great help. In addition, reduction of phenotypic heterogeneity may
also be worthwhile. Other challenges include detecting rare variants, determining the genetic architecture of
depression, closing the “heritability gap”, and realizing the potential for personalized treatment. Along the way, we
identify pertinent open questions that, when addressed, will advance the field.

Introduction
Major depressive disorder (MDD, henceforth: depres-

sion) is a common mental disorder. In most Western
countries, MDD has a 1-year prevalence of ~5%1,2 and a
lifetime prevalence of ~15%3. Depression is in the top
three of the leading causes of years lived with disability
and a significant contributor to premature mortality due
to suicide4,5. Twin-based heritability estimates typically
fluctuate around 35%. Candidate gene studies have not
implicated replicable gene variants6 and—until very
recently—genome-wide association studies (GWASs) had
neither7,8.

This long drought without much progress in under-
standing the genetics of depression has recently ended.
The CONVERGE consortium focused on a homogeneous
subtype of carefully phenotyped recurrent, severe
depression, and identified two genetic loci exceeding
genome-wide significance levels9. Shortly thereafter,
GWASs that used the alternative strategy of increasing
sample size while using a more lenient, easy to measure,
depression phenotype (i.e., “minimal” phenotyping) have
identified additional genetic variants10–12, culminating in
the most recent successes of GWASs conducted in the
UK Biobank (n= 322,580; 16 independent loci associated
with broad depression phenotypes)13, the PGC MDD
working group (130,664 MDD cases and 330,470 controls;
44 independent loci)14, and the Howard et al. meta-meta-

© The Author(s) 2019
OpenAccessThis article is licensedunder aCreativeCommonsAttribution 4.0 International License,whichpermits use, sharing, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if

changesweremade. The images or other third partymaterial in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to thematerial. If
material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Correspondence: Johan Ormel (j.ormel@umcg.nl)
1Departments of Epidemiology and Psychiatry, University Medical Center
Groningen, University of Groningen, Groningen, The Netherlands

12
34

56
78

90
()
:,;

12
34

56
78

90
()
:,;

1
2
3
4
5
6
7
8
9
0
()
:,;

12
34

56
78

90
()
:,;

http://orcid.org/0000-0002-5463-037X
http://orcid.org/0000-0002-5463-037X
http://orcid.org/0000-0002-5463-037X
http://orcid.org/0000-0002-5463-037X
http://orcid.org/0000-0002-5463-037X
http://creativecommons.org/licenses/by/4.0/
mailto:j.ormel@umcg.nl


analysis of data on 807,553 individuals (246,363 cases and
561,190 controls) from the three largest GWASs of
depression using minimal phenotyping15. Howard and
colleagues identified 102 independent variants of which
87 replicated in an independent sample. Finally, GWAS
findings on multiple psychiatric phenotypes were lever-
aged to identify eight novel independently replicated
depression loci16.
With this successful harvest of GWAS loci for

depression, the next wave of challenges has come to the
fore. Using the watershed model of
genotype–phenotype relationships as a conceptual aid
and recent genetic insights on other complex traits such
as height, we discuss first why it took so long, followed
by seven challenges that need further work to advance
the field. The biggest challenge is probably the identi-
fication of genetic variants that are causally involved in
MDD. These challenges are not unique to depression
but apply in varying degrees to highly polygenic condi-
tions in general. Nonetheless, we focus this paper on
depression for two reasons: (1) Depression is an inter-
esting mental disorder because of its high prevalence
and relatively small twin-based heritability, and (2) It
affords a clear focus and obviates the need to include
information about many other polygenic conditions.
Depression contrasts strongly with human height, a
complex trait like depression, which is—unlike depres-
sion—highly heritable and measured with less error.
Below, we often use height as a contrasting complex
trait. Gene finding studies for height have shown much
more rapid returns than for depression and may give
insight into what we might expect for depression in the
near future with much larger sample sizes compensating
for its lower heritability and larger measurement error.

