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Hypertension is the most frequent medical complication occur-
ring during pregnancy. In this chapter, we aim to address the
genetic contribution to these disorders, with specific focus on pre-
eclampsia. The pathogenic mechanisms underlying pre-eclampsia
remain to be elucidated; however, immune maladaptation,
inadequate placental development and trophoblast invasion,
placental ischaemia, oxidative stress and thrombosis are all
thought to represent key factors in the development of disease.
Furthermore, all of these components have genetic factors that
may be involved in the pathogenic changes occurring. The familial
nature of pre-eclampsia has been known for many years and, as
such, extensive genetic research has been carried out in this area
using strategies that include candidate gene studies and linkage
analysis. Interactions between fetal and maternal genotypes, the
effect of environmental factors, and epistasis will also be
considered.

� 2011 Elsevier Ltd. All rights reserved.
Definition of hypertensive disorders of pregnancy

A wide diversity of terminology and diagnostic criteria have been used over the years to classify
the hypertensive disorders of pregnancy and define pre-eclampsia. Several internationally recog-
nised definitions are available,1 but at present there is no universal classification system or definition
of pre-eclampsia. The hypertensive disorders of pregnancy have four defined categories, charac-
terised in Table 1. These are gestational hypertension; pre-eclampsia and eclampsia; superimposed
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d. All rights reserved.

mailto:Paula.Williams@nottingham.ac.uk
www.sciencedirect.com/science/journal/15216934
http://www.elsevier.com/locate/bpobgyn
http://dx.doi.org/10.1016/j.bpobgyn.2011.02.007
http://dx.doi.org/10.1016/j.bpobgyn.2011.02.007


Table 1
Commonly used diagnostic criteria and classification of hypertensive disorders of pregnancy. The pregnancy-specific conditions
may also be diagnosed where diastolic pressure exceeds 90 mmHg but systolic pressure is< 140 mmHg. It is usual to exclude the
diagnosis if hypertension is recorded only during labour.

Classification Diagnostic criteria

Gestational hypertension Hypertension: blood pressure � 140/90 mmHg after 20th week of pregnancy in a
previously normotensive woman.

Pre-eclampsia Hypertension: blood pressure of � 140/90 mmHg after 20th week of pregnancy in a
woman who was previously normotensive.
Proteinuria: urinary excretion � 300 mg/L or 500 mg/24 h in the absence of
urinary tract infection.

Eclampsia Occurs in a woman with pre-eclampsia.
Characterised by seizures not attributed to other causes.

Superimposed pre-eclampsia Chronic hypertension with development of proteinuria during pregnancy.
Chronic hypertension Hypertension present before 20th week of pregnancy, persistent for more than

6 weeks postpartum, or both.
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pre-eclampsia and chronic hypertension. This topic is considered further in this issue of Best Practice
and Research Clinical Obstetrics and Gynaecology.

Genetic aspects of pre-eclampsia

Clustering of cases of pre-eclampsia within families has been recognised since the 19th century,
suggesting a genetic component to the disorder.2 Deciphering the genetic involvement in pre-
eclampsia is challenging, not least because the phenotype is expressed only in parous women.
Furthermore, in complex disorders of pregnancy, it is necessary to consider two genotypes, that of the
mother and that of the fetus, which includes genes inherited from both mother and father. Maternal
and fetal genes may have independent or interactive effects on the risk of pre-eclampsia. Finally, the
heterogeneous nature of the disorder, with a sliding scale of severity, has resulted in differences in the
definition of pre-eclampsia used within studies (see above), often with overlap of non-proteinuric
gestational hypertension.

Twin studies investigating the relative contribution of genetic versus environmental factors to pre-
eclampsia risk, initially yielded disappointing results. They showed that discordance for pre-eclampsia
betweenmonozygotic twin sisters was common, suggesting that heritability caused bymaternal genes
was low.3 These early studies were small. More recent investigations, however, using the large Swedish
Twin, Medical Birth and Multigeneration Registries have estimated the heritability of pre-eclampsia to
be about 55%, with contributions from both maternal and fetal genes. A further study in monozygotic
twins4 found concordance of pre-eclampsia to be as common as discordance. Evidence from the largest
published twin study, which correlated the Swedish Twin Register with the Swedish Medical Register,
revealed pre-eclampsia penetrance to be less than 50%, suggesting diversity within models of inher-
itance.5–7

