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Abstract This paper presents the Geneva stellar evolution
code with special emphasis on the modeling of solar-type
stars. The basic input physics used in the Geneva code as
well as the modeling of atomic diffusion is first discussed.
The physical description of rotation is then presented. Fi-
nally, the modeling of magnetic instabilities and transport
of angular momentum by internal gravity waves is briefly
summarized.
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1 Introduction

The Geneva evolution code was mainly developed and used
for the computation of models of massive stars. These ef-
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forts resulted in the publication of grids of stellar models
computed for a wide range of masses and metallicities which
have been extensively used by the astronomical community
(Maeder and Meynet 1987; Schaller et al. 1992; Schaerer
et al. 1993; Charbonnel et al. 1996; Meynet et al. 1994;
Mowlavi et al. 1998). Recently, rotational effects have been
included in the Geneva code (see Meynet and Maeder 1997,
and other papers of the series). These rotating models are
found to successfully reproduce many observational fea-
tures of massive stars (see for instance Maeder and Meynet
2004a).

The Geneva evolution code was also used for the com-
putation of stars at very different evolutionary stages, from
pre-sequence evolutionary models including the effects of
accretion (Behrend and Maeder 2001) to pre-supernova
evolution of rotating massive stars (Hirschi et al. 2004).
We also mention the study of rotating stars at very low
metallicity (see e.g. Meynet et al. 2006; Ekström et al.
2006). Concerning low mass stars, specific grids of mod-
els have been computed with the Geneva code (see Char-
bonnel et al. 1996, 1999) as well as detailed models of
solar-type stars for which p-mode frequencies have been ob-
served (Eggenberger et al. 2004, 2005a, Carrier et al. 2005;
Eggenberger and Carrier 2006).

In this paper, the input physics introduced in the Geneva
evolution code for the modeling of solar-type stars is dis-
cussed. Section 2 is dedicated to the description of the
basic input physics. The modeling of atomic diffusion is dis-
cussed in Sect. 3. The physical description of rotation is pre-
sented in Sect. 4. The modeling of the Tayler–Spruit dynamo
and the transport of angular momentum by internal grav-
ity waves is summarized in Sect. 5, while the conclusion is
given in Sect. 6.
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2 Basic input physics

2.1 Equations of stellar evolution

Four equations describe the evolution of the structure of the
star. Since rotational effects are included in the Geneva code,
spherical symmetry is no longer valid and the effective grav-
ity (sum of the centrifugal force and gravity) can no longer
be derived from a potential. By assuming that there is a
strong horizontal (along isobars) turbulence, the angular ve-
locity is then constant on isobars (Zahn 1992). The case is
referred to as shellular rotation and is described in (Meynet
and Maeder 1997) (see also Sect. 4). In this scheme, the four
structure equations are the following:

• Hydrostatic equilibrium:

∂P

∂MP

= −
GMP

4πr4
P

fP . (1)

• Continuity equation:

∂rP

∂MP

=
1

4πr2
P ρ̄

. (2)

• Energy conservation:

∂LP

∂MP
= ǫnucl − ǫν + ǫgrav

= ǫnucl − ǫν − cP
∂T

∂t
+

δ

ρ

∂P

∂t
. (3)

• Energy transport equation:

∂ lnT

∂MP

= −
GMP

4πr4
P

fP min

[

∇ad,∇rad
fT

fP

]

(4)

where

∇ = ∇ad =
Pδ

T ρ̄cP
in convective zones, and

∇ = ∇rad =
3

16πacG

κlP

mT
4

in radiative zones,

fP =
4πr4

P

GMP SP

1

〈g−1〉
,

fT =

(

4πr2
P

SP

)2
1

〈g〉〈g−1〉
.

〈x〉 is x average on an isobaric surface, x is x average in the
volume separating two successive isobars and the index P

refers to the isobar with a pressure equal to P , while other
variables have their usual meaning (see Meynet and Maeder
1997).

To solve these equations, the following physical ingredi-
ents are required:

• the nuclear reaction rates in order to evaluate ǫnucl and ǫν

(see Sect. 2.2);
• the equation of state to determine ρ and the needed ther-

modynamic quantities (see Sect. 2.4);
• the opacities to calculate ∇rad (see Sect. 2.3);
• a treatment of convection to compute the convective flux

(see Sect. 2.5).

On top of that, the equations of the evolution of chemical
elements abundances are to be followed. In the Geneva evo-
lution code, these equations are calculated separately from
the structure equations according to time splitting method.
Moreover, when atomic diffusion is included in the compu-
tation of a stellar model, equations describing the variation
of the chemical composition due to diffusion are needed (see
Sect. 3).

2.2 Nuclear reactions

2.2.1 Nuclear networks

For hydrogen burning the pp chains and the CNO tri-cycle
are calculated in detail and the evolution of the main nuclear
species is followed explicitly. For helium burning, we take
into account the following reactions:

• the 3α reaction,
• 12C(α, γ ) 16O(α, γ ) 20Ne(α, γ ) 24Mg,
• 13C(α,n) 16O,
• 14N(α, γ ) 18F(β, ν) 18O(α, γ ) 22Ne(α,n) 25Mg,
• 17O(α,n) 20Ne,
• 22Ne(α, γ ) 26Mg.

