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■ Abstract Filamentous fungi grow as a multicellular, multinuclear network of
filament-shaped cells called hyphae. A fungal individual can be viewed as a fluid, dy-
namic system that is characterized by hyphal tip growth, branching, and hyphal fusion
(anastomosis). Hyphal anastomosis is especially important in such nonlinear systems
for the purposes of communication and homeostasis. Filamentous fungi can also un-
dergo hyphal fusion with different individuals to form heterokaryons. However, the
viability of such heterokaryons is dependent upon genetic constitution at heterokaryon
incompatibility (het) loci. If hyphal fusion occurs between strains that differ in allelic
specificity athetloci, vegetative incompatibility, which is characterized by hyphal com-
partmentation and cell lysis, is induced. This review covers microscopic and genetic
analysis of hyphal fusion and the molecular and genetic analysis of the consequence
of hyphal fusion between individuals that differ in specificity athetloci in filamentous
ascomycetes.
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INTRODUCTION

In filamentous ascomycetes, an individual hypha (a multinucleate, multicellu-
lar filament with incomplete crosswalls, or septa) grows by hyphal tip extension
and branching. Hyphal tip growth is believed to be mediated by delivery of the
components for cell wall extension to hyphal tips by a vesicle supply center, or
“Spitzenkörper” (43, 95). Numerous mutants have been identified that affect hy-
phal tip growth and branching (87), including mutants in signaling pathways (69)
and the cytoskeleton (114). As filamentous fungi grow, fusions between hyphae are
continuously formed (a process called anastomosis), yielding a network of inter-
connected hyphae, or mycelium, that makes up the fungal individual. Networked
hyphae are presumably important in intra-hyphal communication and homeostasis
in an individual colony during growth and reproduction. Growth in filamentous
fungi thus consists of three balanced processes: hyphal tip extension, branching,
and fusion. Of these, the molecular, genetic, and physiological control of hyphal
anastomosis is the least understood. Hyphal fusions are a way to increase proto-
plasmic flow restricted by septa, which may be important in influencing hyphal
pattern formation in the mycelium (22, 31, 94). Rayner (94), in his discussions of
“mycelial interconnectedness,”argues that such complex mycelial dynamics cannot
be easily described by current linear growth models for filamentous fungi (30, 31).

Different fungal individuals are capable of undergoing hyphal fusion with each
other to form a heterokaryon, whereby genetically different nuclei may coexist
in a common cytoplasm. Heterokaryon formation has potential benefits of func-
tional diploidy and mitotic genetic exchange (“parasexual cycle”) (89) or may
increase biomass for cooperation in physiological efforts such as resource exploita-
tion or asexual/sexual reproduction (22, 48). Although there are obvious benefits
to filamentous fungi to form heterokaryons, a genetic mechanism exists that re-
stricts heterokaryon formation between two genetically different individuals. If
individuals differ in specificity at one or morehet(heterokaryon incompatibility;
also calledvic for vegetativeincompatibility) loci, heterokaryotic fusion cells
are usually compartmentalized and undergo death by a lytic process (42), a phe-
nomenon called vegetative incompatibility [or sometimes referred to as hetero-
genic, heterokaryon, or somatic incompatibility (39, 45, 70)]. Heterokaryosis by



P1: FQP

November 13, 2000 14:16 Annual Reviews AR116-06

GENETICS OF HYPHAL FUSION 167

hyphal fusion is believed to be virtually excluded in nature by the action ofhet
genes (24, 80, 84, 93). Vegetative incompatibility reduces the risks of transmission
of infectious cytoplasmic elements, such as virus-like dsRNAs (24, 33), and of
exploitation by aggressive genotypes (32); this self-defense mechanism may be
important in filamentous fungi because they lack cellular compartmentation.

This review focuses on the (a) process of hyphal anastomosis and (b) its con-
sequences when hyphal fusion occurs between individuals that differ inhetcon-
stitution. We describe the hyphal fusion process based on microscopic studies
and initial genetic analyses and integrate these studies with genetic and molecular
analysis of vegetative incompatibility. We also draw upon other systems and anal-
ogous processes to provide insight into pathways that may be relevant to hyphal
fusion and vegetative incompatibility and thus provide avenues and components
for future study.