Pre-eclampsia: a complex genetic disorder

For a small number of families, pre-eclampsia seems to follow Mendelian patterns of disease
inheritance,8 consistent with a rare deleterious monogenic variant or mutation with high penetrance.
For most of the population, however, pre-eclampsia seems to represent a complex genetic disorder,
and occurs as the result of numerous common variants at different loci which, individually, have small
effects but collectively contribute to an individual’s susceptibility to disease. Environmental exposures,
including age and weight, also determine whether these low penetrant variants result in phenotypic
manifestation of the disease. It is likely that no single cause or genetic variant will account for all cases
of pre-eclampsia, although it is possible that different variants are associated with various subsets of
disease (e.g. pre-eclampsia combined with intrauterine growth restriction). Complex genetic disorders
affect a high proportion of the population, representing a large burden to public health. New
approaches to susceptibility gene discovery have emerged to address this challenge. Unfortunately,
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early diagnosis would only permit closer focus on routine antenatal care, as at present no intervention
other than delivery has been shown to alter the course of pre-eclampsia.

Determining susceptibility to pre-eclampsia

The need to assess both the maternal and the fetal genotype is clear. The role of the placenta in the
primary pathogenesis of the disorder indisputably indicates a fetal contribution to susceptibility to the
disorder.9 Reports of severe, very early-onset pre-eclampsia in cases of fetal chromosomal abnor-
malities such as diandric hydatifidiform moles of entirely paternal genetic origin10 are consistent with
a role for paternally inherited fetal genes in the determination of clinical phenotype. This is supported
by epidemiological studies reporting a higher rate of pre-eclampsia in pregnancies fathered by men
who were themselves born of pre-eclamptic pregnancies.11 The occurrence of pre-eclampsia in
daughters-in-law of index women9 further supports a genetic contribution from both parents. The
genetic conflict hypothesis states that fetal (paternal) genes will be selected to increase the transfer of
nutrients to the fetus, whereas maternal genes will be selected to limit transfer in excess of a specific
maternal optimum.12 Fetal genes are predicted to raisematernal blood pressure in order to enhance the
uteroplacental blood flow, whereas maternal genes act the opposite way. Endothelial dysfunction in
mothers with pre-eclampsia could, therefore, be interpreted as a fetal attempt to compensate for an
inadequate uteroplacental nutrient supply.

As the phenotype is apparently only expressed during pregnancy, identification of ‘susceptible’men
is impossible. Most genetic studies of pre-eclampsia have focused on maternal genotypes only. The
Genetics of Pre-eclampsia consortium highlighted the need to include analysis of all contributing
genotypes, and carried out transmission disequilibrium testing in maternal and fetal triads.13 Under-
standing the contribution of the fetal genotypewill require large sample sizes, with the development of
algorithms to determine the relative contribution from mother and fetus. Furthermore, the decreased
incidence of pre-eclampsia in second and subsequent pregnancies hampers analysis of the contribu-
tion of the fetal genotype.

Candidate gene approach

The candidate gene approach has been widely used in pre-eclampsia, and largely focuses on the
maternal genotype. In this method, a single gene is chosen as the candidate for investigation based on
prior biological knowledge of the pathophysiology of pre-eclampsia. The choice is strengthened if the
gene lies within a region identified by linkage studies. A case-control design is usually used, comparing
the frequencies of allelic variants in women with pre-eclampsia and normotensive pregnancies. Such
studies need careful definition of inclusion criteria for cases and controls, and subtle ethnic stratifi-
cation of groupsmust be avoided. Such performance characteristics of the genotyping assays as the rate
of mis-genotyping, and the quality assurance methods used, should be clearly stated, but this is rarely
done. Over 70 biological candidate genes have been examined, representing pathways involved in
various pathophysiological processes, including vasoactive proteins, thrombophilia and hypofi-
brinolysis, oxidative stress and lipidmetabolism, endothelial injury and immunogenetics.14 In common
with the experience in other genetically complex disorders, results from candidate gene studies have
been inconsistent, and no universally accepted susceptibility gene has been identified. Although this
may, in part, be attributed to variation within populations, a more important factor is the small size of
most of the candidate studies, which have been underpowered to detect variants with small effects. As
there are more than 20,000 genes and 10 million single nucleotide polymorphisms (SNP) available,
multiple testing will inevitably result in numerous results that achieve P values of less than 0.05. The
development of robust statistical techniques for the minimisation of both false positive and false
negative results is an important area.15,16 Only in recent years, as susceptibility genes for other complex
disorders have been reported, has the small effect size of individual genetic variants become apparent,
the majority increasing the risk of disease by less than 50%. A further limitation of the candidate gene
approach is its reliance on the generation of an a-priori hypothesis based on our current incomplete
knowledge of the pathophysiology of the disorder. The candidate genes studied belong to different
groups according to their functional properties and plausible role in the pathophysiology (Table 2).