The system of nuclear reactions and the abundances varia-
tions are then determined for 15 isotopes: H, 3He, 4He, 12C,
13C, 14N, 15N, 16O, 17O, 18O, 20Ne, 22Ne, 24Mg, 25Mg, and
26Mg. The values of the following isotopic ratios 3He/He,
C/13C, 14N/15N, O/18O, 18O/17O, 21Ne/20Ne, 22Ne/20Ne,
25Mg/24Mg, and 26Mg/24Mg used in the Geneva code are
listed in Maeder (1983) who chose, when available, the ra-
tios given by radioastronomical observations of the inter-
stellar material. The code can also account for the Ne–Na
and Mg–Al chains in H-burning regions (see e.g. Meynet
et al. 1997) and for the neutron capture reactions during He-
burning (see e.g. Meynet and Arnould 2000). Note that for
the computation of massive PopIII stars, a proper treatment
of H-burning has been set up (see Ekström et al. 2006, for
more details).

The Geneva code is also used to compute stellar models
during the advanced stages of evolution (see Hirschi et al.
2004, for more details). The list of elements followed dur-
ing C-, Ne-, O- and Si-burnings is then: α, 12C, 16O, 20Ne,
24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe and 56Ni.
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2.2.2 Reaction rates

The main inputs of nuclear reaction networks are the ther-
monuclear reaction rates. In the Geneva code, the NACRE
nuclear reaction rates (Angulo et al. 1999) are used. Note
that the numerical tables of the NACRE compilation are
used and not the analytic fits. Screening factors are included
according to the prescription by Graboske et al. (1973).

2.2.3 Numerical scheme

The chemical changes due to secular evolution are computed
implicitly: we start with a model at time tn for which the cor-
rect structure Sn (pressure profile, temperature profile, etc.)
and chemical composition Cn is known. In order to compute
the same quantities at time tn+1 = tn +δt , an initial estimate
of the chemical composition Cn+1

0 is made. The approxi-
mate solution for the structure is then improved during the
first iteration (the Henyey method is used) leading to Sn+1

1 .
These refined profiles of pressure and density are then used
to compute a new chemical composition Cn+1

1 . The same
scheme is iterated as long as necessary to obtain the desired
accuracy. Since the nuclear reaction network is resolved at
each iteration, this procedure guarantees a good consistency
between the structure and chemical composition at each iter-
ation. Details regarding the computation of the nuclear net-
work and the associated abundance variations are given in
(Maeder 1983).

2.3 Opacities

The opacities are needed to calculate the energy transport by
the radiative transfer and to determine the radiative gradi-
ent ∇rad. Two groups, the OPAL group (Iglesias and Rogers
1996) and the Opacity Project (OP) group (Seaton et al.
1994), obtain very similar results using a different approach
for computing opacities. In the Geneva evolution code, we
use the opacity tables from the OPAL group complemented
at low temperatures with the molecular opacities of Alexan-
der and Ferguson (1994). Note that opacity tables are avail-
able for the standard solar abundances of (Grevesse and
Noels 1993) and (Grevesse and Sauval 1998) as well as for
the new solar abundances of (Asplund et al. 2004).

2.4 Equation of state

The equation of state describes the relation between the
three physical parameters (p,T ,ρ). For a given chemical
composition, it enables the determination of the third phys-
ical parameter from the two others and also the determina-
tion of the thermodynamic quantities needed for the com-
putation of a stellar model (∇ad, δ, cp, Γ1, . . . ). In the
Geneva evolution code, the equation of state usually used

is a general equation of state (see Schaller et al. 1992). Al-
though this general equation of state is perfectly suited for
models of massive stars, the computation of reliable mod-
els of solar-type stars required a more specific and realis-
tic equation of state. Indeed, in the case of low mass stars,
non ideal effects, such as Coulomb interactions become
important. Two different equations of state are included
in the Geneva evolution code for solar-type stars models:
the MHD equation of state (Hummer and Mihalas 1988;
Mihalas et al. 1988; Daeppen et al. 1988) and the OPAL
equation of state (Rogers et al. 1996; Rogers and Nayfonov
2002).

2.5 Convection and overshooting

A prescription for the energy transport by convection is re-
quired to calculate the temperature gradient in a convec-
tive zone. In the Geneva code, the stability of a given layer
is determined by using the Schwarzschild criterion. In the
outer convective zone, the standard mixing-length formal-
ism for convection is used (Böhm-Vitense 1958). The ba-
sic idea of the mixing-length theory (MLT) is to express
the parameters of the non local phenomena of convection in
terms of local quantities. The value of the mixing length l,
usually expressed as a dimensionless parameter α ≡ l/Hp

(with Hp the pressure scale height), is a free parameter of
this formalism. Concerning the stellar core, an overshoot
of the convective core into the radiative zone on a distance
dov ≡ αov min[Hp, rcore] can be included in the computation.

We also note that for red supergiants with luminosities
brighter than Mbol > −8.5 (Mini � 25 M⊙), the structure
of the outer convective envelope is complex. The acoustic
flux seems to be the dominant mode of energy transport. In
that case, the treatment of convection in the Geneva code
includes turbulent pressure, acoustic flux and a density scale
height (see Maeder 1987).