HYPHAL ANASTOMOSIS

Microscopic Analyses of Hyphal Anastomosis

Hyphal anastomosis is comparable to cell fusion events in other organisms, such
as fertilization between egg and sperm, and muscle differentiation. In fungi that
outcross, fusion between opposite mating-type cells is a prerequisite for entry
into sexual reproduction (25). Although vegetative hyphal fusion has been ob-
served in filamentous fungi since the earliest days of mycology, Buller (22) was
the first to outline the process of anastomosis from start to finish; surprisingly
little has been added to Buller’s framework in the past 60 or so years (48, 94).
Mechanistically, it is useful to view hyphal anastomosis as three distinct physio-
logical states of participating hyphae: pre-contact, post-contact, and post-fusion
(Figure 1). Hyphae at the leading edges of the colony exhibit negative autotropism,
or avoidance, which keeps a suitable distance between growing tips (90). The
mechanism of avoidance is unclear, although suggestions of both a negative re-
sponse to accumulating metabolites and positive chemotropism to oxygen levels
have been made [reviewed in (46)]. Behind the growing colony margin, hyphae
involved in anastomoses exhibit positive autotropism or attraction of hyphal tips
(14, 22, 42, 76). The pre-contact initiation of new tips (very short specialized fu-
sion branches called pegs) and re-direction of hyphal growth are most likely due
to diffusible chemical signals (46). Only a few exceptions to the rule of fusion
between hyphal tips have been reported, most notably hyphae-to-spore fusions in
the nematode trapping fungiArthrobotrys conoidesandA. cladodes(51).

Hyphal tips show growth arrest after physical contact, prior to hyphal fusion.
There are both temporal and spatial aspects to the fusion event: Initially, the cell
wall is broken down, presumably by the delivery of hydrolytic enzymes to the
contact point, and then a new cell wall bridge is formed between the two hy-
phae, presumably by the delivery of cell wall material to this area. Galun et al (40)
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Figure 1 Flow diagram of the major steps in vegetative hyphal fusion. Recognition events
between hyphae are apparent at all three physiological stages: pre-contact, pre-fusion, and
post-fusion. Adapted from (1).

reported that chitin could be visualized in the anastomosis bridges, in peg-like pro-
jections, as well as in hyphal tips. Post-contact events of hyphal fusion, involving
plasma membrane fusion and cytoplasmic mixing, are also virtually uncharacter-
ized (Figure 1), although ultrastructural studies on anastomoses inCryphonectria
parasiticashowed numerous microtubules and mitochondria across newly formed
cytoplasmic bridges (81).

Genetic Control of Anastomosis

Only a few mutants have been reported that fail to undergo “self” hyphal fusions
(termed heterokaryon self-incompatible orhsi). These mutants may or may not fail
to undergo hyphal fusions with other individuals to form heterokaryons. Generally,
such mutations do not affect other traits, such as branching or virulence (26, 57),
although exceptions have been reported (52, 111). Correll et al (26) determined
that heterokaryon self-incompatibility inGibberella fujikuroiwas controlled by
a single segregating gene (hsi-1). Similarly, ahyphalanastomosis mutant,ham-1
was identified inNeurospora crassathat failed to undergo both self and nonself
hyphal fusions (111).

Since anastomosis always appears to be preceded by branch initiation and
hyphal tip growth, it is possible that mutants affecting colony morphology may
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have pleiotropic qualitative or quantitative effects on anastomosis. InN. crassa,
over 150 loci have been described where mutations affect morphology; the vast
majority can be complemented in heterokaryons with wild type (87). Although
the growth and branching phenotypes of these mutants have been described, a
systematic microscopic survey of the effect of these mutations on self-anastomosis
has not been done.

Possible Relationship Between Hyphal Anastomosis and
Cell Fusion During Mating in Saccharomyces cerevisiae

Although mechanisms involved in anastomosis are not understood in filamentous
fungi, fusion during mating has been well characterized in the yeastSaccharomyces
cerevisiae(6, 107). Many of the processes believed to be required for fusion of veg-
etative hyphae in filamentous fungi are also required by yeast cells during mating,
i.e. signaling by diffusible substances, redirected growth of fusion cells, attach-
ment of the two cell types to one another, production and targeting of hydrolytic
enzymes to the attachment site, fusion of the plasma membrane, and reformation
of the cell wall to form a contiguous bridge between the two cells. Although the
mechanism of pheromone signaling is well characterized inS. cerevisiae(107),
regulatory and functional mechanisms associated with cell wall breakdown at
the contact site are not as well understood (41). Database searches of theNeu-
rosporagenome (http://www.mips.biochem.mpg.de/proj/neurospora/) and ESTs
(http://unm.edu/∼ngp and http://www.genome.ou.edu/fungal.html) with genes in-
volved in cytoskeletal polarization (e.g.CDC42, RVS167, andRSR1), bud-site se-
lection (e.g.BUD6) and the mating pheromones signal transduction pathway (e.g.
STE20, FUS3, KSS1) have revealed a number of potential homologs inN. crassa
(16, 63; H Ledford & NL Glass, unpublished results).N. crassagenes encoding
proteins with amino acid similarity to proteins involved in the yeast pheromone
signal transduction pathway, Ste11p and Fus3p/Kss1p, have been molecularly
characterized (16, 63). TheN. crassa nrc-1(putative Ste11p MEKK homolog) and
mak-2(putative Fus3p/Kss1p MAPK homolog) mutants, in addition to being fe-
male sterile, also show defects in hyphal fusion during vegetative growth (16; Q
Xiang & NL Glass, unpublished results). These observations suggest that some
of the machinery involved in yeast cell fusion during mating may be required for
hyphal anastomosis in filamentous fungi.