Table 2
Predominant functional candidate genes studied in pre-eclampsia.

Pathophysiological
mechanism group

Gene name Gene symbol Predominant
polymorphism investigated

Thrombophilia Factor V Leiden F5 506Gln>Arg
Methylenetetrahydrofolate MTHFR C667T
Prothrombin F2 G20210A
Plasminogen activator factor-1 SERPINE1 I/D promoter
Integrin glycoprotein IIIa GPIIIA C98T

Endothelial function Endothelial nitric oxide synthase 3 eNOS3 298Glu>Asp
Vascular endothelial growth factor receptor 1 VEGFR1 TG repeat
Vascular endothelial growth factor VEGF C936T

Vasoactive proteins Angiotensinogen AGT 235Met>Thr
Angiotensin converting enzyme ACE I/D intron 16

Oxidative stress and
lipid metabolism

Apolipoprotein E APOE C866T
Microsomal epoxide hydrolase EPHX 113Tyr>His
Glutathione S-transferase GST A313G

Immunogenetics Tumor necrosis factor a TNF G-308A
Interleukin 10 IL10 G1082A

I/D, insertion/dilution.
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Thrombophilia
A successful pregnancy requires the development of adequate placental circulation. It is hypothesised

that thrombophilias may increase the risk of placental insufficiency because of placental micro-vascular
thrombosis, macro-vascular thrombosis, or both, as well as effects on trophoblast growth and differen-
tiation.17 Abnormalities of the clotting cascade arewell documented inwomenwith pre-eclampsia.18 The
endothelial damage of pre-eclampsia is associated with an altered phenotype from anticoagulant to
procoagulant and decreased endothelially mediated vasorelaxation. It is possible that this phenotype is
presentbeforepre-eclampsia inpregnancy, or itmaydevelopasaconsequenceofdamage initiatedduring
placentation. Furthermore, a subset of women develop frank thrombocytopaenia, often in association
with haemolysis, elevated liver enzymes and low platelet count (HELLP) syndrome. Association of the
three most widely studied thrombophilic factors, factor V Leiden (F5), methylenetetrahydrofolate
(MTHFR) and prothrombin (F2), with pre-eclampsia has been shown; however, several studies have also
shown contradictory results.14 A recent meta-analysis indicated a two-fold increase in risk for pre-
eclampsia associatedwith 1691G>Amutation in F5, but no associationswere found forMTHFRor F2.19 To
date, the number of studies showing no association with pre-eclampsia for these three genes is much
higher than thenumberconfirmingassociation.Associationwith the inhibitoroffibrinolysis plasminogen
activator factor-1 gene has also been reported; however, replication attempts have failed.20–22

Haemodynamics and endothelial function
The renin-angiotensin system (RAS) is important for regulating the cardiovascular and renal changes

that occur in pregnancy. Several studies have implicated the RAS in the pathophysiology of pre-
eclampsia.23 As such, genes in the RAS have been considered as plausible candidates for pre-eclampsia.
Angiotensin-converting enzyme (ACE), angiotensin II type 1 and type 2 receptor (AGTR1, AGTR2), and
angiotensinogen (AGT) have all been studied extensively in pre-eclampsia. Recent meta-analyses have
identified the Tallele of AGTM235Tas increasing the risk of developing pre-eclampsia by 1.62 times and
similar increases in disease risk have been found in AGT and the angiotensin-converting enzyme I/D
polymorphism.24 A rare functional polymorphism in AGT, which results in replacement of leucine by
phenylalanine at the site of renin cleavage, hasbeen reported inassociationwith severepre-eclampsia.25