Why did it take so long?
Keller and Cannon’s watershed analogy of the

genotype–phenotype relationship is helpful in explaining
why the identification of genetic loci for depression has
been extremely difficult (Fig. 1)17. Much like the numer-
ous streams of the Amazonian watershed that merge and
eventually empty into the Atlantic Ocean, sets of genetic
variants influence upstream micro-biological processes
(narrowly defined mechanisms; e.g., dopamine transmis-
sion) that influence intermediate “downstream” meso-
biological processes (e.g., working memory, facial emotion
recognition) that in turn affect macro-biological processes
(e.g., stress sensitivity, affect regulation), which contribute
to the overall fitness of the individual. Gene variants that
are directly involved in an upstream process not only
affect that upstream process, but indirectly also many
processes and traits downstream. If enough noise is pre-
sent in particular upstream processes, specific behavioral
syndromes may arise, such as symptoms of mental

disorder. The more upstream (specific, narrow) the
(intermediate) phenotype is, the closer its relationship to
the genetic variants that affect it, thereby increasing the
probability that the associated genetic variants are truly
involved in the production of the phenotype.
Depression is a rather downstream phenotype, almost at

the level of fitness (Fig. 1). This feature may explain why it
took so long for GWASs of depression to become suc-
cessful. First, as illustrated by the watershed model of
genotype–phenotype relationships, multiple tributaries
may lead to the same phenotypic outcome (so-called
equifinality), with the implication that depression is
etiologically heterogeneous, consistent with current
insights. This hampers attempts to identify the genetic
loci for depression since all individuals with depression
are lumped together, which dilutes the explained variance
of a particular variant18.
Second, depression is not only etiologically but also

phenotypically heterogeneous. Approximately 1500 DSM-
IV symptom combinations can fulfill the diagnostic cri-
teria19. Two patients diagnosed with depression may have
very few symptoms in common. In addition, phenotypic
heterogeneity will be enhanced by co-occurring psychia-
tric problems. Two patients having similar depression
symptoms may have different comorbid conditions (e.g.,
anxiety disorder versus substance use disorder). Again,
this will dilute the effects of a particular variant.
Third, the upstream processes involved in depression

are hardly known, with problematic consequences for the

Fig. 1 The watershed model of the pathways connecting
upstream genetic variants to downstream depression. Mutations
at specific loci (1a, 1b) disrupt narrowly defined mechanisms such as
transmission of dopamine in the prefrontal cortex (2b). This and other
narrowly defined mechanisms contribute noise to more broadly
defined mechanisms, such as working memory, facial emotion
recognition (3c). The latter mechanisms in conjunction with several
other mechanisms (3a, 3b, 3d) affect observable phenotypes, such as
stress sensitivity, affect regulation. All tributaries eventually flow into
fitness (4). Adapted from Keller & Miller, 200617
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use of “endophenotypes”. To date, the endophenotype
approach in depression has not been able to live up to its
promises. Many depression-related endophenotypes pro-
posed in the past were based on stress research and
neuroimaging, and thus still at relatively low levels in the
watershed model. Such endophenotypes tend to be as
genetically complex as their outcome phenotypes20.
Fourth, phenotypes downstream in the watershed are

more likely to be “constructs” rather than biological
“entities”, which introduces measurement error. Depres-
sion, whether measured by inventories, (semi-)structured
interviews, or clinical assessments, is subjective and based
on reported and observed affect, cognition, and behavior.
Human height, by comparison, is a much simpler phe-
notype that can be obtained objectively and reliably.
Moreover, measurement of depression is complicated by
its mixed course, ranging from a single lifetime episode to
chronic-recurrent. Even during an episode symptoms
often fluctuate. This complicates measurement since
retrieving “the most severe episode” from memory implies
retrospective assessment with all its reliability problems.
For example, it has been shown that SNP heritability is
considerably higher for emotional problems when focus-
ing on the stable variance over time compared to single
measures per time point, which further illustrates the
relative advantage of height, which remains constant over
the adult life course, over depression as a phenotype for
genetic studies.

Challenges pertinent to the interpretation and
utility of detected genetic variants
With the recent GWAS successes of identifying more

than 80 replicated loci, the next wave of challenges for the
genetic study of depression come to the fore.