VEGETATIVE INCOMPATIBILITY

Morphological and Biochemical Aspects Associated
with Vegetative Incompatibility

As filamentous fungi grow in nature, they are likely to come into physical contact
with genetically different individuals of the same species. One possible outcome
of this contact is hyphal fusion between two individuals. Fungal species differ in
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the extent to which the resulting heterokaryons proliferate; two main types have
been described. In the first type, in species such asVerticillium dahliae(92) and
G. fujikuroi (93), heterokaryons are limited only to actual fusion cells and nuclei
do not migrate between cells. Heterokaryons are continually reformed by repeated
fusion events within the mycelium. In the second type, in species such asN. crassa
andPodospora anserina, heterokaryotic cells proliferate and almost all cells within
the mycelium are heterokaryotic.

Hyphal fusion between genetically different strains most often results in veg-
etative incompatibility due to genetic differences athet loci. Differences in how
heterokaryotic cells proliferate also affect how vegetative incompatibility is as-
certained in different species [reviewed in (45, 70)]. Two auxotrophic strains may
fail to form a viable heterokaryon, or a “barrage” zone consisting of dead hyphal
segments may be observed in the contact region between incompatible strains
(39, 45, 70). InN. crassa, loci involved in vegetative incompatibility have also been
identified using partial diploids (aneuploids); strains that are heterozygous for ahet
locus show growth inhibition, hyphal compartmentation, and death (Figure 2, see
color plate) (79, 83, 85). Microscopic and ultrastructural features associated with
vegetative incompatibility have been examined in only a few species (42, 80, 81).
Common features include septal plugging, presumably to compartmentalize dy-
ing hyphal segments, vacuolization of the cytoplasm, organelle degradation, and
shrinkage of the plasma membrane from the cell wall (56) (Figure 2). These ul-
trastructural changes in dying cells are consistent with features associated with
programmed cell death (PCD) in multicellular eukaryotes (62). DNA fragmen-
tation, a hallmark feature of early PCD, was also observed by TUNEL (termi-
nal deoxyribonucleotidyl transferase) assays on incompatible transformants and
heterokaryons (74). Other biochemical features found to be correlated with the
incompatibility reaction include a decrease in RNA production (66), appearance
of new proteins (20), and increase in proteolytic and other enzymatic activities
such as phenoloxidases, malate/NADH dehydrogenase, proteases, and amino acid
oxidase (9, 18).

The similarity in vegetative incompatibility phenotypes among differenthet
interactions and among different species suggests that pathways mediating the
morphological manifestations of vegetative incompatibility may have common
genetic or biochemical features. The comparative genetic and molecular analy-
sis of het loci in different species now under way will provide answers to these
questions.

Genetic and Molecular Analysis of het Loci

Genetic studies in several ascomycetes show that there are a number ofhetloci in
each species: at least 11 inN. crassa(45), 9 inP. anserina(10), 8 inAspergillus
nidulans(2, 29), and 7 inC. parasitica(27, 53). Two types of genetic systems
have been described that regulate vegetative incompatibility, allelic and nonal-
lelic. In allelic systems, anastomosis between individuals that contain alternative
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specificities at a singlehet locus triggers vegetative incompatibility. In nonallelic
systems, an interaction between specific alleles at two different loci mediates in-
compatibility (10, 45, 70). InN. crassaandA. nidulansonly allelic systems have
been described (86), whereas inP. anserinaboth allelic and nonallelic systems
have been characterized (39). However, recent results suggest that incompatibility
mediated by differences athet-6in N. crassamay be due to a nonallelic interaction
between closely linked genes [(106) and see below].