Endothelial nitric oxide synthase 3 (eNOS3), which is involved in vascular remodelling and vaso-
dilation, has been shown to have reduced activity in pre-eclampsia26 Association studies in different
ethnic populations, however, have yielded both positive and negative findings. A meta-analysis
investigating the E298D polymorphism, which had initially been associated with pre-eclampsia in
Colombian women, failed to find increased risk.24 Vascular endothelial growth factor (VEGF) is
important for endothelial cell proliferation, migration, survival and regulation of vascular permeability.
The number of studies that have investigated SNP in the genes involved in the VEGF system is small.
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Two polymorphisms in VEGF, 405G>C and 936C>T, were found to be associated with the severe form
of pre-eclampsia in two small studies, but cannot at present be considered as major risk factors.27,28

Oxidative stress and lipid metabolism
Oxidative stress plays a central role in the pathogenesis of pre-eclampsia. Maternal perfusion of the

placenta does not occur until towards the end of the first trimester,29 when a rapid increase in local
oxygen tension takes place, and the probable occurrence of a period of hypoxia–reperfusion until
stability is reached. This is accompanied by increased expression and activity of such antioxidants as
glutathione peroxidase, catalase and the various forms of superoxide dismutase.30 If this antioxidant
response were reduced, then the cascade of events leading to impaired placentation could be initiated.
Evidence for reduced antioxidant activity in pre-eclampsia has recently been reviewed.31 Genes
involved in the generation or inactivation of reactive oxygen species, if defective, could increase
endothelial dysfunction via lipid peroxidation, which has been a candidate causative agent for the
endothelial damage of pre-eclampsia for more than 20 years.32 Despite the strong correlation between
oxidative stress and pre-eclampsia, only a small handful of genes have been investigated. Functional
polymorphisms in the gene for microsomal epoxide hydrolase (EPHX) that catalyses the hydrolysis of
certain oxides and may produce toxic intermediates that could be involved in pre-eclampsia, and
glutathione S-transferase (GST), an antioxidant capable of inactivating reactive oxygen species, have
shown associations. Conflicting results, however, have also been reported.33–36

Abnormal lipid profiles associated with the lipid peroxidation caused by oxidative stress are also
characteristic of pre-eclampsia. Lipoprotein lipase (LPL) and apolipoprotein E (ApoE) are the two major
regulators of lipid metabolism, abundantly expressed in placenta, and have therefore been proposed as
possible candidate genes.37,38 A recent study using bioinformatic analysis identified altered glycosylation
of circulating ApoE isoforms in pre-eclampsia.39 A deglycosylated basic ApoE isoform was increased in
pre-eclampsia, and an acidic ApoE sialyated isoformwas decreased. Functionally, this might increase the
riskofdevelopingplacental atherotic changes. Themostpromisinggenetic variant in this context is amis-
sensemutation,Asn291Ser, in LPLwhich correlateswith lowered LPL activityand increaseddyslipidaemia
in two separate studies. Again, others have failed to replicate these findings.38,40,41 The fetal genotype of
these two genes has also been reported to contribute to the metabolism of the maternal lipoproteins.37

Immune system
The maternal immune response to pregnancy is crucial in determining pregnancy outcome and

success. The increased incidence of pre-eclampsia in primiparous women, especially those at either
end of the childbearing age range, indicates a strong association between immune factors and pre-
eclampsia.42 However, the protective effect of multiparity is lost with change of partner. Advances in
assisted reproductive technology are also posing new challenges to the maternal immune system. The
use of donated sperm or eggs increases the risk of pre-eclampsia three-fold.43

Human leucocyte antigen
Trophoblast cells express an unusual repertoire of histocompatibility antigens, comprising human

leucocyte C, E and G class antigens (HLA-C, HLA-E, HLA-E), of which only HLA-C displays marked poly-
morphism. The expression of HLA on the invading cytotrophoblast is important, as these interact with
killer immunoglobulin, suchas receptors (KIR)expressedonmaternal uNKsandcytotoxicT-lymphocytes,
down-regulating theircytolytic activityandstimulating theproductionof cytokinesneeded for successful
placentation. Multiple highly homologous KIR genes map to chromosome 19q, probably arising from
ancestral geneduplications, and the twomain resultinggene clustershavebeenclassifiedashaplotypesA
and B. The A group codes mainly for KIR, which inhibit natural killer cells, whereas the B group has
additional stimulatory genes.44 Pre-eclampsia is more frequent in women who are homozygous for the
inhibitoryAhaplotypes (AA) than inwomenhomozygous for the stimulatoryBhaplotypes (BB). Theeffect
is strongest if the fetus is homozygous for the HLA-C2 haplotype.45 Alteration in KIR interaction on uNK
cells with HLA-C on interstitial trophoblast alters the decidual immune response, resulting in impaired
extravillous trophoblast invasion and deficient spiral artery remodelling, associatedwith pre-eclampsia.