In the advanced stages of evolution, we also mention that
convective diffusion replaces instantaneous convection from
oxygen burning onwards because the mixing timescale be-
comes longer than the evolution timescale at that point. The
numerical method used for this purpose is the method used
for rotational diffusive mixing (Meynet et al. 2004). The
mixing length theory is then used to derive the correspond-
ing diffusion coefficient.

2.6 Mass loss

For low mass stars (M � 7 M⊙) the main sequence evolu-
tion is calculated at constant mass. On the red giant branch
and on the asymptotic giant branch, the mass loss becomes
however non negligible and is taken into account by using
the prescription by Reimers (1975): Ṁ = 4×10−13ηLR/M

(in M⊙ yr−1) with η = 0.5 (see Maeder and Meynet 1989).
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Mass loss plays a key role in the physics and evolution of
massive stars (see e.g. Maeder et al. 2005). For these stars,
the prescription of Vink et al. (2001) is adopted. Note that
the expressions by de Jager et al. (1988) are used when the
prescription by Vink et al. does not apply. Mass loss rates
follow a scaling relation with the metallicity Z of the type

Ṁ(Z) =

(

Z

Z⊙

)α

Ṁ(Z⊙) (5)

where Ṁ(Z) is the mass loss rate when the metallicity is
equal to Z and Ṁ(Z⊙) is the mass loss rate for the so-
lar metallicity. In the metallicity range from 1/30 to 3.0
times solar, the value of α is between 0.5 and 0.8 ac-
cording to stellar wind models (see Kudritzki et al. 1987;
Leitherer et al. 1992; Vink et al. 2001).

2.6.1 Anisotropic stellar winds

The Geneva evolution code also includes anisotropies of the
mass loss by stellar winds (Maeder 2002). It is indeed inter-
esting to recall that a rotating star has a non uniform surface
brightness, and the polar regions are those which have the
most powerful radiative flux. Thus one expects that the star
will lose mass preferentially along the rotational axis. This
is correct for hot stars, for which the dominant source of
opacity is electron scattering. In that case the opacity only
depends on the mass fraction of hydrogen and does not de-
pends on other physical quantities such as temperature. Thus
rotation induces anisotropies of the winds (Maeder and Des-
jacques 2001; Dwarkadas and Owocki 2002). The quantity
of mass lost through radiatively driven stellar winds is en-
hanced by rotation. The ratio of the mass loss rate of a star
with a surface angular velocity Ω to that of a non-rotating
star, of the same initial mass, metallicity and lying at the
same position in the HR diagram is given by (see Maeder
and Meynet 2000):

Ṁ(Ω)

Ṁ(0)
≃

(1 − Γ )1/α−1

[1 − 4
9 (v/vcrit,1)2 − Γ ]1/α−1

(6)

where Γ is the electron scattering opacity for a non-rotating
star with the same mass and luminosity and α is a force mul-
tiplier (Lamers et al. 1995).

3 Atomic diffusion

Atomic diffusion on H, He, C, N, O, Ne and Mg is included
in the Geneva evolution code by using the routines devel-
oped for the Toulouse–Geneva version of the code (see for
example Richard et al. 1996).

The chemical changes due to diffusion are computed sep-
arately from the changes due to nuclear reactions. For the 15

isotopes included in the nuclear network (see Sect. 2.2), the
abundance variations due to the nuclear reactions are first
computed. The diffusion equation is then solved separately
for all the isotopes except hydrogen.

Diffusion due to concentration and thermal gradients is
included, but the radiative acceleration is neglected as it is
negligible for the structure of the low-mass stellar models
with extended convective envelopes (Turcotte et al. 1998).
The computation of atomic diffusion is based on the Boltz-
mann equation for dilute collision-dominated plasmas with
the use of the Chapman–Enskog method (Chapman and
Cowling 1970) to solve this equation.

3.1 The diffusion equations

The diffusion equation describes the evolution of the number
concentration c of a given element in the stellar interiors. Its
general form in spherical coordinates can be written as:

ρ
∂c

∂t
=

1

r2

∂

∂r

(

r2ρD
∂c

∂r
− r2ρcV

)

− λρc (7)

where D is the diffusion coefficient, V the atomic diffu-
sion velocity and λ the nuclear reaction rate. As mentioned
above, the chemical changes due to nuclear reactions are cal-
culated separately from the changes due to diffusion. Thus,
λ is only included in the diffusion equations for lithium and
beryllium, which are treated separately from the nuclear net-
work.