Molecular characterization of vegetative incompatibility has been initiated in
N. crassaand P. anserina.Alleles at threehet loci have been characterized in
N. crassa(mating type (mat), het-c, andhet-6; Table 1). InP. anserina, the allelic
incompatibility locus,het-s, and the nonallelichetloci, het-candhet-e, have been
characterized (Table 1) (het-cin N. crassahas no relationship tohet-cin P. anse-
rina). It is clear thathet loci encode very different gene products. For example,
thematlocus inN. crassafunctions as ahetlocus; fusion of opposite mating-type
hyphae during vegetative growth results in vegetative incompatibility. The genes
required to confer mating identity,mat A-1and mat a-1, encode proteins with
similarities to known transcription factors (44, 108) (Table 1). Mutations inmat
A-1andmat a-1result in strains that fail to mate and that will also form vigorous
heterokaryons with either mating type (49). TheP. anserina het-clocus encodes a
putative glycolipid transfer protein [GLTP; hereafter referred to ashet-c(GLTP)],
first identified from pig brains (97); disruption ofhet-c(GLTP) drastically impairs
ascospore maturation. TheN. crassa un-24gene [which is involved inhet-6 in-
compatibility; (106)] encodes the large subunit of ribonucleotide reductase (RNR)
(105) (Table 1), which is essential for DNA replication (59).

het loci encode different gene products, and yet three regions of similarity
have been detected between predicted products of thehet-6 locus ofN. crassa
(106), thetol locus (which encodes a mediator of mating-type incompatibility in
N. crassa, see below) (104) and the predicted product of thehet-e locus in P.
anserina(98). These regions are distinct from the GTP-binding domain and the
β-transducin-like WD repeats in HET-E and the LRR and the coiled-coil domain
in TOL, and thus may represent domains necessary for vegetative incompatibility
mediated by all threehetinteractions (106). Disruption ofhet-e, het-s, orN. crassa
het-c (Table 1) does not result in an obvious vegetative or sexual phenotype,
(38, 103, 109). However, as withmatandP. anserina het-c(GLTP) mutants (above),
het-e, het-s, andN. crassa het-cmutants lose the capacity for nonself recognition
and consequently form vigorous heterokaryons with formerly incompatible strains.

Althoughhet-smutants have no phenotype, other than promiscuous vegetative
compatibility, several lines of evidence indicate that thehet-sgene product be-
haves as a prion analog (28, 96, 110). A prion is an abnormal conformational state
of a normal cellular protein capable of “infecting” and converting the normal form
(PrPC) into the infectious form (PrPSc) (91). Hyphal anastomosis betweenhet-s
and the neutralhet-s∗ strain results in the cytoplasmic transmission and infectious
propagation of the [Het-s] phenotype. Strains exhibiting the [Het-s] character spon-
taneously sector into the [Het-s∗] phenotype, and crosses betweenhet-sandhet-s∗
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strains show non-Mendelian inheritance of the [Het-s] and [Het-s∗] phenotypes.
Although [Het-s] acts as prion, the relationship of the capacity of [Het-s] to con-
vert [Het-s∗] and vegetative incompatibility, which is mediated by an interaction
betweenhet-sandhet-S, is unclear.

A hetlocus in one species may or may not function to confer vegetative incom-
patibility in a different species. For example, thematlocus inP. anserinaencodes
transcription factors very similar to those ofN. crassa(34). However, theP. anse-
rina matgenes do not confer vegetative incompatibility inP. anserina, nor do they
when introduced intoN. crassa(3), even though heterologous mating activity is
conferred. Nonetheless, the association of mating-type and vegetative incompat-
ibility is not restricted toN. crassa, but has been reported in other species, such
asAscobolus stercorarius(15), A. heterothallicus(64), andSordaria brevicollis
(J Bond, personal communication). TheN. crassa het-clocus encodes a glycine-
rich protein that displays some similarities to cell wall proteins (103) (Table 1). A
gene that shows a high degree of sequence similarity toN. crassa het-chas also
been identified inP. anserina(101). DNA sequence analysis of theP. anserina
het-chomolog (hch) among 11P. anserinaisolates that differed at all other known
het loci did not reveal any polymorphisms, suggesting thathchdoes not function
as ahet locus inP. anserina.However, the introduction ofN. crassa het-calleles
into P. anserinatriggered growth inhibition, hyphal compartmentation, and death
(101), with a phenotype very similar tohet-cincompatibility inN. crassa. Predicted
ORFs that have significant similarity toP. anserinaHET-C(GLTP) and HET-E are
present inN. crassa(http://www.mips.biochem.mpg.de/proj/neurospora/), but it is
unclear whether these genes represent any of the previously identifiedhetloci in N.
crassaor if they encode genes required for cellular functions other than vegetative
incompatibility. Thus, a species may contain loci that have the capacity to function
as ahetlocus, but whether they do or not is dependent on the presence or absence
of polymorphisms within populations.