An association of HLA-G, which displays limited polymorphism, with pre-eclampsia, has also been
reported. A possible association between the presence of the HLA-G allele G*0106 in the placenta and
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an increased risk of pre-eclampsia has been identified in two small studies.46,47 these were under-
powered, however, and further studies using larger cohorts of mothers and babies are needed to
replicate these results. HLA-G variants foreign to the mother may lead to histo-incompatibility
between mother and child. A maternal rejection response to the semi-allogeneic fetus may represent
one of the pathways involved in the development of pre-eclampsia.

A number of pro-inflammatory cytokines have also been investigated for possible associations with
pre-eclampsia. Excessive release of tumour necrosis factor alpha (TNFa) has been implicated owing to
its contribution to endothelial activation, which in turn could contribute to maternal symptoms.48

Interestingly, in pregnant rats, TNF induces hypertension, a response not seen in non-pregnant
rats.49 Furthermore, plasma levels of TNFa are significantly higher in women with pre-eclampsia than
matched controls.50 TNFa is also involved in the production of reactive oxygen species and subse-
quently oxidant mediated endothelial damage. The most frequently studied variant in pre-eclampsia is
the –308G>A transition in the promoter region, which is associated with increased levels of TNFa
production and an increased risk for pre-eclampsia linked disorders, including type 2 diabetes, coro-
nary artery disease and dyslipidaemia.51,52 However, a meta-analysis from 2008 combined 16 studies
investigating this promoter SNP, but failed to detect a significant association to pre-eclampsia.53

Interleukin-10 (IL-10) has also been implicated in the pathogenesis of pre-eclampsia by enhancing
the inflammatory response towards trophoblast cells resulting in reduced invasion and remodelling of
the spiral arteries.54 Expression of IL-10 is reduced in pre-eclamptic placentae.55 Studies investigating
associations of variants of the gene and pre-eclampsia, however, have yielded conflicting results.56–58

Associations have also been detected for two additional inflammatory genes, interleukin-1a (IL-1a) and
the interleukin 1 receptor anatagonist (IL1Ra) in relatively small studies, but few studies have
addressed the role of polymorphisms in these genes so far.59,60

Antioxidant enzymes
A large family of cytosolic glutathione-s-transferases (GST) exists, and the P class is highly expressed

in the human placenta. Several relatively small case-control studies of polymorphisms in this family in
relation to pre-eclampsia have failed to identify any significant effect of several GST polymorphisms
studied individually. However, a cumulative effect of the number of polymorphisms in various
biotransformation enzymes, including GST, which would result in decreased antioxidant capacity, has
been reported.61 Intriguingly, the use of semi-quantitative polymerase chain reaction on a small data
set identified using serial analysis of gene expression profiles, seems to identify a specific molecular
signature for HELLP, which includes decreased expression of GST P1.62

Remarkably, few studies of possible functional polymorphisms in antioxidant enzyme systems have
been reported. The 242C>T polymorphism in exon 4 of the gene for the p22phox subunit of NADPH/
NADH oxidase (CYBA), which is part of the cascade of superoxide generation, has been reported as
showing no evidence of an associationwith either pre-eclampsia or HELLP and pre-eclampsa.63 A small
preliminary study of the Ala40Thr polymorphism of the superoxide dismutase 3 gene (SOD3), which
has been associated with insulin resistance, reported a significant excess of the mutant allele inwomen
with severe intrauterine growth restriction.64

Genome-wide screens

The human genome consists of about 25,000 genes, including a significant proportion of unknown
function.With the advent ofmicroarray genotyping technologies, screening of the entire genome is now
possible. Genome-wide screening is an ‘agnostic’ approach that is not limited by current biological
functional knowledge used in the candidate gene approach,with the prospect of providing novel insights
into the disease process.

Genome-wide linkage screens

Genome-wide linkage screens (GWLS) have been very successful in identifying causal variants with
high penetrance in monogenic disorders, but this method has limited power to detect genes with small
effect size in complex genetic disorders. In pre-eclampsia the lack of a recognisable phenotype in men
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or non-parous women, and uncertainty of the mode of inheritance, has made it difficult to carry out
conventional linkage analysis. GWLS have been carried out using affected sib-pair analysis, analysing
the segregation of genetic markers (microsatellite alleles) between index women and their affected
siblings. This method has been extended tomore distant relationships using affected pedigreemember
analysis. Linkage analysis can only identify relatively large regions (typically tens of cM), which can
contain hundreds of genes, including many which are biologically plausible.