Challenge 1. Prioritizing likely causal genes for functional
follow up
An important characteristic of GWASs is that the

identified variants merely flag genomic regions without
necessarily providing a direct link to the underlying bio-
logical mechanisms21. In addition, the identified variant
may not be (directly) causal to the phenotype of interest
but to other phenotypes that are strongly associated with
the phenotype of interest, including comorbid conditions
and intermediate traits in the causal pathway leading to
the final outcome. Furthermore, effect sizes of individual
genetic variants are typically very small (although this
does not rule out that effect sizes on currently unknown
micro-biological phenotypes higher in the watershed can
be large)22. All in all, the selection of the most promising
signals and the discovery of their functional consequences
represent a major challenge. Given the costs and diffi-
culties of conducting functional studies, prioritization of
likely causal genes is very important. For the

approximately 80+ depression loci this is a formidable
task. To date, bioinformatics analyses have been the main
strategy.
Fine-mapping of identified loci is typically used as a first

step to limit the “credible set of SNPs” that likely include
the causal variant(s) responsible for the observed GWAS
signals. Transethnic differences in linkage disequilibrium
can be used to improve its resolution23. However, with the
exception of the CONVERGE study of recurrently
depressed Han Chinese women, depression GWASs have
been limited to individuals of European ancestry. There-
fore, more GWASs in other ethnic groups are needed to
aid fine mapping efforts. Further bioinformatic post-
GWAS follow up analyses leverage the fact that there are
only two biological mechanisms that can explain true
SNP–phenotype associations: (1) the SNP may alter the
amino acid coding (i.e., a nonsynonymous SNP) changing
the protein structure and potentially its function, alter-
natively; (2) it may exert its phenotypic effect through
influencing the expression of the gene. Therefore, bioin-
formatic post-GWAS pipelines will check whether GWAS
signals will be in high linkage disequilibrium with non-
synonymous SNPs within nearby genes and use publicly
available expression Quantitative Trait Loci (eQTL)
resources from relevant tissues such as the brain (GTEx,
Braineac) or whole blood to check which SNPs in the
identified loci are also associated with gene expression24.
Recent tools integrate evidence from GWAS with eQTL

data within a Mendelian randomization framework
allowing assignment of likely causality of genes within
loci25–27. The Mendelian randomization approach is
based on the fact that the DNA sequence is fixed, which
implies that causation can only flow in one direction,
allowing the use of genetic markers as instrumental
variables. With the advent of GWAS and the recent
explosion in variant discovery, this simple idea has been
applied to great effect28. It has been used in particular to
examine the causality of correlated phenotypes and the
origins of genetic correlations (see also Challenge 4). But
it can also be used to explore the causal role of genes
within identified genetic loci for the phenotype of
interest25.
Mendelian randomization in its most basic form is

summarized in Fig. 2 where the causal relationship
between an exposure (e.g., obesity) and an outcome (e.g.,
depression) is investigated (association 1 in Fig. 2) using
genetic variants known for influencing the exposure
(obesity) (association 2) as an instrumental variable, by
estimating the association between the genetic variants
and the outcome (depression) (association 3)27.
Mendelian randomization has three important

assumptions (see Fig. 3). First, the genetic variants should
have a robust and strong relationship with the exposure
(a). Second, the variants must not be associated with
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factors that confound the association between exposure
and outcome (b). Third, the genetic markers for the
exposure only influence the outcome through their effect
on the exposure and not through any other pathway (c).
Although the latter two assumptions are hard to prove,
many Mendelian randomization sensitivity analyses have
recently been developed that are less reliant on these
assumptions29.
Further bioinformatic analyses may explore whether

genes within the GWAS loci are preferentially expressed
in certain tissues or enriched in certain networks and
pathways, and whether these genes are targets of existing
(e.g., psychiatric) medications22,30. Ultimately, unequi-
vocal evidence of underlying mechanisms will have to
come from functional studies such as the one showing a
role in synapse pruning for the C4A gene in schizo-
phrenia31. Developing and increasing throughput of either
cell-based or animal model assays to investigate the many
GWAS loci for function will be one of the main challenges
for the immediate future.