The Molecular Basis of Allelic Specificity

DNA sequence analyses of varioushet loci in N. crassaand P. anserinahave
revealed that alleles conferring alternative specificities are polymorphic. For ex-
ample,P. anserinaalternative allele proteins, HET-S and HET-s, differ by 12
amino acids (109) (Table 1). All surveyedhet-s isolates were identical inhet-s
sequence and allhet-Sisolates had identicalhet-Ssequences, indicating that these
polymorphisms were maintained in populations. Analysis ofhet-S/het-schimeric
constructs and site-directed mutagenesis indicated that a single amino-acid change
is sufficient to switchhet-Sspecificity tohet-s(35). In P. anserina het-c(GLTP)
(Table 1), 16 polymorphic positions (distributed throughout the ORF) were iden-
tified in a comparison between four HET-C proteins (99). As withhet-s, a single
amino acid change in HET-C(GLTP) can effectively change its allelic specificity;
somehet-cchimeric constructs conferred novel allelic specificities. The nonal-
lelic partner ofP. anserina het-c(GTLP), het-e, encodes a predicted protein with
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similarity to theβ-subunit of transducin, which is characterized by a repeat se-
quence (WD) in the carboxyl terminal region of the protein (Table 1). Although
the vegetative incompatibility function of HET-E required the WD region, allelic
specificity was apparently not defined by the number of repeats (98).

In N. crassa, a highly variable domain in alternativehet-calleles was necessary
and sufficient to confer allelic specificity (102, 103). Allelic specificity ofhet-c
correlated with unique insertion and deletion pattern within the variable domain.
TheN. crassa un-24andhet-6loci are closely linked and recombination between
these loci has not been detected in laboratory crosses, nor in a survey of wild-type
isolates (78). Preliminary results suggest thathet-6–mediated vegetative incompat-
ibility may be due to a nonallelic interaction betweenun-24, het-6, and other loci
within the nonrecombining region (106). A variable region in the carboxyl-terminal
domain in ribonucleotide reductase (UN-24) correlated with allelic specificity; al-
ternative alleles at thehet-6 locus encode predicted proteins that are only 68%
identical, with polymorphic positions scattered throughout the ORFs (106).

Molecular Basis of Recognition

A single allelic or nonallelic genetic difference at ahet locus is sufficient to trig-
ger growth inhibition, hyphal compartmentation, and death. Alternative alleles at
het loci are polymorphic, suggesting that structural differences in HET proteins
mediate nonself recognition. These observations suggest that either alternative
HET proteins physically interact to mediate nonself recognition, or that they mod-
ify products that physically interact. Physical interaction between mating-type
proteins that mediate nonself recognition during the sexual cycle are well docu-
mented in fungi, for example, heterodimerization ofa1-α2 in S. cerevisiae(47)
and heterodimerization of bW and bE inUstilago maydis(60). An interaction via
yeast two-hybrid analysis has been detected between theN. crassamating-type
polypeptides, MAT A-1 and MAT a-1 (5); mutations inmat a-1that abolish vege-
tative incompatibility also disrupt MAT a-1–MAT A-1 interaction. Heterocomplex
formation has been reported between alternativeN. crassaHET-C polypeptides
(112), but homocomplexes of HET-C polypeptides were not detected. Variations
in the specificity domain affect the capacity of alternative HET-C polypeptides to
form a heterocomplex (112), although the molecular mechanism of how this is
achieved in unclear. An interaction between HET-s/HET-S (S/S, s/s, and S/s) pro-
teins (monomers and multimers) has also been detected by yeast two-hybrid and
Western analysis (28). Based on genetic evidence, it has also been proposed that
P. anserinaHET-C(GLTP) and HET-E physically interact (38). Thus, heterocom-
plex formation between alternative HET polypeptides may be the “recognition”
complex and the formation of this complex may act as the “trigger” to mediate
the biochemical and morphological aspects of vegetative incompatibility. Alterna-
tively, the formation of a HET heterocomplex may function to poison the cell and
thus may directly mediate growth inhibition and death (10).
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BIOCHEMICAL AND MOLECULAR ANALYSIS OF
MEDIATORS OF VEGETATIVE INCOMPATIBILITY

Mutations that suppress vegetative incompatibility of particularhet interactions
have been isolated and characterized in bothN. crassaandP. anserina.A recessive
mutation,tol, (for tolerant) suppresses mating-type associated vegetative incom-
patibility in N. crassasuch thattol; Aandtol; astrains form vigorous heterokaryons
(82, 104) (Table 1). Not all species ofNeurosporaexhibit mating-type associated
vegetative incompatibility. In the pseudohomothallic speciesN. tetrasperma, lack
of mating-type incompatibility is mediated by a natural variant allele oftol, tolT

(55). Thetol mutation does not suppress vegetative incompatibility mediated by
differences athet loci other than the mating-type locus (71). Expression studies
indicate thattol is not regulated by themat transcriptional regulators, but may
rather interact with MAT A-1 and MAT a-1 to form a heterocomplex that mediates
vegetative incompatibility (104).