In the formalism of the Chapman–Enskog method used
in the Geneva code, the diffusion equations for the different
isotopes are written in Lagrangian coordinates as:

∂ci

∂t
= D′

1i

∂2ci

∂m2
r

+

(

∂D′
1i

∂mr

− V ′
1i

)

∂ci

∂mr

−

(

∂V ′
1i

∂mr

+ λi

)

ci (8)

where, as before, ci is the number concentration of element
i and λi is the nuclear reaction rate. The diffusion coefficient
D′

1i is given by

D′
1i = (4πρr2)2 (Dturb + D1i) (9)

where Dturb corresponds to the effective macroscopic dif-
fusion coefficient (see Sect. 4), while D1i represents the
atomic diffusion coefficient of element i relative to hydro-
gen (element 1). V ′

1i is then given by

V ′
1i = (4πρr2)V1i, (10)

with

V1i = −D1i

(

Ai −
Zi

2
−

1

2

)(

mH

kT

Gmr

r2

)

+ D1iα1i∇ lnT , (11)
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where α1i is the thermal diffusion coefficient, Ai the atomic
mass number of element i, Zi the charge of element i, and
mH is the atomic hydrogen mass.

3.2 Computation of the diffusion coefficients

The atomic diffusion coefficient D1i and the thermal dif-
fusion coefficient α1i are computed with the formalism of
Paquette et al. (1986). Using the Chapman–Enskog method,
the atomic diffusion coefficient for collisions involving par-
ticles s and t can be expressed as:

Dst =
3E

2nm(1 − �)
(12)

where n is the total particle number density and m is the sum
of the masses of the particles. The terms E and � contain the

values of the collision integrals Ω
(i,j)
st according to (9–17) of

Paquette et al. (1986). In the same way, the thermal diffusion
coefficient αst is given by

αst =
5C(csSs − ctSt )

c2
s Qs + c2

t Qt + csctQs t
(13)

where ci is the number concentration of particles of species i

(i = s, t), while the terms C, Ss , St , Qs , Qt , and Qst contain
the values of the collision integrals Ω

(i,j)
st and are defined in

(9–17) of Paquette et al. (1986). In order to compute the
diffusion coefficients Dst and αst , one needs to determine
the values of the collision integrals.

The collision integrals Ω
(i,j)
st are given by (Paquette et al.

1986):

Ω
(i,j)
st =

(

kT

2πmMsMt

)(1/2) ∫ ∞

0
e−g2

g2j+3φ
(i)
st dg, (14)

with

φ
(i)
st = 2π

∫ ∞

0
(1 − cosi χst )b db and (15)

χst = π − 2

∫ ∞

rmin
st

b dr

{

r2
[

1 −
b2

r2
−

Vst (r)

g2kT

]1/2
}−1

, (16)

with Vst (r) the interaction potential and rmin
st the distance of

closest approach given by the solution of the equation:

1 −
b2

(rmin
st )2

−
Vst (r

min
st )

g2kT
= 0. (17)

In the formalism of Paquette et al., the collision integrals
are computed for a static screened potential

Vst (r) = ZsZte
2 e−r/λ

r
(18)

where the screening length λ is taken as the larger of the
Debye length

λD =

(

kT

4πe2
∑

i niZ
2
i

)1/2

or the average interionic distance λi = (3/4πni)
1/3.

The value of the collision integrals are given by Paquette
et al. in the form of high-accuracy analytic fits. These fits

are provided for the dimensionless collision integrals F
(ij)
st

defined as

F
(ij)
st =

Ω
(ij)
st

ǫst

, (19)

with

ǫst = π

(

ZsZte
2

2kT

)2 (

kT

2πmMsMt

)1/2

. (20)

The value of these integrals depend uniquely upon Zs , Zt ,
λ, and T . The independent variable for the fits to the dimen-
sionless collision integrals is

ψst = ln
[

ln(1 + γ 2
st )

]

, (21)

where the dimensionless parameter γst is given by

γst =
4kT λ

ZsZte2
. (22)

Tables 1–8 of Paquette et al. contain the values of the coeffi-
cients of the analytic fits and are used to determine the values
of the collision integrals. These values are then introduced in
the expressions for the diffusion coefficients (see (12, 13)) as
well as in (11) for the diffusion velocity. The diffusion equa-
tion is then solved by using the numerical method described
below.

3.3 Numerical method

Two different numerical methods are included in the Geneva
code to solve the diffusion equations: the Crank–Nicholson
finite differences method and the implicit finite elements
method. Models of solar-type stars are usually computed by
using the implicit finite elements method (see Meynet et al.
2004, for a comparison between these different numerical
methods).

3.3.1 Implicit finite elements method

The detailed description of this method is presented in
(Schatzman et al. 1981) (see the appendix by Glowinsky
and Angrand). The basic idea of this method is to decom-
pose the unknown function as a linear combination of well
chosen independent functions.
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The radiative zone of the star is divided in K shells, with
the Lagrangian mass coordinate of the ith mesh point be-
ing mi (mi is the mass inside the sphere of radius ri ). We
introduce K functions vi(mr) defined by

vi(mr) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

mr − mi−1

mi − mi−1
if mr ∈ [mi−1,mi],

mr − mi+1

mi − mi+1
if mr ∈ [mi,mi+1],

0 if mr /∈ [mi−1,mi+1].