Challenge 2. Finding rare and more common variants
Given the relationship between sample size and the

number of detected loci, it is to be expected that larger
sample sizes will identify additional loci. These will
include common variants with (even) small(er) effects and
probably rare variants of moderate-to-large effect
although their role in depression is currently unknown32.
The brief history of GWASs of, for example, schizo-
phrenia, supports the expectation that with larger sample
sizes rare variants can be discovered. In general, the
contribution of rare variations of strong effect tends to be
larger for early-onset, highly heritable, severe (e.g., neu-
rodevelopmental disorders, including schizophrenia) dis-
orders and lesser for disorders that are less heritable, less
severe and with a later onset, such as depression30. But
that does not exclude a role for rare variants in
depression.
The support that rare variants may play a role in

depression also comes from large GWASs of complex
traits outside psychiatry, most notably human height33,34.
Some rare variants (minor allele frequencies [MAFs]
0.8–2.1%) had large effects, implicating a 2 cm difference
in height. The explained variance of genetic variants is a
simple function of both effect size and MAF. As such,
despite their much larger effect size, the rare height-
associated genetic variants each explain, on average,
similar amounts of variation at the population level as
common variants. The much lower effect size of common
variants is “compensated” by their much higher frequency.
Fortunately, costly whole genome or exome sequencing

may not be necessary to find rare variants, as large GWAS
sample sizes of a million individuals or more, imputed to
very large sequenced reference samples will offer suffi-
cient resolution and power in the low frequency range and

Genetic variants

Exposure   

Outcome

Causal relation?
Or due to (residual) confounding?
Or reverse causation?

(1)

(2)

(3)

Fig. 2 Framework of a Mendelian randomization study in its most
basic form. Adapted from Verduijn, 201027

neighboring
variants

genetic
variants

exposure 
(e.g. obesity)

outcome
(e..g. depression)

confounding
factorsb

b

a

c

?

Fig. 3 Assumptions made in Mendelian randomization: (a) presence of a robust association between genetic variants and exposure (here
depression), (b) absence of (direct/indirect) association between generic variant and confounding factors, and (c) absence of other pathways
between genetic variants and outcome. Adapted from Verduijn, 201027
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are now increasingly feasible35,36. Furthermore, the strong
phenotypic and genetic correlation between depression
and other mental disorders may be leveraged to improve
power and identify both additional common and novel
rare variants for depression16.

Challenge 3. Establishing the genetic architecture of
depression
Initially, GWASs of complex traits operated from the

simple common disease–common variant (CDCV) model,
positing that a moderate number (<100) of gene variants
of intermediate frequency (MAF > 5%) with small-to-
moderate effect (OR > 1.5) account for the heritability of
the trait. The results of recent GWAS studies of complex
traits, including height, have shown this CDCV model to
be wrong for most types of complex traits37–39. Four
alternative models of genetic architecture have been
proposed: (i) the infinitesimal model assuming that her-
itability is due to a large number (»100) of small-effect
common variants, (ii) the rare allele model, assuming that
heritability is due to a large number of rare variants with
relatively large-effects (including copy number variants),
(iii) the broad-sense heritability model, assuming that in
addition to additive effects of common variants, herit-
ability is due to rare variants, non-additive GxG (dom-
inance, epistasis) and GxE interactions as well as
epigenetic effects, and (iv) the omnigenic model hypo-
thesizing that the genetic architecture of complex traits is
characterized by very large numbers of peripheral, more
general genes and a limited number of “core” genes,
assumed to be more disease specific37,40.
Apart from the yet to be detected occasional rare var-