In P. anserina, mutations atmod-C(for modifier), suppress both growth in-
hibition and lysis of an incompatiblehet-R/Vstrain (67). By contrast, mutations
at themod-Alocus (encoding a putative SH3 binding protein; Table 1) suppress
growth inhibition of all nonallelic interactions (het-C/D, het-C/E, andhet-R/V)
(7, 11, 13), but lysis of hyphal compartments is still apparent. Allelic incompati-
bility systems are not affected bymod-Aormod-Cmutations. Lysis in incompatible
strains with themod-A1allele is suppressed by a second mutation at themod-B
locus (12, 65) (Table 1). Although a mutant phenotype was not observed for sin-
gle mod-A1or mod-B1mutants, amod-A1 mod-B1double mutant shows defects
in protoperithecia formation and is female sterile (12, 13, 17, 19). A mutation at
mod-D (encoding a putative Gα subunit; Table 1) suppresses lysis in ahet-C/E
mod-A1incompatible strain (37, 68);mod-Dmutants show defects in aerial hyphal
growth, protoperithecial formation, ascospore germination, and secondary hyphal
ramifications (68, 73).

Themod-E1mutation was selected on its ability to restore growth renewal from
the quiescent stage in amod-Dmutant (mod-D2); the mod-E1allele suppresses
all developmental defects of themod-D2mutant (36). MOD-E is a member of the
Hsp90 family and is responsive to heat-shock conditions (72). The fact thatmod-D
andmod-A mod-Bmutants show defects in protoperithecial development has led
to the model that genes involved in nonallelic incompatibility are involved in a
starvation pathway that regulates the subsequent development of protoperithecia
(19, 100). Based on themod-E1mutant phenotype and the fact that other Hsp90
proteins are implicated in cell cycle control, MOD-E could be involved in negative
control of the cell cycle (e.g. by association with a protein kinase) that may affect
both sexual development and vegetative incompatibility.

Biochemical features of theP. anserina het-R/Vincompatibility reaction can be
studied since lethality of the incompatibility reaction is temperature sensitive (65).
By taking advantage of this temperature-sensitive lethality, three genesinduced
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during incompatibility (idi) were isolated, which encode small proteins [201, 157,
and 196-aa] with putative signal peptides (21). Expression of twoidi genes,idi-1
andidi-3, is restricted to nonallelic systems; induction is eliminated in mutants that
suppress nonallelic incompatibility (het-R/V mod-A1 mod-B1andhet-R/V mod-
C1). The IDI proteins may localize to the septa during incompatibility (J B´egueret,
personal communication). Plugging of septal pores is a hallmark of dying hyphal
compartments (8), presumably to confine the disintegrating cells. Theidi genes
are possible candidates that may cause either cell disintegration or hyphal com-
partmentalization during vegetative incompatibility.

Even though a number ofhetloci have been molecularly characterized, it is not
yet possible to outline a comprehensive model for how anyhet interaction medi-
ates vegetative incompatibility. Thehet loci encode very different gene products,
suggesting that the initial events associated with vegetative incompatibility differ,
although a common mechanism of heterocomplex formation between alternative
hetpolypeptides may mediate recognition. The identification of genes downstream
of het loci have also not illuminated molecular mechanisms, although a link be-
tween events associated with sexual development and vegetative incompatibility
has been postulated inP. anserina.Although phenotypic events associated with
hyphal compartmentation and death are similar betweenhet interactions, it is still
unclear whether eachhet interaction causes growth inhibition, hyphal compart-
mentation, and death by distinct or similar biochemical and genetic mechanisms.

EVIDENCE FOR SELECTION MECHANISMS
ACTING ON het LOCI

Vegetative incompatibility is believed to function as a nonself recognition system
to limit the spread of infectious elements (23), to prevent exploitation by nonadap-
tive nuclei (50), and/or to prevent resource plundering during sexual reproduction
(32). Such hypotheses would require that selection acts onhet loci to maintain
polymorphisms in fungal populations for nonself recognition functions. Other
nonself recognition systems such as mating-type loci (75, 88), the MHC (major
histocompatibility complex) (4) loci in mammals andS(self-incompatibility) (54)
locus in plants show polymorphisms that are maintained by balancing selection
through multiple speciation events, so-called trans-species polymorphisms (61).
Evidence for loci subject to balancing selection include: (a) trans-species poly-
morphisms, (b) the presence of a large number of alleles in a population, (c)
allele frequencies that are approximately equal within populations, and (d) the
rate of nonsynonymous substitution per site in polymorphic regions in excess
of the rate of synonymous substitution, suggesting that selection is maintaining
diversity.