The function vi is equal to one at mr = mi , is equal to zero
at mi+1 and mi−1 and varies linearly as a function of mr

inbetween. By multiplying the diffusion equation (8) for a
given chemical element by each of the functions vi(mr ),
one obtains K equations. Each of these K equations is then
integrated over the volume Ω corresponding to the radia-
tive zone of the star. By using the following general rela-
tions:

div(av) = adiv(v) + grad(a) · v, (23)
∫

V

div(v)dV =

∫

Γ

v · dS (24)

where a is a scalar, v a vector and Γ the surface correspond-
ing to the volume Ω , one obtains (see Appendix B of Talon
1997 for more details):

∫ M2

M1

∂c

∂t
vi dm +

∫ M2

M1

D′ ∂c

∂m

∂vi

∂m
dm −

∫ M2

M1

V ′c
∂vi

∂m
dm

+

∫ M2

M1

λcvi dm +
∂

∂t
(cMzc1) −

∂

∂t
(cMzc2) = 0 (25)

where the boundary conditions at the edge of the convective
zones M1 and M2 have been used (Mzc is the mass of the
convective zone). D′ and V ′ are the diffusion coefficient and
velocity as defined in (9 and 10).

Finally, the unknown quantity c is expressed as a lin-
ear combination of the functions vi : c =

∑

j Cjvj . Integrals
in (25) can then be written as:

∫ M2

M1

cvi dm ∼=

∫ M2

M1

(

∑

j

Cjvj

)

vi dm

=
∑

j

Cj

∫ M2

M1

vjvi dm =
∑

j

MjiCj , (26)

∫ M2

M1

D′ ∂c

∂m

∂vi

∂m
dm ∼=

∑

j

Cj

∫ M2

M1

D′ ∂vj

∂m

∂vi

∂m
dm

=
∑

j

NjiCj , (27)

∫ M2

M1

V ′c
∂vi

∂m
dm ∼=

∑

j

Cj

∫ M2

M1

V ′vj

∂vi

∂m
dm

=
∑

j

PjiCj . (28)

The values of these integrals can then be calculated for every
i and j with 1 ≤ i ≤ K and 1 ≤ j ≤ K (see (B7) of Talon
1997). Using (26–28), the diffusion equation (25) is finally
expressed as:

∂

∂t
(Mj,iCj ) + Nj,iCj − Pj,iCj

+ δ1j

∂

∂t
(C1Mzc1) − δKj

∂

∂t
(CKMzc2) = 0. (29)

This linear system of equations is then solved by using the
LAPACK routines. Note that the diffusion equation has to be
solved simultaneously for all the considered elements. The
order of magnitude of the time scales generally implies the
computation of many iterations of the diffusion process for
a single evolutionary time step.

3.4 Application to the solar case

Using the input physics described above, a solar calibration
was performed with the Geneva stellar evolution code. In
order to reproduce the solar luminosity, radius and surface
chemical composition of Grevesse and Noels (1993) at the
age of the Sun (4.57 Gyr), we obtain an initial helium mass
fraction Yi = 0.2735, an initial ratio between the mass frac-
tion of heavy elements and hydrogen (Z/X)i = 0.0274 and
a mixing-length parameter α = 1.7998. The surface helium
mass fraction of this model is Ys = 0.2426, while the bottom
of the convective zone is located at rbzc = 0.712 R⊙. The
comparison between the sound speed profile of this model
and helioseismological measurements is shown in Fig. 1.

Fig. 1 Relative sound speed differences between helioseismological
results and a standard solar model computed with the Geneva stellar
evolution code
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4 Modeling of rotation

In this section, we briefly summarize the basic physical in-
gredients of the numerical models of rotating stars.

4.1 Shellular rotation

In the radiative interiors of rotating stars, meridional circula-
tion is generated as a result of the thermal imbalance induced
by the breaking of the spherical symmetry (Eddington 1925;
Vogt 1926). This large scale circulation transports matter
and angular momentum. As a result, differential rotation
takes place in the radiative zones making the stellar interior
highly turbulent. The turbulence is very anisotropic, with a
much stronger geostrophic-like transport in the horizontal
than in the vertical direction (Zahn 1992). The horizontal
turbulent coupling favours an essentially constant angular
velocity Ω on the isobars. In the context of this hypothesis
of shellular rotation, every quantity depends solely on pres-
sure and can be split into a mean value and its latitudinal
perturbation

f (P, θ) = f (P ) + f̃ (P )P2(cos θ) (30)

where P2(cos θ) is the second Legendre polynomial.

4.2 Transport of angular momentum

For shellular rotation, the transport of angular momen-
tum obeys an advection–diffusion equation written in La-
grangian coordinates (Zahn 1992; Maeder and Zahn 1998):

ρ
d

dt
(r2Ω)Mr =

1

5r2

∂

∂r

(

ρr4ΩU(r)
)

+
1

r2

∂

∂r

(

ρDr4 ∂Ω

∂r

)

, (31)

r being the radius, ρ the density and Ω(r) the mean angular
velocity at level r . It is worthwhile to recall here that merid-
ional circulation is treated as a truly advective process in the
Geneva evolution code. The vertical component u(r, θ) of
the velocity of the meridional circulation at a distance r to
the center and at a colatitude θ can be written

u(r, θ) = U(r)P2(cos θ). (32)

Only the radial term U(r) appears in (31); its expression
is given below in (35). The quantity D is the total diffu-
sion coefficient representing the various instabilities which
transport the angular momentum: convection, semiconvec-
tion and shear turbulence. In convective regions, a very
large diffusion coefficient implies a rotation law which is
not far from solid body rotation. In radiative zones, we take
D = Dshear, since we consider shear mixing and meridional

circulation as extra-convective mixing. The expression of
the coefficient Dshear is given below in (36).