iants, the infinitesimal model may provide a good
approximation for a highly polygenic disorder like
depression. Regarding non-additive GxG and GxE inter-
actions, decisive evidence is lacking as to date GWASs
have not been designed and powered to detect GxG and
GxE interactions, neither for depression, nor for other
mental disorders or height. Recent studies were unable to
show a sizable influence of dominance for a wide range of
complex traits41. Previous attempts to study GxE on the
basis of single candidate genes42,43 are now being replaced
by the use of polygenic risk scores (e.g., refs. 44,45). which
may offer more promise for detection of GxE interaction,
although the polygenic risk scores will only provide a
general measure of genetic susceptibility for depression
that does not directly indicate underlying mechanisms.
Moreover, the use of polygenic risk scores neglect the
possibility that the impact of GxE interaction is not
consistent across different genes or pathways; some
genetic pathways may show GxE interaction but others
may not or in the reverse direction. Nonetheless, it is
likely that these interaction studies will eventually be
successful given, for example, “indirect” evidence of

substantial GxE interactions between personality traits
and environmental exposures46,47. Regarding the omni-
genic model, Wray and colleagues have recently argued
that, although intuitively appealing, there is insufficient
empirical evidence for the existence of its hypothesized
core genes18.
Irrespective of the correct model for the genetic archi-

tecture, it must reserve an honorable seat for environ-
mental influences. In addition to the aforementioned
interactions, two epidemiological observations support a
substantial environmental component in the etiology of
depression: Although depression can be found every-
where, substantial national and regional variations in
prevalence exist3,48. Because of the ultimately subjective
nature of the measurement process, these prevalence
differences are hard to interpret. Furthermore, strong
effects on risk for depression have been documented for
long-term difficulties (e.g., taking care of a dementing
partner, persistent unemployment, victim of chronic
bullying) which in addition moderate the depression risk
of stressful life events (e.g., acute illness of child, let down
by friend)46,49–51. The latter short-term factors are typi-
cally thought to play a role in the timing of depression
onsets pushing susceptible individuals across the diag-
nostic threshold. Although such environmental effects
partly reflect depression’s genetic background (i.e.,
gene–environment correlation); they are nonetheless
likely to have an extra, additive, contribution to, as well as
interaction with, genetic risk in explaining the depression
phenotype.

Challenge 4. Genetic pleiotropy and unraveling causal
relationships with other traits
Pleiotropy is the phenomenon whereby a genetic variant

influences two or more phenotypes52. In line with high
comorbidity across mental disorders, GWAS findings also
indicate substantial genetic overlap, although the extent
thereof was perhaps unexpected53. SNP-based genetic
correlations (rg) between depression and other mental
disorders are substantial14. Pleiotropy is not specific to
psychiatry and has also been shown between depression
and somatic conditions14,54,55.
Part of the genetic correlations may derive from

symptom/diagnostic overlap, comorbidity or can even be
an artefact of diagnostic misclassification. It is useful to
make a distinction between heterogeneity due to different
symptom patterns that all meet MDD’s diagnostic criteria
and heterogeneity due to comorbidity with other mental
disorders, a common phenomenon. Genetic correlations
may also reflect a common cause. For example, virtually
all mental disorders involve sensitivity to stressful situa-
tions which is why individual differences in appraisal of
and coping with stressful experiences have an impact on
the severity of their manifestation. This commonality
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implies that genetic variants that influence appraisal and
coping may turn up in GWASs of these mental disorders,
although they are at best causally involved in a generic
way, not strictly part of the specific disorder’s pathophy-
siology. In the watershed model, these shared appraisal-
coping or executive functioning related variants are
probably located relatively upstream, with many con-
fluences downstream. The higher hierarchical position
makes it “easier” to be involved in multiple phenotypes
than variants more downstream.
A unique feature of genetic as opposed to classic epi-

demiological associations that aids in unraveling causality
is that confounders (or third variables) that influence both
genetic markers and outcome phenotypes do not exist
(DNA is fixed). Mendelian randomization can thus also be
used to disentangle the causes of correlated traits using
genetic markers to distinguish between alternative causal
explanations such as reverse causation and shared
causes56. One important requirement for effective Men-
delian randomization is the availability of a sufficient
number of genetic markers associated with the exposure
as their combined effect determine the strength of the
instrumental variable. This means that distinguishing
causality between depression and associated traits using
Mendelian randomization has only recently become
possible. The continued discovery of additional genetic
variants for depression will be important to improve their
strength as an instrumental variable and hence the power
of Mendelian randomization analyses in order to distin-
guish between alternative causal pathways, thereby pro-
viding fresh clues to old questions.