The best evidence for balancing selection at anyhet locus (other thanmat)
appears in thehet-cgene ofN. crassa. Allelic specificity is mediated by a variable
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domain of 34–48 amino acids in HET-C; swapping this domain between alleles
switcheshet-cspecificity. Thehet-callelic specificity region exhibits trans-species
polymorphisms across different species and genera within the Sordariaceae (113)
(Figure 3); i.e. DNA sequences of thehet-cspecificity region fell into groups by
het-callelic type rather than according to species. Allelic polymorphisms athet-c
were therefore generated in an ancestral species and have been maintained during
multiple speciation events. The allelic specificity domain ofN. crassa het-calso
shows an excess of nonsynonomous substitutions, consistent with the hypothesis
that selection is maintaining diversity at this locus and alleles were equally fre-
quent within populations (113). InP. anserina, alternative alleles athet-sandhet-c
(98, 109) also show an excess of nonsynonymous over synonymous substitutions.
Data from population studies suggest that balancing selection may also be acting
at thehet-6-un-24region ofN. crassa. In a population of 40 isolates ofN. crassa,
the het-6-un-24 region was apparently inherited as a block (see above) and the
two allele combinations were equally frequent (78). Genetic analysis ofhetallele
frequencies in populations ofC. parasiticadid not support frequency- dependent
selection acting at a number ofhet loci becausehet allele frequencies differed
substantially from 1:1 (77). Thus, whether polymorphisms at a particularhet lo-
cus are subject to balancing selection and selected for within populations may be
dependent upon thehet locus.

In addition to its postulated role in nonself recognition, vegetative incompat-
ibility may also play a role in speciation in filamentous fungi. In fungi that are
self-fertile, such as pseudohomothallic species likeP. anserinaandN. tetrasperma,
vegetative incompatibility may provide an effective barrier to outbreeding and
thus favor speciation (39, 55, 58). By contrast, vegetative incompatibility is appar-
ently not a barrier to crosses between individuals in heterothallic species. In these
species, vegetative incompatibility must be suppressed during sexual reproduction
to allow opposite mating-type nuclei to proliferate in a common cytoplasm prior to
karyogamy. How this is accomplished in unclear, but, at least fortol, transcription
is apparently suppressed in sexual tissue (104).

It is possible that polymorphisms at somehet loci are not under selection,
but simply reflect genetic divergence between isolates. Heterokaryon formation
places these polymorphic gene products in a common cytoplasm, which may
have detrimental effects on vegetative growth and thus act as a “poison” com-
plex to mediate vegetative incompatibility (10, 100). Field studies indicate that
differences athet loci effectively exclude the formation of heterokaryons in na-
ture (24, 80, 84, 93), which may in turn prevent or severely limit the transfer of
infectious cytoplasmic elements, as demonstrated in laboratory studies (33, 53).
However, whether eachhetlocus functions in nonself recognition to limit transfer
of cytoplasmic elements or prevent resource plundering, or is simply a reflection of
genetic divergence between isolates, is a difficult question to address on an exper-
imental level and requires both molecular data onhet loci and population genetic
analyses.
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Figure 3 Thehet-cspecificity domain shows trans-species polymorphisms. Unrooted neighbor-
joining tree from the DNA sequence (390 nucleotides) alignment in thehet-cspecificity region
(adapted from 113; reprinted with permission). Bootstrap support is shown by the percentage out
of 500 replicates. Branch lengths are proportional to genetic distances. The designation OR, PA
and GR refer to the reference allelic specificity ofhet-cin N. crassa. Nc, Neurospora crassa; Nt,
N. tetrasperma; Ni, N. intermedia; Ns, N. sitophila; Ndi, N. discreta; Np, N. pannonica; Ndo, N.
dodgei; Gsp, Gelasinosporasp.;Sb, Sordaria brevicollis; Ss, S. sclerogenia; Sh, S. heterothallis.
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FUTURE DIRECTIONS

The processes of tip growth, branching, septum formation, and hyphal fusion
interact to form the architecture of the filamentous fungal mycelium. Unraveling
how the capacity for hyphal fusion allows a fungal individual to integrate and
respond to information from the environment is a difficult proposition. Rayner (94)
promotes an extreme view of mycelial architecture as exhibiting “hyperepigenetic
variation,”which is extremely sensitive to conditions of the local environment.
Phenotype (mycelial patterns) would be effectively uncoupled from genotype by
autocatalytic processes. Mathematical models that integrate these ideas into growth
and development of the fungal mycelia are currently being developed (e.g. 30, 31).
Parallel studies to understand the genetic control of each growth process will be
required to separate the genetic from epigenetic components.