GWLS of pre-eclampsia has revealed significant linkage on chromosomes 2p13,65 2p25, and 9p13.66

Suggestive linkage has been identified at other loci on chromosomes 2q, 9p, 10q, 11q and 22q67,68

(Table 3)69. Disappointingly, no significant or suggestive locus has been replicated in another GWLS.
Possible explanations include population variations and differences in the density of microsatellite
marker panels, but limited statistical power is a major factor in failure to replicate GWLS results in
complex disorders. A meta-analysis of the results of five GWLS yielded modest evidence for linkage at
several loci, but cautioned that insufficient data were available for conclusive results.70
Positional candidate genes

Activin A receptor type IIA
Associations between positional candidate genes on the 2q22-23 susceptibility locus identified in

GWLS have been examined further by both Norwegian, Australian and New Zealand groups. Activin A
receptor type IIA (ACVR2A) was identified as a strong positional candidate on this locus. ACVR2A is a key
receptor for the cell signalling protein activin A, an important regulator of human pregnancy. Circu-
lating levels of activin A are increased in pre-eclamptic pregnancies, suggesting its use as a potential
biomarker of pre-eclampsia.71 Significant associations with pre-eclampsia were found for four ACVR2A
SNP in a study of over 1100 pre-eclamptic women and 2200 normotensive controls.72 The influence
that these variants have on the expression or function of ACVR2A is under investigation. However, the
ACVR2A association with pre-eclampsia was not confirmed in a study of 74 affected families from
Australia and New Zealand.73 Owing to the strong biological involvement of Activin A in the estab-
lishment of pregnancy, this gene still remains a priority for further adequately powered studies.

ROCK2
ROCK2, the gene encoding rho-associated coiled-coil protein kinase 2, lies within the pre-eclampsia

linkage peak on chromosome 2p25 identified in a GWLS of Finnish families.66 Interestingly, this gene
has been implicated in essential hypertension. ROCK2 is widely expressed in smooth muscle cells, and
a suggested role in vasoconstriction has been confirmed in a number of animal models.74,75 In addition,
ROCK2 is expressed by syncytiotrophoblast cells of the placenta, and expression is reportedly up-
regulated in pre-eclampsia.76 The Finnish group compared 10 polymorphisms in ROCK2 in 340 unre-
lated cases with matched normotensive controls, but did not show any association between these
variants and pre-eclampsia. The study was powered to detect a genetic effect of 1.6; a larger study is
Table 3
Genome-wide linkage scans to identify susceptibility loci for pre-eclampsia carried out over the past 10 years.a

Country Study size Number of microsatellite
markers used

Chromosome
loci identified

cM Logarithm of the
odds (LOD) score

Iceland 124 families (343 women) 440 microsatellite markers
(spacing w9cM)

2p13 94.05 4.77

Australia/
New Zealand

34 families (366 women) 400 2q23 144.7 2.58
11q23 121.3 2.02

The Netherlands 38 families (332 women) 292 (spacing w11.8cM) 10q22 93.9 2.38
22q12 32.4 2.41

Finland 15 families (174 women) 435 (spacing w10cM) 2p25 21.70 2.51
9p13 38.90 2.22
4q32 163.0 2.96
9p11 49.9 2.20

a A logarithm of the odds (LOD) score> 3.6 (P value< 0.00002) indicates genome-wide significance; an LOD score between 2.2
and 3.6 (P < 0.0007) indicates suggestive linkage; and an LOD score between 0.6 (P < 0.05) and 2.2 (P < 0.01) are nominal.69
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required before ROCK2 can be ruled out as a susceptibility gene for pre-eclampsia. the results of the
earlier GWLS of Finnish families, however, suggest a gene with a substantial effect size, possibly owing
to other genes at the 2p25 locus.

ERAP1 and ERAP2
Detailed study of susceptibility genes at the 5q15 locus following GWLS in separate Australian and

Norweiganwomen identified ERAP1 and ERAP2 as being significantly-associated with pre-eclampsia.77

ERAP1 degrades angiotensin II to angiotensin III, and has been linked with blood-pressure control in
non-pregnant women with hypertension.