Challenge 5. Closing the “heritability gap”
Genetic variants detected by GWAS typically explain

only a fraction of the total family- or twin-based herit-
ability. This has become known as the missing heritability
problem or heritability gap41,57. Recently introduced
methodology now also allows calculation of the SNP- or
chip-based heritability (h2SNP), which is the proportion of
phenotypic variance jointly accounted for by all variants
on a standard GWAS chip. h2SNP provides an upper
bound estimate of the genetic effects that could be
detected by a (well-powered) GWAS58. The remainder is
likely due to rarer and structural variants that have until
recently not been captured by regular GWAS arrays35.
The latest PGC depression GWAS estimates this h2SNP at
~9%, which is only around a quarter of the heritability
based on twin and family studies of ~35%. However,
measurement error and heterogeneity in phenotype defi-
nition between the different PGC cohorts may explain
part of the difference in heritability as the CONVERGE
study found a h2SNP between 20 and 29% within their
cohort of carefully assessed women with early-onset
recurrent depression.

Another part of the heritability gap may be attributed to
potentially inflated twin heritability estimates caused by
gene by common (C) (or shared) environment (GxC)
interactions45. That is, genetic effects depend on envir-
onmental factors shared by twins that grow up in the
same family but not by unrelated individuals in the
GWAS samples. The statistical models used in twin stu-
dies to estimate twin-based heritability fully attribute the
joint effect (GxC) to the genetic component, thus inflating
heritability estimates and reducing the contribution of
shared environment. The GxC explanation “solves” not
only (part of) the heritability gap but the shared envir-
onment paradox as well. This paradox refers to the
apparent inconsistency that, in contrast to epidemiologi-
cal studies, the statistical models used in twin studies
typically find hardly any shared-environmental variance
while many (distal) environmental risk factors are shared
by twins in the same family, e.g., poverty, family
instability, child neglect, neighborhood stressors, minority
status, SES59. As pointed out by Uher and Zwicker45, this
paradox disappears if we realize that the impact of these
shared-environmental factors depends on characteristics
shared to a larger extent by monozygotic than dizygotic
twins, i.e., genetic variants.
The difference between heritability explained by GWAS

identified variants and the h2SNP has also been more aptly
termed “hidden” heritability as future larger GWASs are
expected to detect additional signals still hidden in the
noise. Furthermore, new generations of denser and better-
imputed GWAS arrays are expected to capture more rare
and structural variants, which will increase the h2SNP and
decrease its gap with the total (potentially inflated) (family
and twin-based) heritability35,57.

Challenge 6. Reducing the phenotypic heterogeneity
A major challenge is the identification of genetic var-

iants that are causally involved in MDD and this is
aggravated by the use of minimal phenotyping (based on a
few symptoms), which, as recently shown, may have
yielded cases unrepresentative of MDD that are enriched
by people “with non-specific sub-clinical depressive
symptoms and depression secondary to a comorbid
disease”60.
Traditionally, endophenotypes of depression have been

used in the hope that this would shorten the distance
between genes and phenotype, and consequently reduce
genetic heterogeneity. To date, the expectations have not
come true as the used endophenotypes were genetically
not less complex. However, the recently identified genetic
signals may provide new insights into underlying patho-
physiological pathways and networks providing clues on
more suitable less complex endophenotypes (micro-bio-
logical phenotypes) that are at higher levels in the
watershed model and thus closer to the genes. Constructs
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assessed through task performance such as reward sen-
sitivity and attentional biases may have potential utility as
endophenotypes if they are associated with genetic sig-
nals. Given their transdiagnostic relevance, they may also
account for other disorders in which these mechanisms
are active as well.
Some argue that another way forward lies in the reduction