Genetic or epigenetic mechanisms involved in the hyphal fusion process are not
well understood in any filamentous fungus. Mycelial growth requires the polarized
secretion of cell wall material and enzymes to the hyphal tip. It is probable that
some of the machinery involved in yeast cell mating, cytoskeletal polarization,
and secretion will be conserved in filamentous fungi and may also play a role in
hyphal fusion during vegetative growth. A combination of mutational analyses and
a rational reverse genetic approach usingS. cerevisiaehomologs that are known to
be involved in yeast cell mating fusion are feasible avenues to begin to dissect the
requirements for hyphal anastomosis. The molecular characterization of hyphal fu-
sion mutants, such asham-1in N. crassa(111), and the identification of additional
mutants that affect self and nonself hyphal fusion, such asnrc-1 (63) andmak-2
(16), can be used as starting points to dissect the genetic regulation of the hyphal
fusion process. Epigenetic effects in such mutants could be subsequently ascer-
tained by assessing responses to environmental cues that affect mycelial growth
patterns.

The relationship between hyphal anastomosis and vegetative incompatibility is
unclear. Some of the machinery involved in the hyphal fusion process per se may
be involved or affected by vegetative incompatibility. For example, theN. crassa
het-clocus encodes a protein that has similarity to other cell wall proteins, although
the cellular localization of HET-C is not known. A mutation that suppresseshet-c
vegetative incompatibility,vib-1 (for vegetativeincompatibilityblocked; Q Xiang
& NL Glass, unpublished) results in a strain that cannot undergo self or nonself
hyphal anastomosis (suppression ofhet-cincompatibility can be shown by partial
diploid analysis and by transformation experiments). These observations suggest
that a link between the hyphal fusion process and vegetative incompatibility may
occur in at least somehet interactions.

Although het loci and their suppressors are now being identified and charac-
terized, much remains to complete our understanding of vegetative incompatibil-
ity. If heterocomplex formation between alternative HET proteins is a common
recognition theme for vegetative incompatibility, how does the formation of this
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complex ultimately result in hyphal compartmentation and death? Do the different
het interactions converge on a common “death”pathway or do each cause hyphal
compartmentation and death by a distinct mechanism? Are there genetic similar-
ities between programmed cell death in multicellular eukaryotes and vegetative
incompatibility in filamentous fungi? Do allhet loci have a cellular function in
addition to vegetative incompatibility, or are some solely nonself recognition loci?
The phenotype of theP. anserina modmutants suggests that the normal cellular
function of these genes is involved in the link between environmental sensing of
starvation and induction of female reproductive structures (100). These observa-
tions suggest that either vegetative incompatibility is an “accident” that occurs
when polymorphic HET proteins are present in a common cytoplasm, or that veg-
etative incompatibility is a secondary function of these loci. How dohetloci evolve
and how are they selected for in populations? Different mating strategies, such as
pseudohomothallism versus heterothallism, may affect selection and evolution of
het loci. Both allelic and nonallelic incompatibility systems function as barriers
to limit outcrossing in pseudohomothallic fungi, irrespective of any role in vege-
tative incompatibility. And finally, how important is vegetative incompatibility in
populations and to the maintenance of fungal individuality? As fundamental prop-
erties of filamentous fungal growth, both hyphal fusion and post-fusion recognition
events have important impacts on the mycelium, and are critical to developing a
more complete understanding of the complex relationship of the fungal individual
with its environment.
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Figure 2 Microscopic features of vegetative incompatibility.A and B. Hyphae of
N. crassawild type and a partial diploid strain containing antagonistichet-calleles, re-
spectively. Hyphae were stained with Evans blue, which is excluded by cells with intact
plasma membranes; dead or dying cells take up the stain (56). Note stained, dying hyphal
compartments in B (arrows). Bar, 10µm. C andD. Transmission electron micrographs
of N. crassawild type and a partial diploid strain containing antagonistichet-c alleles,
respectively.C. Normal ultrastructure of wild-typeN. crassa. Note multinuclear hyphal
compartments separated by incomplete septa (arrows). Bar, 1µm. D. Ultrastructure of
dying, hyphal compartments (arrows). Features of vegetative incompatibility include plug-
ging of septal pores, nucleolar release, extensive organelle degradation and plasmolysis
(56). Bar, 5µm.