The full solution of 31 taking into account U(r) and D

gives the non-stationary solution of the problem. The ex-
pression of U(r) (35) involves derivatives up to the third or-
der; (31) is thus of the fourth order and implies four bound-
ary conditions. The first boundary conditions impose mo-
mentum conservation at convective boundaries (Talon et al.
1997)

∂

∂t

[

Ω

∫ R

rt

r4ρ dr

]

= −
1

5
r4ρΩU +FΩ for r = rt ,

∂

∂t

[

Ω

∫ rb

0
r4ρ dr

]

=
1

5
r4ρΩU for r = rb.

The other conditions are determined by requiring the ab-
sence of differential rotation at convective boundaries

∂Ω

∂r
= 0 for r = rt , rb, (33)

rt and rb correspond respectively to the top (surface) and
bottom (center) of the radiative zone. When the star has
no convective core, momentum conservation is then simply
equivalent to U = 0.

FΩ represents the torque applied at the surface of the star.
For solar-type stars, this torque corresponds to the magnetic
coupling at the stellar surface. Indeed, these stars are as-
sumed to undergo magnetic braking while arriving on main
sequence. In the Geneva code, we adopt the braking law of
Kawaler (1988) corresponding to a field geometry interme-
diate between a dipolar and a radial field

dJ

dt
=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

−KΩ3

(

R

R⊙

)1/2 (

M

M⊙

)−1/2

(Ω ≤ Ωsat),

−KΩΩ2
sat

(

R

R⊙

)1/2 (

M

M⊙

)−1/2

(Ω > Ωsat).

The constant K is related to the magnitude of the magnetic
field strength; it is usually calibrated on the Sun and taken
to be a constant in all stars (see Bouvier et al. 1997, for in-
stance). Ωsat expresses the fact that magnetic field genera-
tion saturates at some critical value (Saar 1996, and refer-
ences therein). This saturation is required in order to retain a
sufficient amount of fast rotators in young clusters, as orig-
inally suggested by Stauffer and Hartmann (1987). Ωsat is
usually fixed to 14 Ω⊙ (see Bouvier et al. 1997). A scaling
in τ−1

conv of Ωsat (τconv is the global convective time-scale as
defined by Kim and Demarque 1996) is also suggested for
low mass stars (see Palacios et al. 2003, Sect. 3.3 and refer-
ences therein). Such a scaling of the value of Ωsat can also
be included in the Geneva code. Note that by neglecting the
evolution of stellar structure and assuming solid body rota-
tion, this braking law leads to the classical Skumanich law
in t−1/2 for the surface velocity.
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4.3 Transport of chemical elements

The vertical transport of chemicals through the combined
action of vertical advection and strong horizontal diffusion
can be described as a pure diffusive process (Chaboyer and
Zahn 1992). The advective transport is then replaced by a
diffusive term, with an effective diffusion coefficient

Deff =
|rU(r)|2

30Dh
(34)

where Dh is the diffusion coefficient associated to horizontal
turbulence (see Sect. 4.6). The vertical transport of chemical
elements then obeys a diffusion equation which, in addition
to this macroscopic transport, also accounts for (vertical)
turbulent transport, nuclear reactions, and atomic diffusion
(see Sect. 3).

4.4 Meridional circulation

The velocity of the meridional circulation in the case of shel-
lular rotation was initially derived by Zahn (1992). The ef-
fects of the vertical μ-gradient ∇μ and of the horizontal tur-
bulence on meridional circulation were taken into account
by Maeder and Zahn (1998). They found

U(r) =
P

ρgCP T [∇ad − ∇ + (ϕ/δ)∇μ]

{

L

M
(EΩ + Eμ)

}

.

(35)

P is the pressure, CP the specific heat, EΩ and Eμ are terms
depending on the Ω- and μ-distributions respectively, up to
the third order derivatives and on various thermodynamic
quantities (see Maeder and Zahn 1998, for more details).

4.5 Shear turbulence

The diffusion by shear instabilities is expressed by a coeffi-
cient Dshear, namely

Dshear =
4(K + Dh)

[
ϕ
δ
∇μ(1 + K

Dh
) + (∇ad − ∇rad)]

×
Hp

gδ

[

α

4

(

f Ω
d lnΩ

d ln r

)2

− (∇ ′ − ∇)

]

(36)

where f is a numerical factor equal to 0.8836, K is the ther-
mal diffusivity and (∇ ′ − ∇) expresses the difference be-
tween the internal nonadiabatic gradient and the local gradi-
ent (Maeder and Meynet 2001).