of phenotypic heterogeneity, by targeting a specific subtype
such as early-onset recurrent melancholia or a specific
symptom cluster9. Others believe that a broader phenotype
approach will provide a more tractable target for genetic
studies, as this identifies more signals11. Findings of the
CONVERGE consortium based on a sample size that was
much smaller than the other recent depression GWASs
suggests that in-depth phenotyping may pay off9. In addi-
tion to high-quality measurement of depression, this study
focused on recurrent severe depression which may be
genetically more homogeneous. However, CONVERGE
differed in additional aspects from the other MDD GWASs,
including the Chinese sample, the focus on women, and
analytical approach. We cannot rule out that these differ-
ences contributed to CONVERGE’s success.
The recent GWASs successes with broad phenotypes of

depression and neuroticism61 seem to support the broad
trawl approach13. But note that phenotype broadness is
subject to more noise because the likelihood that identified
loci are not involved in the physiology of the phenotype of
interest increases with broadness (see Challenge 4).
In contrast to broader milder depressive states, other

clinically recognizable “subtypes” of depression including
early-onset recurrent depression and the more severe
subtypes of melancholic, bipolar, and psychotic depres-
sion may also be less heterogeneous62–64. It is also
important to keep in mind that even highly homogeneous
subtypes defined by behavioral symptoms are still placed
low in the watershed model and remain multifactorial,
with multiple underlying etiological pathways although
they may be less genetically heterogeneous than all
“depressions” lumped together.
Novel approaches improving the phenotype definition of

depression may be needed. We outline two complementary
approaches below that make use of depression measured at
the most narrow level of individual symptoms.

Bottom-up: individual symptoms of depression as a starting
point
Symptom-specific GWASs to examine their genetic

background may be an interesting next step. Previous
depression GWASs have used composite scores or diag-
nostic case-control designs. Based on data from the UK
Biobank, Nagel and colleagues65 showed that the com-
posite score of neuroticism, an important personality trait
that partially overlaps with depression66, directs the focus
to genetic variants that affect the majority of aggregated

items, i.e., “global variants”. The genetic signal of “local”
variants, affecting only one or a few of the aggregated
items, was severely diluted65. Given its multidimensional
and heterogeneous nature, it is plausible that symptom-
specific GWASs of depression will yield similar findings.
Some initial evidence comes from a relatively small
sample showing that h2SNP of four depression symptom
components (appetite, depressed mood and anhedonia,
insomnia, and anxiety) was different, suggesting the pos-
sible merit of more narrowly defined phenotypes67.

Top-down: use hierarchical dimensional models
Hierarchical dimensional models such as the Hier-

archical Taxonomy of Psychopathology (HiTOP)68 show
how psychopathology dimensions can be arranged in a
hierarchy, ranging from very broad “spectrum level”
dimensions (e.g., distress, thought disorder, disinhibited
externalizing, etc.), to more specific clusters of symptoms.
For instance, the distress spectrum, one of the five
internalizing spectra consists of the lower clusters (sub-
dimensions) of irritability, anhedonia, numbing, physical
panic, suicidality, dysphoria, retardation, lassitude, appe-
tite loss, insomnia, and generalized anxiety69. These
models hypothesize a hierarchy linking spectrum level
dimensions with highly pleiotropic variants which sub-
sume lower order symptom clusters with less pleiotropic
variant clusters. This phenotypic ordering from narrow to
broad may help in the interpretation of genetic findings.

Challenge 7. Personalized treatment
An important issue is the utility of identified variants for

individualized treatment of depression. Three applications
may be genomic (polygenic) risk prediction, genome
editing, and the identification of novel “druggable” targets,
respectively. GWAS results can be used for genomic risk
prediction. Increased risk could prompt more intensive
surveillance or even prophylactic treatments unrelated to
a specific causal mechanism (cf. preventive mastectomy in
case of high genetic breast cancer risk). The widespread
pleiotropy among mental disorder phenotypes (genetic
correlations) can be used to improve genomic risk pre-
diction, so that this might benefit personalized medi-
cine70. However, genetic risk-driven prophylactic
treatment is not realistic yet, given the low effect size of
SNP-based genetic predictors70.
Genome-editing technology such as CRISPR/Cas9 may

make it possible to change or disable genes in living cells
in a precise, cheap, and fast way by cutting, replacing, or
adding pieces from the DNA71,72. However, it is highly
doubtful whether this will ever have relevance for “fixing”
depression-associated genetic variants due to their small
effect sizes, unknown individual relevance (from popula-
tion to individual), causal relevance (too upstream), and
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unwanted “side” effects of genome-editing (genetic
pleiotropy).
With regard to pharmacotherapy, virtually all currently