Genome wide association screening

Genome-wide association screening (GWAS)makes use of the abundant SNP in the human genome.
As their name indicates, SNP are polymorphisms involving a change in a single base. These are
commonly biallelic (two possible alleles), and occur within gene coding and, more commonly, non-
coding regions. Over 10 million common SNP have been identified within the human genome and, in
theory, any one of these might affect gene function or expression, and influence susceptibility to
disease. Genotyping of all 10 million SNP would not only be time consuming but also prohibitively
expensive using current technologies. The phenomenon of linkage disequilibrium – the lack of inde-
pendence between the alleles of SNP in close proximity – makes it possible to genotype a smaller
number of representative tagSNP and infer the genotype of adjacent SNP. Typically, genotyping
between 300,000 and 1 million carefully selected tagSNP will capture most variation in the human
genome. It is then possible to focus on a region showing associationwith disease to determinewhether
this tagSNP, or more likely another SNP in linkage disequilibrium, is the causal variant. This often
requires extensive re-sequencing of the region to identify all polymorphisms.

Although GWAS offers an exciting way forward for identifying susceptibility variants in complex
disorders, a number of conditions must be met to make the screen robust and the results of value. The
odds ratio of disease conferred by a single SNP is generally low, and this means that only large, well-
powered studies will identify such SNP. Two thousand cases is regarded as the minimum for GWAS.
Furthermore, owing to the large number of statistical comparisons carried out in GWAS, a stringent
threshold for declaring statistical significance is required.78 A consensus level is P< 5�10�7. The use of
population-based control samples has been validated through GWAS carried out as part of the Well-
come Trust Case Control Consortium. However, such populations are only suitable if the disorder has
a relatively low incidence in the general population.

GWAS have identified at least 2000 common variants that seem to be associated with common
diseases or related traits, hundreds of which have been convincingly replicated. Successful GWAS have
identified association signals in a number of complex diseases, including bipolar disorder, coronary
artery disease and type 2 diabetes.78 Only modest effect sizes have been observed in many well-
replicated GWAS loci (odds ratio less than 1.2), emphasising the need for appropriately large sample
sizes and for further functional studies to elucidate the exact biological mechanism involved in disease
pathology. GWAS to identify susceptibility DNA variations associated with pre-eclampsia are under
way in a number of centres at the time of writing, and the results are awaited with interest.

The role of genetic imprinting in pre-eclampsia

Several genes in conserved clusters are expressed from only the maternal or the paternal allele, the
other allele being genetically silenced (’imprinted’). Imprinted genes are involved in regulating
trophoblast growth and fetal development.79 Imprinted genes associated with disease show an
unusual mode of inheritance, as mutant genes have an effect on the phenotype only if they come from
the parent fromwhich they are expressed. This may explain some conditions that seem to be heritable
but show an inconsistent pattern in affected families.

Epigenetic modification, including imprinting, has been implicated in the defective trophoblast
invasion characteristic of pre-eclampsia. The p57kip2 mouse model of pre-eclampsia is heterozygous
for deficiency of the maternally expressed (paternally imprinted) Cdkn1c gene.80 Although this gene is
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also imprinted in humans, its role in human disease pathology is unclear as 11p15, the location of the
human CDKN1C gene, does not display linkage with pre-eclampsia. A GWLS of Dutch families affected
by pre-eclampsia showed linkage to chromosome 10q22.1 with inheritance by the affected sisters of
shared maternal alleles in all families, suggesting a parent-of-origin effect. Furthermore, these same
loci had down-regulated expression of two gene clusters in hydatidiform molar placentae of andro-
genetic origin.81 These included the gene encoding the transcription factor STOX1, which seems to be
involved in the normal transition of trophoblast cells from an invasive to a non-invasive phenotype.
Support for a functional role for STOX1 in trophoblast maturation has come from studies in a chorio-
carcinoma cell line over-expressing STOX1. The alterations in the transcriptome of these cells corre-
lated strongly with those observed in pre-eclamptic placentae.82 A common single nucleotide
polymorphism within the STOX1 gene alters an amino acid at the DNA binding site, making STOX1 an
attractive candidate for pre-eclampsia. However, subsequent studies have challenged the imprinted
status of STOX1, and case-control studies have failed to show an association between STOX1 and pre-
eclampsia.83–85 Further studies of this intriguing gene are required to clarify its role, if any, in pre-
eclampsia.