4.6 Horizontal turbulence

The usual expression for the coefficient Dh is, according to
Zahn (1992),

Dh =
1

ch
r
∣

∣2V (r) − αU(r)
∣

∣ (37)

where U(r) is the vertical component of the meridional cir-
culation velocity, V (r) the horizontal component, ch a con-

stant of order unity and α = 1
2

d ln r2Ω̄
d ln r

.
By expressing the balance between the energy dissipated

by the horizontal turbulence and the excess of energy present
in the differential rotation on an equipotential that can be
dissipated in a dynamical time, Maeder (2003) recently de-
rived a new expression for the diffusion coefficient Dh:

Dh = Ar
(

rΩ̄(r)V [2V − αU ]
)

1
3 , (38)

with

A =

(

3

400nπ

)
1
3

. (39)

Mathis et al. (2004) borrowed another prescription for the
horizontal turbulence from torque measurements in the clas-
sical Couette–Taylor experiment. They find

Dh =

(

β

10

)
1
2
(

r2Ω̄(r)
)

1
2
[

r|2V − αU |
]

1
2 , (40)

with β ∼= 1.5 10−5 (Richard and Zahn 1999).
These three expressions for the horizontal turbulence

are included in the Geneva evolution code. Stellar models
are usually computed by using the recent prescription by
Maeder.

5 Magnetic fields and internal gravity waves

Meridional and rotational turbulent diffusion are not able to
account for all observed properties of solar-type stars and
in particular for the rotation profile of the radiative inte-
rior of the Sun as deduced from helioseismic measurements.
Indeed, helioseismological results indicate that the angular
velocity Ω(r) is constant as a function of the radius r be-
tween about 20% and 70% of the total solar radius (Brown
et al. 1989; Kosovichev et al. 1997; Couvidat et al. 2003),
while meridional and rotational turbulent diffusion produce
an insufficient internal coupling to ensure solid body rota-
tion (Pinsonneault et al. 1989; Chaboyer et al. 1995). This
suggests that other effects intervene. In the Geneva evolution
code, the effects of the Tayler–Spruit dynamo (Spruit 2002;
Maeder and Meynet 2004b) as well as the transport of angu-
lar momentum by internal gravity waves (Zahn et al. 1997;
Talon et al. 2002; Talon and Charbonnel 2005; Charbonnel
and Talon 2005) have been included.
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5.1 Tayler–Spruit dynamo

In this section we briefly summarize the consistent system
of equations for the Tayler–Spruit dynamo (Spruit 2002;
Maeder and Meynet 2004b).

The energy density uB of a magnetic field of intensity B

per unit volume is

uB =
B2

8π
=

1

2
ρr2ω2

A with ωA =
B

(4πρ)
1
2 r

(41)

where ωA is the Alfvén frequency in a spherical geometry.
If due to magnetic field or rotation, some unstable displace-
ments of vertical amplitude l/2 occur around an average sta-
ble position, the restoring buoyancy force produces verti-
cal oscillations around the equilibrium position with a fre-
quency equal to the Brunt–Väisälä frequency N .

The restoring oscillations will have an average density of
kinetic energy

uN ≃ fNρl2N2, (42)

where fN is a geometrical factor of the order of unity. If
the magnetic field produces some instability with a verti-
cal component, one must have uB > uN. Otherwise, the
restoring force of gravity which acts at the dynamical
timescale would immediately counteract the magnetic in-

stability. From this inequality, one obtains l2 < 1
2fN

r2 ω2
A

N2 . If

fN = 1
2 , we have the condition for the vertical amplitude of

the instability (Spruit 2002, (6)),

l < r
ωA

N
(43)

where r is the radius. This means that there is a maximum
size of the vertical length l of a magnetic instability. In or-
der to not be quickly damped by magnetic diffusivity, the
vertical length scale of the instability must satisfy

l2 >
η

σB
=

ηΩ

ω2
A

(44)

where Ω is the angular velocity and σB the characteris-
tic growth-rate of the magnetic field. In a rotating star,
this growth-rate is σB = (ω2

A/Ω) due to the Coriolis force
(Spruit 2002; Pitts and Tayler 1985). The combination of the
limits given by (43) and (44) gives for the case of marginal
stability,

(

ωA

Ω

)4

=
N2

Ω2

η

r2Ω
. (45)

The equality of the amplification time of Tayler instabil-
ity τa = N/(ωAΩq) with the characteristic frequency σB of
the magnetic field leads to the equation (Spruit 2002)

ωA

Ω
= q

Ω

N
with q = −

∂ lnΩ

∂ ln r
. (46)

By eliminating the expression of N2 between (45) and
(46), we obtain an expression for the magnetic diffusivity,

η =
r2Ω

q2

(ωA

Ω

)6
. (47)

Equations (45) and (46) form a coupled system relating the
two unknown quantities η and ωA. The fact that the ratio
η/K is very small allows us to bring these coupled equations
to a system of degree 4 (Maeder and Meynet 2004b),

r2Ω

q2K

(

N2
T + N2

μ

)

x4 −
r2Ω3

K
x3 + 2N2

μx − 2Ω2q2 = 0 (48)

where x = (ωA/Ω)2. The solution of this equation, which is
easily obtained numerically, provides the Alfvén frequency
and by (47) the thermal diffusivity.