used drugs in psychiatry have their origins in chance
findings in the previous century, while rational approa-
ches to develop new pharmacological treatments have
mostly not paid off. The recent findings from the PGC
depression GWAS indicated that lead SNPs in some loci
were within genes known to play a role in neuronal
development, synaptic function, transmembrane adhesion
complexes, and/or regulation of gene expression in brain.
In addition, genes that are targets of antidepressant
medications were strongly enriched for depression-
associated signals, which may indicate pharmacother-
apeutic relevance73. In addition, some identified loci were
associated with clinical features of depression including
early-onset, recurrence, and severity, and implicated
prefrontal and anterior cingulate cortex in the patho-
physiology of depression (brain regions showing MRI
anatomical and functional differences between MDD
cases and controls). Thus, current genomic findings may
have substantial potential for the development of new
depression medications. The future will tell.
However, the complex genetic nature of depression

raises the question for whom drugs developed on the basis
of GWAS findings will work. For a highly complex trait-
like depression, each individual probably carries a unique
combination of protective and risk alleles (see ref. 18 for
an illustration). The more polygenic a trait, the more
combinations of these sets of alleles are possible, implying
that each individual is likely to have a different combi-
nation, including affected individuals whose symptom
levels have crossed the diagnostic threshold. This explains
why most mental disorders are highly heritable but only
weakly inheritable22. Due to genetic recombination, the
probability that a child will inherit a mix of alleles from an
affected parent resulting in a genetic risk sufficiently high
to also pass the diagnostic threshold remains fairly small.
Thus, effect sizes derived from GWASs of a genetic var-
iant with depression should be interpreted in the context
of an averaged background; in individual carriers the
contribution of a certain variant may be much larger. A
particular drug can be effective only in the subgroup of
individuals that share the genetic variant and pathway
targeted by the drug. The effectiveness of a drug in the
individual case thus depends on the number of possible
combinations in which the particular variant is a neces-
sary component to become depressogenic. Ultimately,
precision medicine for highly polygenic disorders like
depression may depend on successfully matching these
unique individual genomic profiles to drug treatments18.

Conclusion
Clearly, the excitement for investigating the genetic

background of depression has returned. Prospects to
unravel the pathogenesis and etiology of depression and
rationally develop pharmacotherapies are better than ever.
Now that depression-associated genetic variants have
been found, the next wave of challenges has taken center
stage. It is likely that larger samples will identify additional
common variants and the first batch of rare variants,
which will reveal the genetic architecture of depression,
its subtypes and broader phenotypes. It is also likely that
taking common (C) (or shared) environment (GxC)
interactions into account will contribute to unearthing
part of the missing heritability45. The GxC explanation
not only bridges (part of) the heritability gap but also may
explain the shared environment paradox.
The largest challenges will be to identify the causal

variants of depression itself and to determine which var-
iants merely correlate with the depression phenotype
because they are causally involved in its determinants. In
addition to bioinformatics, Mendelian randomization may
help to resolve this causal web and will become increas-
ingly effective with the identification of additional genetic
variants of depression and related phenotypes. To date,
Mendelian randomization has almost exclusively been
used to aid in the interpretation of genetic correlations
between correlated phenotypes, but it may also assist in
distinguishing causal from pleiotropic depression variants.
Another approach to clarify the causal status of genetic
variants might be comparing markers associated with
narrowly (e.g., early-onset recurrent melancholic depres-
sion) versus broadly defined depression phenotypes.
Likewise, comparing the variants associated with different
levels of the “depression hierarchy” (symptoms, clusters of
symptoms, internalizing dimensions, general psycho-
pathology factor) might be informative. Finally, the fact
that highly polygenic traits are only weakly inheritable
despite substantial heritability22 could explain the seem-
ing paradox that antidepressants may benefit individual
patients enormously despite their modest average efficacy
on a group level compared to pill-placebo74.
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