TheH19 gene, inwhich the paternal allele is imprinted and thematernal allele is expressed, has also
been implicated in pre-eclampsia owing to its role in regulating the growth and development of the
embryo and differentiation of cytotrophoblast cells.86 In normal placentae, biallelic expression of H19
was observed in the first trimester, but as pregnancy progressed, the paternal allele was silenced. In
contrast, biallelic expression was observed in a significant proportion of pre-eclamptic placentae
obtained at delivery. The investigators suggested that H19 is imprinted dynamically during pregnancy,
with loss of imprinting associated with pre-eclampsia. Further work is needed to confirm these initial
findings.

Gene interactions

Epistasis, the modification of expression of one gene by one or several other genes, is believed to be
an important genetic contributor to complex diseases, including pre-eclampsia. Although the exami-
nation of epistatic interactions is essential to our understanding of the genetic basis of pre-eclampsia, it
presents substantial statistical challenges, particularly in the analysis of genome-wide data, owing to
the vast number of possible interactions. Robust statistical tools for the study of epistatic interactions
are currently under development.

In addition to gene–gene interactions, the clinical phenotype of affected individuals is also influ-
enced by gene–environment interactions.87 A lack of complete concordance for pre-eclampsia in
identical twins is a clear indication of the effect that environmental factors may play in determining the
clinical phenotype3,88 Environmental variables associated with pre-eclampsia include diet, smoking,
alcohol and obesity. These are able to alter the rate of gene transcription and translation, which may be
one mechanism by which they modify disease risk. Collection of robust data on environmental
exposures is needed to allow the effect of the environment on the incidence of pre-eclampsia to be fully
assessed. Ideally, such studies should make use of prospective cohorts of pregnant women such as the
SCOPE and Norwegian Mother and Child Cohort Study biobanks.89,90

The future

Researchers are acknowledging the need for the formation of large DNA sample collections, and
collaboration between groups in order to form such collections. We will be closer to identifying DNA
variations that are involved in pre-eclampsia when the following takes place: sample banks are
formed, and sample sizes are provided with high statistical power that allow us to identify poly-
morphisms with small effects to carry out further subgroup analysis. Furthermore, studies that can
elucidate the relative involvement and interaction of maternal and fetal genotypes, together with
information on possible environmental effects, will be beneficial.

Understanding how genes are involved in pre-eclampsia will enable us to identify women at high
risk and thus target specialised antenatal care to this group. However, experience with Type 2 diabetes
shows genetic testing to be an expensive method of predicting disease risk, with markers such as body
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mass index and family history found to be of more practical predictive value. Identification of novel
pharmaceutical targets and additional therapies may be additionally be aided by knowing the genetic
component of pre-eclampsia.
Conclusion

Epidemiological studies clearly confirm a genetic component to pre-eclampsia. Numerous candi-
date genes have been studied that fall into groups based on their proposed pathological mechanism,
including thrombophilia, endothelial function, vasoactive proteins, oxidative stress and lipid metab-
olism and immunogenetics. It is expected that no one gene will be identified as the sole risk factor for
pre-eclampsia, as in the general population pre-eclampsia represents a complex genetic disorder.
Interactions between numerous SNP either alone or with combination with predisposing environ-
mental factors, are most likely underpin the genetic component of this disorder. We must be cautious
in our approach to genetics and acknowledge that we are still in the infancy of this research. Following
on from GWAS, further fine mapping studies to delineate SNP that are causal from those that are in
linkage disequilibrium, followed by functional laboratory studies will be required. Only when we have
a better understanding of how the environment interacts with genes will we be in a better position to
target treatment for women, for example knowing that women with a certain genotype will benefit
from losing weight, enabling us to yield clinical benefit.
Practice points

At present no genetic test is available to predict pre-eclampsia. The lack of a predictive test can be
overcome by careful monitoring and assessment of women, especially those in high-risk groups,
including:

� Those at either end of the reproductive age spectrum
� Obesity
� Black ethnicity
� Primiparity
� Previous history of pre-eclampsia
� Multiple pregnancy
� Pre-existing medical conditions: renal disease, insulin-dependent diabetes, autoimmune
disease, antiphospholipid syndrom

Research agenda

� The potential benefits of individual genomewide screening for healthcare and treatment
options.

� The importance of fetal development and later health in adulthood (e.g. Developmental
Origins of Health and Disease; DoHAD).

� The maternal immune system response to pregnancy.
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