The azimuthal component of the magnetic field is much
stronger that the radial one in the Tayler–Spruit dynamo. We
have for these components (Spruit 2002)

Bϕ = (4πρ)
1
2 rωA and Br = Bϕ(lr/r) (49)

where ωA is the solution of the general equation (48) and lr
is given by (43).

Turning towards the transport of angular momentum by
magnetic field, we first write the azimuthal stress by volume
unity due to the magnetic field

S =
1

4π
BrBϕ =

1

4π

(

lr

r

)

B2
ϕ = ρr2

(

ω3
A

N

)

. (50)

Then, the viscosity ν for the vertical transport of angular
momentum can be expressed in terms of S (Spruit 2002),

ν =
S

ρqΩ
=

Ωr2

q

(ωA

Ω

)3
(

Ω

N

)

. (51)

This is the general expression of ν with ωA given by the
solution of (48). We have the full set of expressions neces-
sary to obtain the Alfvén frequency ωA and the magnetic
diffusivity η. Let us recall that η also expresses the vertical
transport of the chemical elements, while the viscosity ν de-
termines the vertical transport of angular momentum by the
magnetic field.

Stellar models computed with the Tayler–Spruit dynamo
show that the evolution of a rotating star with magnetic fields
leads to an equilibrium value of the differential rotation.
This equilibrium is determined by the magnetic coupling,
which favours a constant rotation profile, and meridional cir-
culation which tends to build differential rotation (Maeder
and Meynet 2003, 2004b, 2005; Eggenberger et al. 2005b).
For a 1 M⊙ star, the global equilibrium stage is close to solid
body rotation between about 0.7 and 0.2 R⊙, in good agree-
ment with helioseismic measurements (Eggenberger et al.
2005b).



52 Astrophys Space Sci (2008) 316: 43–54

5.2 Internal gravity waves

In this section, the modeling of the effects of internal grav-
ity waves is very briefly summarized. For more details, the
reader is referred to (Zahn et al. 1997; Talon et al. 2002;
Talon and Charbonnel 2005; Charbonnel and Talon 2005).

Gravity waves are excited at the base of the convective
zone by Reynolds stresses and/or convective plumes. These
waves lead to two different features:

– They produce a shear layer, that generates turbulence
close to the bottom of the convection zone;

– They deposit negative (positive) momentum throughout
the radiative interior when the convection zone rotates
slower (faster) than the radiative zone.

When meridional circulation, turbulence and waves are
taken into account, the evolution of angular momentum is
then described by the following equation (Talon et al. 2002)

ρ
d

dt
[r2Ω] =

1

5r2

∂

∂r
[ρr4ΩU ] (52)

+
1

r2

∂

∂r

[

ρ(νt + νwaves)r
4 ∂Ω

∂r

]

−
3

8π

1

r2

∂

∂r
LJ (r) (53)

where νwaves is the diffusion coefficient associated with
wave-induced turbulence (νt is the turbulent viscosity due
to differential rotation away from the shear layer) and LJ (r)

is the net momentum deposition of angular momentum as-
sociated to the gravity waves. To obtain this net momentum
deposition, one must follow the local momentum luminosity

LJ (r) =
∑

σ,ℓ,m

LJ ℓ,m(rshear layer) exp
[

−τ(r, σ, ℓ)
]

(54)

where the local damping rate takes into account the mean
molecular weight stratification

τ =
[

ℓ(ℓ + 1)
]

3
2

∫ rc

r

(K + νt )
NN2

T

σ 4

(

N2

N2 − σ 2

)

1
2 dr

r3
(55)

where N2 = N2
T + N2

μ is the total Brunt–Väisälä frequency,

N2
T is its thermal part and N2

μ is due to the mean molecu-
lar weight stratification (Zahn et al. 1997). σ is the local,
Doppler shifted frequency

σ(r) = ω − m
(

Ω(r) − Ωcz
)

(56)

and ω is the wave frequency in the reference frame of the
convection zone. The spectrum of internal gravity waves st-
rongly depends on the structure of the convection zone. In
order to determine the net mean luminosity below the shear
layer LJ ℓ,m(rshear layer), we have to evaluate the global mo-
mentum luminosity in waves, but also the dynamics of the

shear layer and the resulting differential filtering. In the Ge-
neva code, this is done by interpolating in tables which give
the filtered luminosities for fixed values of the differential
rotation just below the shear layer. These tables are obtained
by performing numerical simulations of the dynamics of the
shear layer (see Talon and Charbonnel 2005, for more de-
tails).

It is very interesting to note that stellar models includ-
ing internal gravity waves are found to successfully repro-
duce both the rotation profile and the surface abundance of
lithium in solar-type stars of various ages (see Talon et al.
2002; Talon and Charbonnel 2005; Charbonnel and Talon
2005, for more details).

6 Conclusion

We conclude that the input physics used in the Geneva stel-
lar evolution code enables the computation of models in-
cluding a detailed treatment of many physical processes at
work in stellar interiors. Note that these models can be com-
puted for stars situated at various evolutionary stages and for
a wide range of masses and metallicities. In the specific case
of solar-type stars, standard stellar models can be produced
with the Geneva code, as well as more sophisticated mod-
els including meridional circulation, turbulence, transport of
angular momentum by internal gravity waves and magnetic
instabilities.
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